Exemplo n.º 1
0
/* Called once per device from rtc_device_register */
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;
	struct rtc_time now;

	err = rtc_valid_tm(&alarm->time);
	if (err != 0)
		return err;

	err = rtc_read_time(rtc, &now);
	if (err)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
	rtc->aie_timer.period = 0;

	/* Alarm has to be enabled & in the future for us to enqueue it */
	if (alarm->enabled && (rtc_tm_to_ktime(now) <
			 rtc->aie_timer.node.expires)) {

		rtc->aie_timer.enabled = 1;
		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
		trace_rtc_timer_enqueue(&rtc->aie_timer);
	}
	mutex_unlock(&rtc->ops_lock);
	return err;
}
Exemplo n.º 2
0
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	if (!rtc->ops)
		return -ENODEV;
	else if (!rtc->ops->set_alarm)
		return -EINVAL;

	err = rtc_valid_tm(&alarm->time);
	if (err != 0)
		return err;

	err = rtc_valid_range(rtc, &alarm->time);
	if (err)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;
	if (rtc->aie_timer.enabled)
		rtc_timer_remove(rtc, &rtc->aie_timer);

	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
	rtc->aie_timer.period = 0;
	if (alarm->enabled)
		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);

	mutex_unlock(&rtc->ops_lock);

	return err;
}
Exemplo n.º 3
0
int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
	if (enabled == 0 && rtc->uie_irq_active) {
		mutex_unlock(&rtc->ops_lock);
		return rtc_dev_update_irq_enable_emul(rtc, 0);
	}
#endif
	/* make sure we're changing state */
	if (rtc->uie_rtctimer.enabled == enabled)
		goto out;

	if (rtc->uie_unsupported) {
		err = -EINVAL;
		goto out;
	}

	if (enabled) {
		struct rtc_time tm;
		ktime_t now, onesec;

		__rtc_read_time(rtc, &tm);
		onesec = ktime_set(1, 0);
		now = rtc_tm_to_ktime(tm);
		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
		rtc->uie_rtctimer.period = ktime_set(1, 0);
		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
	} else {
		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
	}

out:
	mutex_unlock(&rtc->ops_lock);
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
	/*
	 * Enable emulation if the driver returned -EINVAL to signal that it has
	 * been configured without interrupts or they are not available at the
	 * moment.
	 */
	if (err == -EINVAL)
		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
#endif
	return err;
}
Exemplo n.º 4
0
/**
 * alarmtimer_suspend - Suspend time callback
 * @dev: unused
 * @state: unused
 *
 * When we are going into suspend, we look through the bases
 * to see which is the soonest timer to expire. We then
 * set an rtc timer to fire that far into the future, which
 * will wake us from suspend.
 */
static int alarmtimer_suspend(struct device *dev)
{
	struct rtc_time tm;
	ktime_t min, now;
	unsigned long flags;
	struct rtc_device *rtc;
	int i;

	spin_lock_irqsave(&freezer_delta_lock, flags);
	min = freezer_delta;
	freezer_delta = ktime_set(0, 0);
	spin_unlock_irqrestore(&freezer_delta_lock, flags);

	rtc = rtcdev;
	/* If we have no rtcdev, just return */
	if (!rtc)
		return 0;

	/* Find the soonest timer to expire*/
	for (i = 0; i < ALARM_NUMTYPE; i++) {
		struct alarm_base *base = &alarm_bases[i];
		struct timerqueue_node *next;
		ktime_t delta;

		spin_lock_irqsave(&base->lock, flags);
		next = timerqueue_getnext(&base->timerqueue);
		spin_unlock_irqrestore(&base->lock, flags);
		if (!next)
			continue;
		delta = ktime_sub(next->expires, base->gettime());
		if (!min.tv64 || (delta.tv64 < min.tv64))
			min = delta;
	}
	if (min.tv64 == 0)
		return 0;

	/* XXX - Should we enforce a minimum sleep time? */
	WARN_ON(min.tv64 < NSEC_PER_SEC);

	/* Setup an rtc timer to fire that far in the future */
	rtc_timer_cancel(rtc, &rtctimer);
	rtc_read_time(rtc, &tm);
	now = rtc_tm_to_ktime(tm);
	now = ktime_add(now, min);

	rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));

	return 0;
}
Exemplo n.º 5
0
/**
 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 * @rtc rtc device
 * @timer timer being added.
 *
 * Enqueues a timer onto the rtc devices timerqueue and sets
 * the next alarm event appropriately.
 *
 * Sets the enabled bit on the added timer.
 *
 * Must hold ops_lock for proper serialization of timerqueue
 */
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
{
	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
	struct rtc_time tm;
	ktime_t now;

	timer->enabled = 1;
	__rtc_read_time(rtc, &tm);
	now = rtc_tm_to_ktime(tm);

	/* Skip over expired timers */
	while (next) {
		if (next->expires >= now)
			break;
		next = timerqueue_iterate_next(next);
	}

	timerqueue_add(&rtc->timerqueue, &timer->node);
	trace_rtc_timer_enqueue(timer);
	if (!next || ktime_before(timer->node.expires, next->expires)) {
		struct rtc_wkalrm alarm;
		int err;

		alarm.time = rtc_ktime_to_tm(timer->node.expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME) {
			pm_stay_awake(rtc->dev.parent);
			schedule_work(&rtc->irqwork);
		} else if (err) {
			timerqueue_del(&rtc->timerqueue, &timer->node);
			trace_rtc_timer_dequeue(timer);
			timer->enabled = 0;
			return err;
		}
	}
	return 0;
}
Exemplo n.º 6
0
/**
 * rtc_timer_do_work - Expires rtc timers
 * @rtc rtc device
 * @timer timer being removed.
 *
 * Expires rtc timers. Reprograms next alarm event if needed.
 * Called via worktask.
 *
 * Serializes access to timerqueue via ops_lock mutex
 */
void rtc_timer_do_work(struct work_struct *work)
{
	struct rtc_timer *timer;
	struct timerqueue_node *next;
	ktime_t now;
	struct rtc_time tm;

	struct rtc_device *rtc =
		container_of(work, struct rtc_device, irqwork);

	mutex_lock(&rtc->ops_lock);
again:
	__rtc_read_time(rtc, &tm);
	now = rtc_tm_to_ktime(tm);
	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
		if (next->expires > now)
			break;

		/* expire timer */
		timer = container_of(next, struct rtc_timer, node);
		timerqueue_del(&rtc->timerqueue, &timer->node);
		trace_rtc_timer_dequeue(timer);
		timer->enabled = 0;
		if (timer->func)
			timer->func(timer->rtc);

		trace_rtc_timer_fired(timer);
		/* Re-add/fwd periodic timers */
		if (ktime_to_ns(timer->period)) {
			timer->node.expires = ktime_add(timer->node.expires,
							timer->period);
			timer->enabled = 1;
			timerqueue_add(&rtc->timerqueue, &timer->node);
			trace_rtc_timer_enqueue(timer);
		}
	}

	/* Set next alarm */
	if (next) {
		struct rtc_wkalrm alarm;
		int err;
		int retry = 3;

		alarm.time = rtc_ktime_to_tm(next->expires);
		alarm.enabled = 1;
reprogram:
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME) {
			goto again;
		} else if (err) {
			if (retry-- > 0)
				goto reprogram;

			timer = container_of(next, struct rtc_timer, node);
			timerqueue_del(&rtc->timerqueue, &timer->node);
			trace_rtc_timer_dequeue(timer);
			timer->enabled = 0;
			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
			goto again;
		}
	} else {