void scs_log(scs_ptr res, db_number y, int E) { scs_t R, sc_ln2_times_E, res1, addi; scs_ptr ti, inv_wi; db_number z, wi; int i; #if EVAL_PERF crlibm_second_step_taken++; #endif /* to normalize y.d and round to nearest */ /* + (1-trunc(sqrt(2.)/2 * 2^(4))*2^(-4) )+2.^(-(4+1))*/ z.d = y.d + norm_number.d; i = (z.i[HI_ENDIAN] & 0x000fffff); i = i >> 16; /* 0<= i <=11 */ wi.d = ((double)(11+i))*0.0625; /* (1+f-w_i) */ y.d -= wi.d; /* Table reduction */ ti = table_ti_ptr[i]; inv_wi = table_inv_wi_ptr[i]; /* R = (1+f-w_i)/w_i */ scs_set_d(R, y.d); scs_mul(R, R, inv_wi); /* * Polynomial evaluation of log(1 + R) with an error less than 2^(-130) */ scs_mul(res1, constant_poly_ptr[0], R); for(i=1; i<20; i++) { scs_add(addi, constant_poly_ptr[i], res1); scs_mul(res1, addi, R); } if(E==0) { scs_add(res, res1, ti); } else { /* sc_ln2_times_E = E*log(2) */ scs_set(sc_ln2_times_E, sc_ln2_ptr); if (E >= 0) { scs_mul_ui(sc_ln2_times_E, (unsigned int) E); } else { scs_mul_ui(sc_ln2_times_E, (unsigned int) -E); sc_ln2_times_E->sign = -1; } scs_add(addi, res1, ti); scs_add(res, addi, sc_ln2_times_E); } }
/************************************************************* ************************************************************* * ROUNDED TO NEAREST ************************************************************* *************************************************************/ double log10_rn(double x) { scs_t R, res1; scs_t sc_ln2_r10_times_E; scs_ptr inv_wi, ti; db_number nb, nb2, wi, resd; int i, E=0; nb.d = x; /* Filter cases */ if (nb.i[HI_ENDIAN] < 0x00100000){ /* x < 2^(-1022) */ if (((nb.i[HI_ENDIAN] & 0x7fffffff)|nb.i[LO_ENDIAN])==0) /* return 1.0/0.0; */ /* log(+/-0) = -Inf */ return NInf.d; if (nb.i[HI_ENDIAN] < 0) /* return (x-x)/0; */ /* log(-x) = Nan */ return NaN.d; /* Subnormal number */ E -= (SCS_NB_BITS*2); /* keep in mind that x is a subnormal number */ nb.d *=SCS_RADIX_TWO_DOUBLE; /* make x as normal number */ /* We may just want add 2 to the scs number.index */ /* may be .... we will see */ } if (nb.i[HI_ENDIAN] >= 0x7ff00000) return x+x; /* Inf or Nan */ /* find n, nb.d such that sqrt(2)/2 < nb.d < sqrt(2) */ E += (nb.i[HI_ENDIAN]>>20)-1023; nb.i[HI_ENDIAN] = (nb.i[HI_ENDIAN] & 0x000fffff) | 0x3ff00000; if (nb.d > SQRT_2){ nb.d *= 0.5; E++; } /* to normalize nb.d and round to nearest */ /* +((2^4 - trunc(sqrt(2)/2) *2^4 )*2 + 1)/2^5 */ nb2.d = nb.d + norm_number.d; i = (nb2.i[HI_ENDIAN] & 0x000fffff); i = i >> 16; /* 0<= i <=11 */ wi.d = (11+i)*(double)0.6250e-1; /* (1+f-w_i) */ nb.d -= wi.d; /* Table reduction */ ti = table_ti_ptr[i]; inv_wi = table_inv_wi_ptr[i]; /* R = (1+f-w_i)/w_i */ scs_set_d(R, nb.d); scs_mul(R, R, inv_wi); /* sc_ln2_r10_times_E = E*log10(2) */ scs_set(sc_ln2_r10_times_E, sc_ln2_r10_ptr); if (E >= 0){ scs_mul_ui(sc_ln2_r10_times_E, (unsigned int) E); }else{ scs_mul_ui(sc_ln2_r10_times_E, (unsigned int) -E); sc_ln2_r10_times_E->sign = -1; } /* * Polynomial evaluation of log10(1 + R) with an error less than 2^(-130) */ scs_mul(res1, constant_poly_ptr[0], R); for(i=1; i<20; i++){ scs_add(res1, constant_poly_ptr[i], res1); scs_mul(res1, res1, R); } scs_add(res1, res1, ti); scs_add(res1, res1, sc_ln2_r10_times_E); scs_get_d(&resd.d, res1); return resd.d; }