void LIRGenerator::do_If(If* x) { assert(x->number_of_sux() == 2, "inconsistency"); ValueTag tag = x->x()->type()->tag(); bool is_safepoint = x->is_safepoint(); If::Condition cond = x->cond(); LIRItem xitem(x->x(), this); LIRItem yitem(x->y(), this); LIRItem* xin = &xitem; LIRItem* yin = &yitem; if (tag == longTag) { // for longs, only conditions "eql", "neq", "lss", "geq" are valid; // mirror for other conditions if (cond == If::gtr || cond == If::leq) { cond = Instruction::mirror(cond); xin = &yitem; yin = &xitem; } xin->set_destroys_register(); } xin->load_item(); if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { // inline long zero yin->dont_load_item(); } else if (tag == longTag || tag == floatTag || tag == doubleTag) { // longs cannot handle constants at right side yin->load_item(); } else { yin->dont_load_item(); } // add safepoint before generating condition code so it can be recomputed if (x->is_safepoint()) { // increment backedge counter if needed increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci()); __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before())); } set_no_result(x); LIR_Opr left = xin->result(); LIR_Opr right = yin->result(); __ cmp(lir_cond(cond), left, right); // Generate branch profiling. Profiling code doesn't kill flags. profile_branch(x, cond); move_to_phi(x->state()); if (x->x()->type()->is_float_kind()) { __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); } else { __ branch(lir_cond(cond), right->type(), x->tsux()); } assert(x->default_sux() == x->fsux(), "wrong destination above"); __ jump(x->default_sux()); }
int main() { /* if (1 == checker) should_never_get_called(); if (2 == checker) should_always_get_called(); safepoint(); */ base[0] = 128 * 1024; base[1] = 3; base[2] = 0xffffffff; while (base[0] > 0) { for (base[1] = 3; base[1] < BASE_SIZE; base[1]++) { base[base[1]] = base[1] * base[0]; } for (base[1] = 3; base[1] < BASE_SIZE; base[1]++) { if (base[base[1]] != base[1] * base[0]) base[1]--; } base[0]--; } safepoint(); for (base[1] = 3; base[1] < BASE_SIZE; base[1]++) if (base[1] == BASE_SIZE - 1) base[1] = 3; msel_init(); msel_start(); while(1); /* never reached */ return 0; }
void compile(State& state, Safepoint::Result& safepointResult) { char* error = 0; { GraphSafepoint safepoint(state.graph, safepointResult); LLVMMCJITCompilerOptions options; llvm->InitializeMCJITCompilerOptions(&options, sizeof(options)); options.OptLevel = Options::llvmBackendOptimizationLevel(); options.NoFramePointerElim = true; if (Options::useLLVMSmallCodeModel()) options.CodeModel = LLVMCodeModelSmall; options.EnableFastISel = Options::enableLLVMFastISel(); options.MCJMM = llvm->CreateSimpleMCJITMemoryManager( &state, mmAllocateCodeSection, mmAllocateDataSection, mmApplyPermissions, mmDestroy); LLVMExecutionEngineRef engine; if (isARM64()) #if OS(DARWIN) llvm->SetTarget(state.module, "arm64-apple-ios"); #elif OS(LINUX) llvm->SetTarget(state.module, "aarch64-linux-gnu"); #else #error "Unrecognized OS" #endif if (llvm->CreateMCJITCompilerForModule(&engine, state.module, &options, sizeof(options), &error)) { dataLog("FATAL: Could not create LLVM execution engine: ", error, "\n"); CRASH(); } // The data layout also has to be set in the module. Get the data layout from the MCJIT and apply // it to the module. LLVMTargetMachineRef targetMachine = llvm->GetExecutionEngineTargetMachine(engine); LLVMTargetDataRef targetData = llvm->GetExecutionEngineTargetData(engine); char* stringRepOfTargetData = llvm->CopyStringRepOfTargetData(targetData); llvm->SetDataLayout(state.module, stringRepOfTargetData); free(stringRepOfTargetData); LLVMPassManagerRef functionPasses = 0; LLVMPassManagerRef modulePasses; if (Options::llvmSimpleOpt()) { modulePasses = llvm->CreatePassManager(); llvm->AddTargetData(targetData, modulePasses); llvm->AddAnalysisPasses(targetMachine, modulePasses); llvm->AddPromoteMemoryToRegisterPass(modulePasses); llvm->AddGlobalOptimizerPass(modulePasses); llvm->AddFunctionInliningPass(modulePasses); llvm->AddPruneEHPass(modulePasses); llvm->AddGlobalDCEPass(modulePasses); llvm->AddConstantPropagationPass(modulePasses); llvm->AddAggressiveDCEPass(modulePasses); llvm->AddInstructionCombiningPass(modulePasses); // BEGIN - DO NOT CHANGE THE ORDER OF THE ALIAS ANALYSIS PASSES llvm->AddTypeBasedAliasAnalysisPass(modulePasses); llvm->AddBasicAliasAnalysisPass(modulePasses); // END - DO NOT CHANGE THE ORDER OF THE ALIAS ANALYSIS PASSES llvm->AddGVNPass(modulePasses); llvm->AddCFGSimplificationPass(modulePasses); llvm->AddDeadStoreEliminationPass(modulePasses); llvm->RunPassManager(modulePasses, state.module); } else { LLVMPassManagerBuilderRef passBuilder = llvm->PassManagerBuilderCreate(); llvm->PassManagerBuilderSetOptLevel(passBuilder, Options::llvmOptimizationLevel()); llvm->PassManagerBuilderUseInlinerWithThreshold(passBuilder, 275); llvm->PassManagerBuilderSetSizeLevel(passBuilder, Options::llvmSizeLevel()); functionPasses = llvm->CreateFunctionPassManagerForModule(state.module); modulePasses = llvm->CreatePassManager(); llvm->AddTargetData(llvm->GetExecutionEngineTargetData(engine), modulePasses); llvm->PassManagerBuilderPopulateFunctionPassManager(passBuilder, functionPasses); llvm->PassManagerBuilderPopulateModulePassManager(passBuilder, modulePasses); llvm->PassManagerBuilderDispose(passBuilder); llvm->InitializeFunctionPassManager(functionPasses); for (LValue function = llvm->GetFirstFunction(state.module); function; function = llvm->GetNextFunction(function)) llvm->RunFunctionPassManager(functionPasses, function); llvm->FinalizeFunctionPassManager(functionPasses); llvm->RunPassManager(modulePasses, state.module); } if (shouldShowDisassembly() || verboseCompilationEnabled()) state.dumpState("after optimization"); // FIXME: Need to add support for the case where JIT memory allocation failed. // https://bugs.webkit.org/show_bug.cgi?id=113620 state.generatedFunction = reinterpret_cast<GeneratedFunction>(llvm->GetPointerToGlobal(engine, state.function)); if (functionPasses) llvm->DisposePassManager(functionPasses); llvm->DisposePassManager(modulePasses); llvm->DisposeExecutionEngine(engine); } if (safepointResult.didGetCancelled()) return; RELEASE_ASSERT(!state.graph.m_vm.heap.isCollecting()); if (shouldShowDisassembly()) { for (unsigned i = 0; i < state.jitCode->handles().size(); ++i) { ExecutableMemoryHandle* handle = state.jitCode->handles()[i].get(); dataLog( "Generated LLVM code for ", CodeBlockWithJITType(state.graph.m_codeBlock, JITCode::FTLJIT), " #", i, ", ", state.codeSectionNames[i], ":\n"); disassemble( MacroAssemblerCodePtr(handle->start()), handle->sizeInBytes(), " ", WTF::dataFile(), LLVMSubset); } for (unsigned i = 0; i < state.jitCode->dataSections().size(); ++i) { DataSection* section = state.jitCode->dataSections()[i].get(); dataLog( "Generated LLVM data section for ", CodeBlockWithJITType(state.graph.m_codeBlock, JITCode::FTLJIT), " #", i, ", ", state.dataSectionNames[i], ":\n"); dumpDataSection(section, " "); } } bool didSeeUnwindInfo = state.jitCode->unwindInfo.parse( state.unwindDataSection, state.unwindDataSectionSize, state.generatedFunction); if (shouldShowDisassembly()) { dataLog("Unwind info for ", CodeBlockWithJITType(state.graph.m_codeBlock, JITCode::FTLJIT), ":\n"); if (didSeeUnwindInfo) dataLog(" ", state.jitCode->unwindInfo, "\n"); else dataLog(" <no unwind info>\n"); } if (state.stackmapsSection && state.stackmapsSection->size()) { if (shouldShowDisassembly()) { dataLog( "Generated LLVM stackmaps section for ", CodeBlockWithJITType(state.graph.m_codeBlock, JITCode::FTLJIT), ":\n"); dataLog(" Raw data:\n"); dumpDataSection(state.stackmapsSection.get(), " "); } RefPtr<DataView> stackmapsData = DataView::create( ArrayBuffer::create(state.stackmapsSection->base(), state.stackmapsSection->size())); state.jitCode->stackmaps.parse(stackmapsData.get()); if (shouldShowDisassembly()) { dataLog(" Structured data:\n"); state.jitCode->stackmaps.dumpMultiline(WTF::dataFile(), " "); } StackMaps::RecordMap recordMap = state.jitCode->stackmaps.computeRecordMap(); fixFunctionBasedOnStackMaps( state, state.graph.m_codeBlock, state.jitCode.get(), state.generatedFunction, recordMap, didSeeUnwindInfo); if (shouldShowDisassembly()) { for (unsigned i = 0; i < state.jitCode->handles().size(); ++i) { if (state.codeSectionNames[i] != SECTION_NAME("text")) continue; ExecutableMemoryHandle* handle = state.jitCode->handles()[i].get(); dataLog( "Generated LLVM code after stackmap-based fix-up for ", CodeBlockWithJITType(state.graph.m_codeBlock, JITCode::FTLJIT), " in ", state.graph.m_plan.mode, " #", i, ", ", state.codeSectionNames[i], ":\n"); disassemble( MacroAssemblerCodePtr(handle->start()), handle->sizeInBytes(), " ", WTF::dataFile(), LLVMSubset); } } } state.module = 0; // We no longer own the module. }
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState) { cleanMustHandleValuesIfNecessary(); if (verboseCompilationEnabled(mode) && osrEntryBytecodeIndex != UINT_MAX) { dataLog("\n"); dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n"); dataLog("\n"); } Graph dfg(*vm, *this, longLivedState); if (!parse(dfg)) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } codeBlock->setCalleeSaveRegisters(RegisterSet::dfgCalleeSaveRegisters()); // By this point the DFG bytecode parser will have potentially mutated various tables // in the CodeBlock. This is a good time to perform an early shrink, which is more // powerful than a late one. It's safe to do so because we haven't generated any code // that references any of the tables directly, yet. codeBlock->shrinkToFit(CodeBlock::EarlyShrink); if (validationEnabled()) validate(dfg); if (Options::dumpGraphAfterParsing()) { dataLog("Graph after parsing:\n"); dfg.dump(); } performLiveCatchVariablePreservationPhase(dfg); if (Options::useMaximalFlushInsertionPhase()) performMaximalFlushInsertion(dfg); performCPSRethreading(dfg); performUnification(dfg); performPredictionInjection(dfg); performStaticExecutionCountEstimation(dfg); if (mode == FTLForOSREntryMode) { bool result = performOSREntrypointCreation(dfg); if (!result) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } performCPSRethreading(dfg); } if (validationEnabled()) validate(dfg); performBackwardsPropagation(dfg); performPredictionPropagation(dfg); performFixup(dfg); performStructureRegistration(dfg); performInvalidationPointInjection(dfg); performTypeCheckHoisting(dfg); dfg.m_fixpointState = FixpointNotConverged; // For now we're back to avoiding a fixpoint. Note that we've ping-ponged on this decision // many times. For maximum throughput, it's best to fixpoint. But the throughput benefit is // small and not likely to show up in FTL anyway. On the other hand, not fixpointing means // that the compiler compiles more quickly. We want the third tier to compile quickly, which // not fixpointing accomplishes; and the fourth tier shouldn't need a fixpoint. if (validationEnabled()) validate(dfg); performStrengthReduction(dfg); performCPSRethreading(dfg); performCFA(dfg); performConstantFolding(dfg); bool changed = false; changed |= performCFGSimplification(dfg); changed |= performLocalCSE(dfg); if (validationEnabled()) validate(dfg); performCPSRethreading(dfg); if (!isFTL(mode)) { // Only run this if we're not FTLing, because currently for a LoadVarargs that is forwardable and // in a non-varargs inlined call frame, this will generate ForwardVarargs while the FTL // ArgumentsEliminationPhase will create a sequence of GetStack+PutStacks. The GetStack+PutStack // sequence then gets sunk, eliminating anything that looks like an escape for subsequent phases, // while the ForwardVarargs doesn't get simplified until later (or not at all) and looks like an // escape for all of the arguments. This then disables object allocation sinking. // // So, for now, we just disable this phase for the FTL. // // If we wanted to enable it, we'd have to do any of the following: // - Enable ForwardVarargs->GetStack+PutStack strength reduction, and have that run before // PutStack sinking and object allocation sinking. // - Make VarargsForwarding emit a GetLocal+SetLocal sequence, that we can later turn into // GetStack+PutStack. // // But, it's not super valuable to enable those optimizations, since the FTL // ArgumentsEliminationPhase does everything that this phase does, and it doesn't introduce this // pathology. changed |= performVarargsForwarding(dfg); // Do this after CFG simplification and CPS rethreading. } if (changed) { performCFA(dfg); performConstantFolding(dfg); } // If we're doing validation, then run some analyses, to give them an opportunity // to self-validate. Now is as good a time as any to do this. if (validationEnabled()) { dfg.ensureDominators(); dfg.ensureNaturalLoops(); dfg.ensurePrePostNumbering(); } switch (mode) { case DFGMode: { dfg.m_fixpointState = FixpointConverged; performTierUpCheckInjection(dfg); performFastStoreBarrierInsertion(dfg); performStoreBarrierClustering(dfg); performCleanUp(dfg); performCPSRethreading(dfg); performDCE(dfg); performPhantomInsertion(dfg); performStackLayout(dfg); performVirtualRegisterAllocation(dfg); performWatchpointCollection(dfg); dumpAndVerifyGraph(dfg, "Graph after optimization:"); JITCompiler dataFlowJIT(dfg); if (codeBlock->codeType() == FunctionCode) dataFlowJIT.compileFunction(); else dataFlowJIT.compile(); return DFGPath; } case FTLMode: case FTLForOSREntryMode: { #if ENABLE(FTL_JIT) if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } performCleanUp(dfg); // Reduce the graph size a bit. performCriticalEdgeBreaking(dfg); if (Options::createPreHeaders()) performLoopPreHeaderCreation(dfg); performCPSRethreading(dfg); performSSAConversion(dfg); performSSALowering(dfg); // Ideally, these would be run to fixpoint with the object allocation sinking phase. performArgumentsElimination(dfg); if (Options::usePutStackSinking()) performPutStackSinking(dfg); performConstantHoisting(dfg); performGlobalCSE(dfg); performLivenessAnalysis(dfg); performCFA(dfg); performConstantFolding(dfg); performCleanUp(dfg); // Reduce the graph size a lot. changed = false; changed |= performStrengthReduction(dfg); if (Options::useObjectAllocationSinking()) { changed |= performCriticalEdgeBreaking(dfg); changed |= performObjectAllocationSinking(dfg); } if (changed) { // State-at-tail and state-at-head will be invalid if we did strength reduction since // it might increase live ranges. performLivenessAnalysis(dfg); performCFA(dfg); performConstantFolding(dfg); } // Currently, this relies on pre-headers still being valid. That precludes running CFG // simplification before it, unless we re-created the pre-headers. There wouldn't be anything // wrong with running LICM earlier, if we wanted to put other CFG transforms above this point. // Alternatively, we could run loop pre-header creation after SSA conversion - but if we did that // then we'd need to do some simple SSA fix-up. performLivenessAnalysis(dfg); performCFA(dfg); performLICM(dfg); // FIXME: Currently: IntegerRangeOptimization *must* be run after LICM. // // IntegerRangeOptimization makes changes on nodes based on preceding blocks // and nodes. LICM moves nodes which can invalidates assumptions used // by IntegerRangeOptimization. // // Ideally, the dependencies should be explicit. See https://bugs.webkit.org/show_bug.cgi?id=157534. performLivenessAnalysis(dfg); performIntegerRangeOptimization(dfg); performCleanUp(dfg); performIntegerCheckCombining(dfg); performGlobalCSE(dfg); // At this point we're not allowed to do any further code motion because our reasoning // about code motion assumes that it's OK to insert GC points in random places. dfg.m_fixpointState = FixpointConverged; performLivenessAnalysis(dfg); performCFA(dfg); performGlobalStoreBarrierInsertion(dfg); performStoreBarrierClustering(dfg); if (Options::useMovHintRemoval()) performMovHintRemoval(dfg); performCleanUp(dfg); performDCE(dfg); // We rely on this to kill dead code that won't be recognized as dead by B3. performStackLayout(dfg); performLivenessAnalysis(dfg); performOSRAvailabilityAnalysis(dfg); performWatchpointCollection(dfg); if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = std::make_unique<FailedFinalizer>(*this); return FailPath; } dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:", shouldDumpDisassembly(mode)); // Flash a safepoint in case the GC wants some action. Safepoint::Result safepointResult; { GraphSafepoint safepoint(dfg, safepointResult); } if (safepointResult.didGetCancelled()) return CancelPath; FTL::State state(dfg); FTL::lowerDFGToB3(state); if (UNLIKELY(computeCompileTimes())) m_timeBeforeFTL = monotonicallyIncreasingTimeMS(); if (Options::b3AlwaysFailsBeforeCompile()) { FTL::fail(state); return FTLPath; } FTL::compile(state, safepointResult); if (safepointResult.didGetCancelled()) return CancelPath; if (Options::b3AlwaysFailsBeforeLink()) { FTL::fail(state); return FTLPath; } if (state.allocationFailed) { FTL::fail(state); return FTLPath; } FTL::link(state); if (state.allocationFailed) { FTL::fail(state); return FTLPath; } return FTLPath; #else RELEASE_ASSERT_NOT_REACHED(); return FailPath; #endif // ENABLE(FTL_JIT) } default: RELEASE_ASSERT_NOT_REACHED(); return FailPath; } }
void LIRGenerator::do_If(If* x) { assert(x->number_of_sux() == 2, "inconsistency"); ValueTag tag = x->x()->type()->tag(); LIRItem xitem(x->x(), this); LIRItem yitem(x->y(), this); LIRItem* xin = &xitem; LIRItem* yin = &yitem; If::Condition cond = x->cond(); if (tag == longTag) { // for longs, only conditions "eql", "neq", "lss", "geq" are valid; // mirror for other conditions if (cond == If::gtr || cond == If::leq) { // swap inputs cond = Instruction::mirror(cond); xin = &yitem; yin = &xitem; } xin->set_destroys_register(); } LIR_Opr left = LIR_OprFact::illegalOpr; LIR_Opr right = LIR_OprFact::illegalOpr; xin->load_item(); left = xin->result(); if (is_simm13(yin->result())) { // inline int constants which are small enough to be immediate operands right = LIR_OprFact::value_type(yin->value()->type()); } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { // inline long zero right = LIR_OprFact::value_type(yin->value()->type()); } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) { right = LIR_OprFact::value_type(yin->value()->type()); } else { yin->load_item(); right = yin->result(); } set_no_result(x); // add safepoint before generating condition code so it can be recomputed if (x->is_safepoint()) { // increment backedge counter if needed increment_backedge_counter(state_for(x, x->state_before())); __ safepoint(new_register(T_INT), state_for(x, x->state_before())); } __ cmp(lir_cond(cond), left, right); profile_branch(x, cond); move_to_phi(x->state()); if (x->x()->type()->is_float_kind()) { __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); } else { __ branch(lir_cond(cond), right->type(), x->tsux()); } assert(x->default_sux() == x->fsux(), "wrong destination above"); __ jump(x->default_sux()); }
Plan::CompilationPath Plan::compileInThreadImpl(LongLivedState& longLivedState) { if (verboseCompilationEnabled(mode) && osrEntryBytecodeIndex != UINT_MAX) { dataLog("\n"); dataLog("Compiler must handle OSR entry from bc#", osrEntryBytecodeIndex, " with values: ", mustHandleValues, "\n"); dataLog("\n"); } Graph dfg(vm, *this, longLivedState); if (!parse(dfg)) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } // By this point the DFG bytecode parser will have potentially mutated various tables // in the CodeBlock. This is a good time to perform an early shrink, which is more // powerful than a late one. It's safe to do so because we haven't generated any code // that references any of the tables directly, yet. codeBlock->shrinkToFit(CodeBlock::EarlyShrink); if (validationEnabled()) validate(dfg); performCPSRethreading(dfg); performUnification(dfg); performPredictionInjection(dfg); if (isFTL(mode)) performStaticExecutionCountEstimation(dfg); if (mode == FTLForOSREntryMode) { bool result = performOSREntrypointCreation(dfg); if (!result) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } performCPSRethreading(dfg); } if (validationEnabled()) validate(dfg); performBackwardsPropagation(dfg); performPredictionPropagation(dfg); performFixup(dfg); performInvalidationPointInjection(dfg); performTypeCheckHoisting(dfg); unsigned count = 1; dfg.m_fixpointState = FixpointNotConverged; for (;; ++count) { if (logCompilationChanges(mode)) dataLogF("DFG beginning optimization fixpoint iteration #%u.\n", count); bool changed = false; if (validationEnabled()) validate(dfg); changed |= performStrengthReduction(dfg); performCFA(dfg); changed |= performConstantFolding(dfg); changed |= performArgumentsSimplification(dfg); changed |= performCFGSimplification(dfg); changed |= performCSE(dfg); if (!changed) break; performCPSRethreading(dfg); } if (logCompilationChanges(mode)) dataLogF("DFG optimization fixpoint converged in %u iterations.\n", count); dfg.m_fixpointState = FixpointConverged; performStoreBarrierElision(dfg); // If we're doing validation, then run some analyses, to give them an opportunity // to self-validate. Now is as good a time as any to do this. if (validationEnabled()) { dfg.m_dominators.computeIfNecessary(dfg); dfg.m_naturalLoops.computeIfNecessary(dfg); } switch (mode) { case DFGMode: { performTierUpCheckInjection(dfg); performStoreElimination(dfg); performCPSRethreading(dfg); performDCE(dfg); performStackLayout(dfg); performVirtualRegisterAllocation(dfg); performWatchpointCollection(dfg); dumpAndVerifyGraph(dfg, "Graph after optimization:"); JITCompiler dataFlowJIT(dfg); if (codeBlock->codeType() == FunctionCode) { dataFlowJIT.compileFunction(); dataFlowJIT.linkFunction(); } else { dataFlowJIT.compile(); dataFlowJIT.link(); } return DFGPath; } case FTLMode: case FTLForOSREntryMode: { #if ENABLE(FTL_JIT) if (FTL::canCompile(dfg) == FTL::CannotCompile) { finalizer = adoptPtr(new FailedFinalizer(*this)); return FailPath; } performCriticalEdgeBreaking(dfg); performLoopPreHeaderCreation(dfg); performCPSRethreading(dfg); performSSAConversion(dfg); performSSALowering(dfg); performCSE(dfg); performLivenessAnalysis(dfg); performCFA(dfg); performLICM(dfg); performIntegerCheckCombining(dfg); performCSE(dfg); performLivenessAnalysis(dfg); performCFA(dfg); if (Options::validateFTLOSRExitLiveness()) performResurrectionForValidation(dfg); performDCE(dfg); // We rely on this to convert dead SetLocals into the appropriate hint, and to kill dead code that won't be recognized as dead by LLVM. performStackLayout(dfg); performLivenessAnalysis(dfg); performOSRAvailabilityAnalysis(dfg); performWatchpointCollection(dfg); dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:"); { GraphSafepoint safepoint(dfg); initializeLLVM(); } FTL::State state(dfg); FTL::lowerDFGToLLVM(state); if (reportCompileTimes()) beforeFTL = currentTimeMS(); if (Options::llvmAlwaysFailsBeforeCompile()) { FTL::fail(state); return FTLPath; } FTL::compile(state); if (Options::llvmAlwaysFailsBeforeLink()) { FTL::fail(state); return FTLPath; } if (state.jitCode->stackmaps.stackSize() > Options::llvmMaxStackSize()) { FTL::fail(state); return FTLPath; } FTL::link(state); return FTLPath; #else RELEASE_ASSERT_NOT_REACHED(); return FailPath; #endif // ENABLE(FTL_JIT) } default: RELEASE_ASSERT_NOT_REACHED(); return FailPath; } }