Exemplo n.º 1
0
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the PC to point back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		regs->ARM_pc = (long)cur->addr;
		if (kcb->kprobe_status == KPROBE_REENTER) {
			restore_previous_kprobe(kcb);
		} else {
			reset_current_kprobe();
		}
		break;

	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accounting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
			return 1;
		break;

	default:
		break;
	}

	return 0;
}
Exemplo n.º 2
0
/*
 * Called with IRQs disabled. IRQs must remain disabled from that point
 * all the way until processing this kprobe is complete.  The current
 * kprobes implementation cannot process more than one nested level of
 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 * risk encountering a new kprobe in an interrupt handler.
 */
void __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p, *cur;
	struct kprobe_ctlblk *kcb;

	kcb = get_kprobe_ctlblk();
	cur = kprobe_running();

#ifdef CONFIG_THUMB2_KERNEL
	/*
	 * First look for a probe which was registered using an address with
	 * bit 0 set, this is the usual situation for pointers to Thumb code.
	 * If not found, fallback to looking for one with bit 0 clear.
	 */
	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
	if (!p)
		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);

#else /* ! CONFIG_THUMB2_KERNEL */
	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
#endif

	if (p) {
		if (cur) {
			/* Kprobe is pending, so we're recursing. */
			switch (kcb->kprobe_status) {
			case KPROBE_HIT_ACTIVE:
			case KPROBE_HIT_SSDONE:
				/* A pre- or post-handler probe got us here. */
				kprobes_inc_nmissed_count(p);
				save_previous_kprobe(kcb);
				set_current_kprobe(p);
				kcb->kprobe_status = KPROBE_REENTER;
				singlestep(p, regs, kcb);
				restore_previous_kprobe(kcb);
				break;
			default:
				/* impossible cases */
				BUG();
			}
		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
			/* Probe hit and conditional execution check ok. */
			set_current_kprobe(p);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;

			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry,
			 * so get out doing nothing more here.
			 */
			if (!p->pre_handler || !p->pre_handler(p, regs)) {
				kcb->kprobe_status = KPROBE_HIT_SS;
				singlestep(p, regs, kcb);
				if (p->post_handler) {
					kcb->kprobe_status = KPROBE_HIT_SSDONE;
					p->post_handler(p, regs, 0);
				}
				reset_current_kprobe();
			}
		} else {
			/*
			 * Probe hit but conditional execution check failed,
			 * so just skip the instruction and continue as if
			 * nothing had happened.
			 */
			singlestep_skip(p, regs);
		}
	} else if (cur) {
		/* We probably hit a jprobe.  Call its break handler. */
		if (cur->break_handler && cur->break_handler(cur, regs)) {
			kcb->kprobe_status = KPROBE_HIT_SS;
			singlestep(cur, regs, kcb);
			if (cur->post_handler) {
				kcb->kprobe_status = KPROBE_HIT_SSDONE;
				cur->post_handler(cur, regs, 0);
			}
		}
		reset_current_kprobe();
	} else {
		/*
		 * The probe was removed and a race is in progress.
		 * There is nothing we can do about it.  Let's restart
		 * the instruction.  By the time we can restart, the
		 * real instruction will be there.
		 */
	}
}
Exemplo n.º 3
0
/*
 * Called with IRQs disabled. IRQs must remain disabled from that point
 * all the way until processing this kprobe is complete.  The current
 * kprobes implementation cannot process more than one nested level of
 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 * risk encountering a new kprobe in an interrupt handler.
 */
void __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p, *cur;
	struct kprobe_ctlblk *kcb;
	kprobe_opcode_t	*addr = (kprobe_opcode_t *)regs->ARM_pc;

	kcb = get_kprobe_ctlblk();
	cur = kprobe_running();
	p = get_kprobe(addr);

	if (p) {
		if (cur) {
			/* Kprobe is pending, so we're recursing. */
			switch (kcb->kprobe_status) {
			case KPROBE_HIT_ACTIVE:
			case KPROBE_HIT_SSDONE:
				/* A pre- or post-handler probe got us here. */
				kprobes_inc_nmissed_count(p);
				save_previous_kprobe(kcb);
				set_current_kprobe(p);
				kcb->kprobe_status = KPROBE_REENTER;
				singlestep(p, regs, kcb);
				restore_previous_kprobe(kcb);
				break;
			default:
				/* impossible cases */
				BUG();
			}
		} else {
			set_current_kprobe(p);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;

			/*
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry,
			 * so get out doing nothing more here.
			 */
			if (!p->pre_handler || !p->pre_handler(p, regs)) {
				kcb->kprobe_status = KPROBE_HIT_SS;
				singlestep(p, regs, kcb);
				if (p->post_handler) {
					kcb->kprobe_status = KPROBE_HIT_SSDONE;
					p->post_handler(p, regs, 0);
				}
				reset_current_kprobe();
			}
		}
	} else if (cur) {
		/* We probably hit a jprobe.  Call its break handler. */
		if (cur->break_handler && cur->break_handler(cur, regs)) {
			kcb->kprobe_status = KPROBE_HIT_SS;
			singlestep(cur, regs, kcb);
			if (cur->post_handler) {
				kcb->kprobe_status = KPROBE_HIT_SSDONE;
				cur->post_handler(cur, regs, 0);
			}
		}
		reset_current_kprobe();
	} else {
		/*
		 * The probe was removed and a race is in progress.
		 * There is nothing we can do about it.  Let's restart
		 * the instruction.  By the time we can restart, the
		 * real instruction will be there.
		 */
	}
}