Exemplo n.º 1
0
/* Model terminate function */
void Crane_terminate(void)
{
  /* S-Function Block: <S10>/Block#1 */
  {
    if (rt_mech_visited_Crane_63fd34a2 == 1) {
      _rtMech_PWORK *mechWork = (_rtMech_PWORK *) Crane_DWork.Block1_PWORK;
      if (mechWork->mechanism->destroyEngine != NULL) {
        (mechWork->mechanism->destroyEngine)(mechWork->mechanism);
      }
    }

    if ((--rt_mech_visited_Crane_63fd34a2) == 0 ) {
      rt_mech_visited_loc_Crane_63fd34a2 = 0;
    }
  }

  /* S-Function Block: Crane/Falcon (falcon_block) */
  {
    t_error result;
    result = falcon_close(Crane_DWork.Falcon_Falcon);
    if (result < 0) {
      msg_get_error_messageA(NULL, result, _rt_error_message, sizeof
        (_rt_error_message));
      rtmSetErrorStatus(Crane_M, _rt_error_message);
      return;
    }
  }

  /* External mode */
  rtExtModeShutdown(2);
}
/* Model terminate function */
void omni_interface_terminate(void)
{
  /* S-Function Block: omni_interface/HIL Initialize (hil_initialize_block) */
  {
    t_boolean is_switching;
    t_int result;
    hil_task_stop_all(omni_interface_DWork.HILInitialize_Card);
    hil_task_delete_all(omni_interface_DWork.HILInitialize_Card);
    is_switching = false;
    if ((omni_interface_P.HILInitialize_POTerminate && !is_switching) ||
        (omni_interface_P.HILInitialize_POExit && is_switching)) {
      omni_interface_DWork.HILInitialize_POValues[0] =
        omni_interface_P.HILInitialize_POFinal;
      omni_interface_DWork.HILInitialize_POValues[1] =
        omni_interface_P.HILInitialize_POFinal;
      omni_interface_DWork.HILInitialize_POValues[2] =
        omni_interface_P.HILInitialize_POFinal;
      result = hil_write_pwm(omni_interface_DWork.HILInitialize_Card,
        &omni_interface_P.HILInitialize_POChannels[0], 3U,
        &omni_interface_DWork.HILInitialize_POValues[0]);
      if (result < 0) {
        msg_get_error_messageA(NULL, result, _rt_error_message, sizeof
          (_rt_error_message));
        rtmSetErrorStatus(omni_interface_M, _rt_error_message);
      }
    }

    hil_close(omni_interface_DWork.HILInitialize_Card);
    omni_interface_DWork.HILInitialize_Card = NULL;
  }

  /* S-Function Block: omni_interface/Stream Answer (stream_answer_block) */
  {
    if (omni_interface_DWork.StreamAnswer_Client != NULL) {
      stream_close(omni_interface_DWork.StreamAnswer_Client);
      omni_interface_DWork.StreamAnswer_Client = NULL;
    }

    if (omni_interface_DWork.StreamAnswer_Listener != NULL) {
      stream_close(omni_interface_DWork.StreamAnswer_Listener);
      omni_interface_DWork.StreamAnswer_Listener = NULL;
    }
  }

  /* S-Function Block: omni_interface/Stream Answer1 (stream_answer_block) */
  {
    if (omni_interface_DWork.StreamAnswer1_Client != NULL) {
      stream_close(omni_interface_DWork.StreamAnswer1_Client);
      omni_interface_DWork.StreamAnswer1_Client = NULL;
    }

    if (omni_interface_DWork.StreamAnswer1_Listener != NULL) {
      stream_close(omni_interface_DWork.StreamAnswer1_Listener);
      omni_interface_DWork.StreamAnswer1_Listener = NULL;
    }
  }

  /* External mode */
  rtExtModeShutdown(1);
}
Exemplo n.º 3
0
int main(void)
{
  volatile boolean_T runModel = 1;
  float modelBaseRate = 2.0;
  float systemClock = 0;
  init();
  MW_Arduino_Init();
  rtmSetErrorStatus(test_motor_M, 0);

  /* initialize external mode */
  rtParseArgsForExtMode(0, NULL);
  test_motor_initialize();
  sei();

  /* External mode */
  rtSetTFinalForExtMode(&rtmGetTFinal(test_motor_M));
  rtExtModeCheckInit(1);

  {
    boolean_T rtmStopReq = false;
    rtExtModeWaitForStartPkt(test_motor_M->extModeInfo, 1, &rtmStopReq);
    if (rtmStopReq) {
      rtmSetStopRequested(test_motor_M, true);
    }
  }

  rtERTExtModeStartMsg();
  cli();
  configureArduinoAVRTimer();
  runModel =
    (rtmGetErrorStatus(test_motor_M) == (NULL)) && !rtmGetStopRequested
    (test_motor_M);
  sei();
  sei();
  while (runModel) {
    /* External mode */
    {
      boolean_T rtmStopReq = false;
      rtExtModeOneStep(test_motor_M->extModeInfo, 1, &rtmStopReq);
      if (rtmStopReq) {
        rtmSetStopRequested(test_motor_M, true);
      }
    }

    runModel =
      (rtmGetErrorStatus(test_motor_M) == (NULL)) && !rtmGetStopRequested
      (test_motor_M);
  }

  rtExtModeShutdown(1);

  /* Disable rt_OneStep() here */

  /* Terminate model */
  test_motor_terminate();
  cli();
  return 0;
}
Exemplo n.º 4
0
////////////////////////////////////////////////////////////////////////////////
// Destructor
BonebrakerController::~BonebrakerController()
{
  event::Events::DisconnectWorldUpdateBegin(updateConnection);

  //Close matlab model
  rtExtModeShutdown(1);
  quadrotor_controller_terminate();

  node_handle_->shutdown();
  delete node_handle_;
}
Exemplo n.º 5
0
/* Model terminate function */
void client_terminate(void)
{
  /* S-Function Block: client/Stream Connect (stream_connect_block) */
  {
    if (client_DWork.StreamConnect_Stream != NULL) {
      stream_close(client_DWork.StreamConnect_Stream);
      client_DWork.StreamConnect_Stream = NULL;
    }
  }

  /* External mode */
  rtExtModeShutdown(2);
}
Exemplo n.º 6
0
/* Model terminate function */
void arbeitspunkt_terminate(void)
{
  /* S-Function Block: <Root>/Analog Output */
  {
    {
      ANALOGIOPARM parm;
      parm.mode = (RANGEMODE) arbeitspunkt_P.AnalogOutput_RangeMode;
      parm.rangeidx = arbeitspunkt_P.AnalogOutput_VoltRange;
      RTBIO_DriverIO(0, ANALOGOUTPUT, IOWRITE, 1,
                     &arbeitspunkt_P.AnalogOutput_Channels,
                     &arbeitspunkt_P.AnalogOutput_FinalValue, &parm);
    }
  }

  /* External mode */
  rtExtModeShutdown(2);
}
Exemplo n.º 7
0
/* Model terminate function */
void Maglev_PD_terminate(void)
{
  /* S-Function Block: <S4>/Analog Output */
  {
    {
      ANALOGIOPARM parm;
      parm.mode = (RANGEMODE) Maglev_PD_P.AnalogOutput_RangeMode;
      parm.rangeidx = Maglev_PD_P.AnalogOutput_VoltRange;
      RTBIO_DriverIO(0, ANALOGOUTPUT, IOWRITE, 1,
                     &Maglev_PD_P.AnalogOutput_Channels,
                     &Maglev_PD_P.AnalogOutput_FinalValue, &parm);
    }
  }

  /* External mode */
  rtExtModeShutdown(3);
}
Exemplo n.º 8
0
/* Model terminate function */
void Server_terminate(void)
{
  /* S-Function Block: Server/Stream Answer (stream_answer_block) */
  {
    if (Server_DWork.StreamAnswer_Client != NULL) {
      stream_close(Server_DWork.StreamAnswer_Client);
      Server_DWork.StreamAnswer_Client = NULL;
    }

    if (Server_DWork.StreamAnswer_Listener != NULL) {
      stream_close(Server_DWork.StreamAnswer_Listener);
      Server_DWork.StreamAnswer_Listener = NULL;
    }
  }

  /* External mode */
  rtExtModeShutdown(2);
}
Exemplo n.º 9
0
void BonebrakerController::MatlabUpdate()
{//Matlab Autogenerated code
   static boolean_T OverrunFlag = 0;
      if (OverrunFlag) {
      rtmSetErrorStatus(quadrotor_controller_M, "Overrun");
      return;
     }
     OverrunFlag = TRUE;
     quadrotor_controller_step();
     OverrunFlag = FALSE;

     if((rtmGetErrorStatus(quadrotor_controller_M) == (NULL)) &&
           !rtmGetStopRequested(quadrotor_controller_M))
     {
         rtExtModeCheckEndTrigger();
     }else
     {
         rtExtModeShutdown(1);
     }
}
Exemplo n.º 10
0
void terminateTask(void *arg)
{
  terminatingmodel = 1;
  printf("**terminating the model**\n");
  fflush(stdout);

  {
    int ret;
    runModel = 0;

    /* Wait for background task to complete */
    ret = mw_osThreadJoin(backgroundThread, (void *)&threadJoinStatus);
    CHECK_STATUS(ret, 0, "mw_osThreadJoin");
  }

  rtExtModeShutdown(1);

  /* Disable rt_OneStep() here */

  /* Terminate model */
  Model_terminate();
  mw_osSemaphoreRelease(&stopSem);
}
Exemplo n.º 11
0
int main(int argc, char **argv)
{
  int ret;
  baseRateInfo_t info;
  pthread_attr_t attr;
  pthread_t baseRateThread;
  size_t stackSize;
  unsigned long cpuMask = 0x1;
  unsigned int len = sizeof(cpuMask);
  printf("**starting the model**\n");
  fflush(stdout);
  rtmSetErrorStatus(raspberrypi_audioequalizer_M, 0);
  rtExtModeParseArgs(argc, (const char_T **)argv, NULL);

  /* All threads created by this process must run on a single CPU */
  ret = sched_setaffinity(0, len, (cpu_set_t *) &cpuMask);
  CHECK_STATUS(ret, "sched_setaffinity");

  /* Initialize semaphore used for thread synchronization */
  ret = sem_init(&stopSem, 0, 0);
  CHECK_STATUS(ret, "sem_init:stopSem");

  /* Create threads executing the Simulink model */
  pthread_attr_init(&attr);
  ret = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
  CHECK_STATUS(ret, "pthread_attr_setinheritsched");
  ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
  CHECK_STATUS(ret, "pthread_attr_setdetachstate");

  /* PTHREAD_STACK_MIN is the minimum stack size required to start a thread */
  stackSize = 64000 + PTHREAD_STACK_MIN;
  ret = pthread_attr_setstacksize(&attr, stackSize);
  CHECK_STATUS(ret, "pthread_attr_setstacksize");

  /* Block signal used for timer notification */
  info.period = 0.1;
  info.signo = SIGRTMIN;
  sigemptyset(&info.sigMask);
  MW_blockSignal(info.signo, &info.sigMask);
  signal(SIGTERM, MW_exitHandler);     /* kill */
  signal(SIGHUP, MW_exitHandler);      /* kill -HUP */
  signal(SIGINT, MW_exitHandler);      /* Interrupt from keyboard */
  signal(SIGQUIT, MW_exitHandler);     /* Quit from keyboard */
  raspberrypi_audioequalizer_initialize();

  /* External mode */
  rtSetTFinalForExtMode(&rtmGetTFinal(raspberrypi_audioequalizer_M));
  rtExtModeCheckInit(1);

  {
    boolean_T rtmStopReq = FALSE;
    rtExtModeWaitForStartPkt(raspberrypi_audioequalizer_M->extModeInfo, 1,
      &rtmStopReq);
    if (rtmStopReq) {
      rtmSetStopRequested(raspberrypi_audioequalizer_M, TRUE);
    }
  }

  rtERTExtModeStartMsg();

  /* Create base rate task */
  ret = pthread_create(&baseRateThread, &attr, (void *) baseRateTask, (void *)
                       &info);
  CHECK_STATUS(ret, "pthread_create");
  pthread_attr_destroy(&attr);

  /* Wait for a stopping condition. */
  MW_sem_wait(&stopSem);

  /* Received stop signal */
  printf("**stopping the model**\n");
  if (rtmGetErrorStatus(raspberrypi_audioequalizer_M) != NULL) {
    printf("\n**%s**\n", rtmGetErrorStatus(raspberrypi_audioequalizer_M));
  }

  /* External mode shutdown */
  rtExtModeShutdown(1);

  /* Disable rt_OneStep() here */

  /* Terminate model */
  raspberrypi_audioequalizer_terminate();
  return 0;
}
Exemplo n.º 12
0
int_T main(void)
{
  init();

#ifdef _RTT_USE_SERIAL1_

  Serial_begin(1, 9600);

#endif

#ifdef _RTT_USE_SERIAL2_

  Serial_begin(2, 9600);

#endif

#ifdef _RTT_USE_SERIAL3_

  Serial_begin(3, 9600);

#endif

  /* initialize external mode */
  rtParseArgsForExtMode(0, NULL);
  velo_id_gain_initialize();

  /* External mode */
  rtSetTFinalForExtMode(&rtmGetTFinal(velo_id_gain_M));
  rtExtModeCheckInit(2);

  {
    boolean_T rtmStopReq = false;
    rtExtModeWaitForStartPkt(velo_id_gain_M->extModeInfo, 2, &rtmStopReq);
    if (rtmStopReq) {
      rtmSetStopRequested(velo_id_gain_M, true);
    }
  }

  rtERTExtModeStartMsg();
  arduino_Timer_Setup();

  /* The main step loop */
  while ((rtmGetErrorStatus(velo_id_gain_M) == (NULL)) && !rtmGetStopRequested
         (velo_id_gain_M)) {
    /* External mode */
    {
      boolean_T rtmStopReq = false;
      rtExtModeOneStep(velo_id_gain_M->extModeInfo, 2, &rtmStopReq);
      if (rtmStopReq) {
        rtmSetStopRequested(velo_id_gain_M, true);
      }
    }

    rtExtModeCheckEndTrigger();
  }

  rtExtModeShutdown(2);
  delay(1000);
  velo_id_gain_terminate();

  /* Disable Interrupts */
  cli();
  return 0;
}
Exemplo n.º 13
0
/* Function: main ==============================================================
 *
 *      Execute model on a generic target such as a workstation.
 */
int_T main(int_T argc, char_T *argv[])
{
    SimStruct  *S                 = NULL;
    boolean_T  calledMdlStart     = FALSE;
    boolean_T  dataLoggingActive  = FALSE;
    boolean_T  initializedExtMode = FALSE;
    const char *result;
    const char *program;
    time_t     now;
    int matFileFormat;
    const char *errorPrefix       = NULL;
    void *parforSchedulerInit     = NULL;

    program = argv[0];
    gblInstalledSigHandlers = FALSE;
    /* No re-defining of data types allowed. */
    if ((sizeof(real_T)   != 8) ||
        (sizeof(real32_T) != 4) ||
        (sizeof(int8_T)   != 1) ||
        (sizeof(uint8_T)  != 1) ||
        (sizeof(int16_T)  != 2) ||
        (sizeof(uint16_T) != 2) ||
        (sizeof(int32_T)  != 4) ||
        (sizeof(uint32_T) != 4) ||
        (sizeof(boolean_T)!= 1)) {
        ERROR_EXIT("Error: %s\n", "Re-defining data types such as REAL_T is not supported by RSIM");
    }

    rt_InitInfAndNaN(sizeof(real_T));


    /* Parse arguments */
    gblErrorStatus = ParseArgs(argc, argv);
    ERROR_EXIT("Error parsing input arguments: %s\n", gblErrorStatus);

    /* Initialize the model */
    S = raccel_register_model();
    ERROR_EXIT("Error during model registration: %s\n", ssGetErrorStatus(S));

    ssClearFirstInitCondCalled(S);
    /* Override StopTime */
    if (gblFinalTimeChanged) ssSetTFinal(S,gblFinalTime);

    MdlInitializeSizes();
    MdlInitializeSampleTimes();

    /* We don't have GOTO_EXIT_IF_ERROR here as engine is not initialized 
       via rsimInitializeEngine */
    rt_RapidReadMatFileAndUpdateParams(S);
    ERROR_EXIT("Error reading parameter data from mat-file: %s\n",
              ssGetErrorStatus(S));

    /* load solver options */
    rsimLoadSolverOpts(S);
    ERROR_EXIT("Error loading solver options: %s\n", ssGetErrorStatus(S));

# if defined(DEBUG_SOLVER)
    rsimEnableDebugOutput(sizeof(struct SimStruct_tag),
                          sizeof(struct _ssMdlInfo));
# endif

#ifdef RACCEL_PARALLEL_FOREACH
    parforSchedulerInit = rt_ParallelForEachInitScheduler(S, RACCEL_PARFOREACH_NUM_THREADS, RACCEL_NUM_PARFOREACH_SS);
#endif

    rsimInitializeEngine(S);
    ERROR_EXIT("Error initializing RSIM engine: %s\n", ssGetErrorStatus(S));

    /* initialize external model */
    if (gblExtModeEnabled) {
        rtExtModeCheckInit(ssGetNumSampleTimes(S));
        initializedExtMode = TRUE;       
    }

    raccel_setup_MMIStateLog(S);

    if (ssIsVariableStepSolver(S)) {
        (void)rt_StartDataLoggingWithStartTime(ssGetRTWLogInfo(S),
                                               ssGetTStart(S),
                                               ssGetTFinal(S),
                                               0.0,
                                               &ssGetErrorStatus(S));
    } else {
        (void)rt_StartDataLoggingWithStartTime(ssGetRTWLogInfo(S),
                                               ssGetTStart(S),
                                               ssGetTFinal(S),
                                               ssGetStepSize(S),
                                               &ssGetErrorStatus(S));
    }
    GOTO_EXIT_IF_ERROR("Error starting data logging: %s\n", 
                       ssGetErrorStatus(S));
    dataLoggingActive = TRUE;

    if (gblExtModeEnabled) {
        /* If -w flag is specified wait here for connect signal from host */
        rtExtModeWaitForStartPkt(ssGetRTWExtModeInfo(S),
                                 ssGetNumSampleTimes(S),
                                 (boolean_T *)&ssGetStopRequested(S));
        if (ssGetStopRequested(S)) goto EXIT_POINT;
    }

    /* Start the model */
    now = time(NULL);
    if(gblVerboseFlag) {
        (void)printf("\n** Starting model @ %s", ctime(&now));
        }

    /* Enable logging in the MdlStart method */
    ssSetLogOutput(S,TRUE);

    /* Enable -i option to load inport data file */
    result = rt_RapidReadInportsMatFile(gblInportFileName, &matFileFormat);
    if (result!= NULL) {
        ssSetErrorStatus(S,result);
        GOTO_EXIT_IF_ERROR("Error starting model: %s\n",  ssGetErrorStatus(S));
    }

    MdlStart();
    ssSetLogOutput(S,FALSE);

    calledMdlStart = TRUE;
    GOTO_EXIT_IF_ERROR("Error starting model: %s\n", ssGetErrorStatus(S));

    result = rt_RapidCheckRemappings();
    ssSetErrorStatus(S,result);
    GOTO_EXIT_IF_ERROR("Error: %s\n", ssGetErrorStatus(S));

    /* Create solver data */
    rsimCreateSolverData(S, gblSlvrJacPatternFileName);
    GOTO_EXIT_IF_ERROR("Error creating solver data: %s\n", ssGetErrorStatus(S));

    ssSetFirstInitCondCalled(S);

    /*********************
     * Execute the model *
     *********************/

    /* Install Signal and Run time limit handlers */
    
    rsimInstallAllHandlers(S,WriteResultsToMatFile,gblTimeLimit);
    

    gblInstalledSigHandlers = TRUE;
    GOTO_EXIT_IF_ERROR("Error: %s\n", ssGetErrorStatus(S));

    while ( ((ssGetTFinal(S)-ssGetT(S)) > (fabs(ssGetT(S))*DBL_EPSILON)) ) {

        if (gblExtModeEnabled) {
            rtExtModePauseIfNeeded(ssGetRTWExtModeInfo(S),
                                   ssGetNumSampleTimes(S),
                                   (boolean_T *)&ssGetStopRequested(S));
        }
        if (ssGetStopRequested(S)) break;

        if (gbl_raccel_isMultitasking) {
            rsimOneStepMT(S);
        } else {
            rsimOneStepST(S);
        }
        if (ssGetErrorStatus(S)) break;
    }
    if (ssGetErrorStatus(S) == NULL && !ssGetStopRequested(S)) {
        /* Do a major step at the final time */
        if (gbl_raccel_isMultitasking) {
            rsimOneStepMT(S);
        } else { 
            rsimOutputLogUpdate(S);
        }
    }

  EXIT_POINT:
    /********************
     * Cleanup and exit *
     ********************/
    if (ssGetErrorStatus(S) != NULL) {
        if (errorPrefix) {
            (void)fprintf(stderr, errorPrefix, ssGetErrorStatus(S));
        } else {
            (void)fprintf(stderr, "Error: %s\n", ssGetErrorStatus(S));
        }
    }
    if (gblInstalledSigHandlers) {
        rsimUninstallNonfatalHandlers();
        gblInstalledSigHandlers = FALSE;
    }
    if (dataLoggingActive){
        WriteResultsToMatFile(S);
    }

    
    rsimTerminateEngine(S,0);
    
        
    if (initializedExtMode) {
        rtExtModeShutdown(ssGetNumSampleTimes(S));
    }
    if (calledMdlStart) {
        MdlTerminate();
    }

#ifdef RACCEL_PARALLEL_FOREACH
    rt_ParallelForEachClearScheduler(parforSchedulerInit);
#endif

    rt_RapidFreeGbls(matFileFormat);
    return ssGetErrorStatus(S) ? EXIT_FAILURE : EXIT_SUCCESS;

} /* end main */
Exemplo n.º 14
0
int main(void)
{
  volatile boolean_T runModel = 1;
  float modelBaseRate = 0.01;
  float systemClock = 168;

#ifndef USE_RTX

  __disable_irq();

#endif

  ;
  stm32f4xx_init_board();
  SystemCoreClockUpdate();
  bootloaderInit();
  rtmSetErrorStatus(BeschleunigungsAuswertung_M, 0);

  /* initialize external mode */
  rtParseArgsForExtMode(0, NULL);
  BeschleunigungsAuswertung_initialize();
  __enable_irq();

  /* External mode */
  rtSetTFinalForExtMode(&rtmGetTFinal(BeschleunigungsAuswertung_M));
  rtExtModeCheckInit(1);

  {
    boolean_T rtmStopReq = false;
    rtExtModeWaitForStartPkt(BeschleunigungsAuswertung_M->extModeInfo, 1,
      &rtmStopReq);
    if (rtmStopReq) {
      rtmSetStopRequested(BeschleunigungsAuswertung_M, true);
    }
  }

  rtERTExtModeStartMsg();
  __disable_irq();
  ARMCM_SysTick_Config(modelBaseRate);
  runModel =
    (rtmGetErrorStatus(BeschleunigungsAuswertung_M) == (NULL)) &&
    !rtmGetStopRequested(BeschleunigungsAuswertung_M);
  __enable_irq();
  __enable_irq();
  while (runModel) {
    /* External mode */
    {
      boolean_T rtmStopReq = false;
      rtExtModeOneStep(BeschleunigungsAuswertung_M->extModeInfo, 1, &rtmStopReq);
      if (rtmStopReq) {
        rtmSetStopRequested(BeschleunigungsAuswertung_M, true);
      }
    }

    runModel =
      (rtmGetErrorStatus(BeschleunigungsAuswertung_M) == (NULL)) &&
      !rtmGetStopRequested(BeschleunigungsAuswertung_M);
  }

  rtExtModeShutdown(1);

#ifndef USE_RTX

  (void)systemClock;

#endif

  ;

  /* Disable rt_OneStep() here */

  /* Terminate model */
  BeschleunigungsAuswertung_terminate();
  __disable_irq();
  return 0;
}
Exemplo n.º 15
0
/* Function: main =============================================================
 *
 * Abstract:
 *      Execute model on a generic target such as a workstation.
 */
int_T main(int_T argc, const char_T *argv[])
{
    RT_MODEL  *S;
    const char *status;
    real_T     finaltime = -2.0;

    int_T  oldStyle_argc;
    const char_T *oldStyle_argv[5];

    /******************************
     * MathError Handling for BC++ *
     ******************************/
#ifdef BORLAND
    signal(SIGFPE, (fptr)divideByZero);
#endif

    /*******************
     * Parse arguments *
     *******************/
    if ((argc > 1) && (argv[1][0] != '-')) {
        /* old style */
        if ( argc > 3 ) {
            displayUsage();
            exit(EXIT_FAILURE);
        }

        oldStyle_argc    = 1;
        oldStyle_argv[0] = argv[0];
    
        if (argc >= 2) {
            oldStyle_argc = 3;

            oldStyle_argv[1] = "-tf";
            oldStyle_argv[2] = argv[1];
        }

        if (argc == 3) {
            oldStyle_argc = 5;

            oldStyle_argv[3] = "-port";
            oldStyle_argv[4] = argv[2];

        }

        argc = oldStyle_argc;
        argv = oldStyle_argv;

    }

    {
        /* new style: */
        double    tmpDouble;
        char_T tmpStr2[200];
        int_T  count      = 1;
        int_T  parseError = FALSE;

        /*
         * Parse the standard RTW parameters.  Let all unrecognized parameters
         * pass through to external mode for parsing.  NULL out all args handled
         * so that the external mode parsing can ignore them.
         */
        while(count < argc) {
            const char_T *option = argv[count++];
            
            /* final time */
            if ((strcmp(option, "-tf") == 0) && (count != argc)) {
                const char_T *tfStr = argv[count++];
                
                sscanf(tfStr, "%200s", tmpStr2);
                if (strcmp(tmpStr2, "inf") == 0) {
                    tmpDouble = RUN_FOREVER;
                } else {
                    char_T tmpstr[2];

                    if ( (sscanf(tmpStr2,"%lf%1s", &tmpDouble, tmpstr) != 1) ||
                         (tmpDouble < 0.0) ) {
                        (void)printf("finaltime must be a positive, real value or inf\n");
                        parseError = TRUE;
                        break;
                    }
                }
                finaltime = (real_T) tmpDouble;

                argv[count-2] = NULL;
                argv[count-1] = NULL;
            }
        }

        if (parseError) {
            (void)printf("\nUsage: %s -option1 val1 -option2 val2 -option3 "
                         "...\n\n", QUOTE(MODEL));
            (void)printf("\t-tf 20 - sets final time to 20 seconds\n");

            exit(EXIT_FAILURE);
        }

        rtExtModeParseArgs(argc, argv, NULL);

        /*
         * Check for unprocessed ("unhandled") args.
         */
        {
            int i;
            for (i=1; i<argc; i++) {
                if (argv[i] != NULL) {
                    printf("Unexpected command line argument: %s\n",argv[i]);
                    exit(EXIT_FAILURE);
                }
            }
        }
    }

    /****************************
     * Initialize global memory *
     ****************************/
    (void)memset(&GBLbuf, 0, sizeof(GBLbuf));

    /************************
     * Initialize the model *
     ************************/
    rt_InitInfAndNaN(sizeof(real_T));

    S = MODEL();
    if (rtmGetErrorStatus(S) != NULL) {
        (void)fprintf(stderr,"Error during model registration: %s\n",
                      rtmGetErrorStatus(S));
        exit(EXIT_FAILURE);
    }
    if (finaltime >= 0.0 || finaltime == RUN_FOREVER) rtmSetTFinal(S,finaltime);

    MdlInitializeSizes();
    MdlInitializeSampleTimes();
    
    status = rt_SimInitTimingEngine(rtmGetNumSampleTimes(S),
                                    rtmGetStepSize(S),
                                    rtmGetSampleTimePtr(S),
                                    rtmGetOffsetTimePtr(S),
                                    rtmGetSampleHitPtr(S),
                                    rtmGetSampleTimeTaskIDPtr(S),
                                    rtmGetTStart(S),
                                    &rtmGetSimTimeStep(S),
                                    &rtmGetTimingData(S));

    if (status != NULL) {
        (void)fprintf(stderr,
                "Failed to initialize sample time engine: %s\n", status);
        exit(EXIT_FAILURE);
    }
    rt_CreateIntegrationData(S);
/*
#ifdef UseMMIDataLogging
    rt_FillStateSigInfoFromMMI(rtmGetRTWLogInfo(S),&rtmGetErrorStatus(S));
    rt_FillSigLogInfoFromMMI(rtmGetRTWLogInfo(S),&rtmGetErrorStatus(S));
#endif*/
 /*   GBLbuf.errmsg = rt_StartDataLogging(rtmGetRTWLogInfo(S),
                                        rtmGetTFinal(S),
                                        rtmGetStepSize(S),
                                        &rtmGetErrorStatus(S));
    if (GBLbuf.errmsg != NULL) {
        (void)fprintf(stderr,"Error starting data logging: %s\n",GBLbuf.errmsg);
        return(EXIT_FAILURE);
    }*//*removed datalogging*/

    rtExtModeCheckInit(rtmGetNumSampleTimes(S));
    rtExtModeWaitForStartPkt(rtmGetRTWExtModeInfo(S),
                             rtmGetNumSampleTimes(S),
                             (boolean_T *)&rtmGetStopRequested(S));

    (void)printf("\n** starting the model **\n");

    MdlStart();
    if (rtmGetErrorStatus(S) != NULL) {
      GBLbuf.stopExecutionFlag = 1;
    }

    /*************************************************************************
     * Execute the model.  You may attach rtOneStep to an ISR, if so replace *
     * the call to rtOneStep (below) with a call to a background task        *
     * application.                                                          *
     *************************************************************************/
    if (rtmGetTFinal(S) == RUN_FOREVER) {
        printf ("\n**May run forever. Model stop time set to infinity.**\n");
    }



    stepTime=(FPS*CLOCKS_PER_SEC)/1000;
    nextStart = clock();
    nextStart+=stepTime;

    while (!GBLbuf.stopExecutionFlag &&
           (rtmGetTFinal(S) == RUN_FOREVER ||
            rtmGetTFinal(S)-rtmGetT(S) > rtmGetT(S)*DBL_EPSILON)) {

        rtExtModePauseIfNeeded(rtmGetRTWExtModeInfo(S),
                               rtmGetNumSampleTimes(S),
                               (boolean_T *)&rtmGetStopRequested(S));
 
    if( clock() >= nextStart)
     {
    if( stepTime > 0)
{
    	printf("***Execution slower than requested rate: Actual speed =%d ms***\n",(1000*(stepTime+clock()-nextStart))/CLOCKS_PER_SEC);
nextStart=clock();
}
	
	}
    while (clock() < nextStart) {}
    nextStart+=stepTime;

        if (rtmGetStopRequested(S)) break;
        rt_OneStep(S);
    }

    if (!GBLbuf.stopExecutionFlag && !rtmGetStopRequested(S)) {
        /* Execute model last time step */
        rt_OneStep(S);
    }

    /********************
     * Cleanup and exit *
     ********************/
	/*
#ifdef UseMMIDataLogging
    rt_CleanUpForStateLogWithMMI(rtmGetRTWLogInfo(S));
    rt_CleanUpForSigLogWithMMI(rtmGetRTWLogInfo(S));
#endif
    rt_StopDataLogging(MATFILE,rtmGetRTWLogInfo(S));*/

    rtExtModeShutdown(rtmGetNumSampleTimes(S));

    if (GBLbuf.errmsg) {
        (void)fprintf(stderr,"%s\n",GBLbuf.errmsg);
        exit(EXIT_FAILURE);
    }

    if (rtmGetErrorStatus(S) != NULL) {
        (void)fprintf(stderr,"ErrorStatus set: \"%s\"\n", rtmGetErrorStatus(S));
        exit(EXIT_FAILURE);
    }

    if (GBLbuf.isrOverrun) {
        (void)fprintf(stderr,
                      "%s: ISR overrun - base sampling rate is too fast\n",
                      QUOTE(MODEL));
        exit(EXIT_FAILURE);
    }

#ifdef MULTITASKING
    else {
        int_T i;
        for (i=1; i<NUMST; i++) {
            if (GBLbuf.overrunFlags[i]) {
                (void)fprintf(stderr,
                        "%s ISR overrun - sampling rate is too fast for "
                        "sample time index %d\n", QUOTE(MODEL), i);
                exit(EXIT_FAILURE);
            }
        }
    }
#endif

    MdlTerminate();
    return(EXIT_SUCCESS);

} /* end main */