Exemplo n.º 1
0
int main() {
	double xl = -100.0, xr = 100.0, t = 0.0000001;
	puts("\nTest 1: x^3 = 0.");
	printf("xl = %f; xr = %f; tolerance = %f\n", -100.0, 150.0, t);
	printf("Bisection: x = %f\n", bisection(-100.0, 150.0, t, &cube));
	printf("xl = %f; xr = %f; tolerance = %f\n", -0.001, 0.001, t);
	printf("Secant: x = %f\n", secant(-0.001, 0.001, t, &cube));
	puts("\nTest 2: Matrix test (x^j = 10^i).");
	for(j = 1; j < 10; j++) for(i = 1; i < 10; i++) {
		printf("j = %f; i = %f\n", j, i);
		printf("Bisection: x = %f\n", bisection(xl, xr, t, &poly));
		printf("Secant: x = %f\n", secant(xl, xr, t, &poly));
	}
}
Exemplo n.º 2
0
void
findgraph (long double a, long double b, long double i, long double error,
	   long double p, long double (*f) (long double, long double),
	   char *name)
{

  long double previous = f (a, p);
  long double current = f (a, p);
  unsigned long count = 0;

  printf
    ("Starting scan of %s on interval %Lf to %Lf with increment of %Lf\n\n",
     name, a, b, i);
  for (; a < b; a += i)
    {

      current = f (a, p);
      if (matchSign (previous, current))
	{
	}
      else
	{
	  printf ("  Found sign change from %Lf to %Lf\n\n", a - i, a);
	  bisect (a - i, a, error, p, f, name);
	  secant (a - i, a, error, p, f, name);
	  falseposition (a - i, a, error, p, f, name);
	}
      previous = current;
      count++;
    }

  printf ("Done scanning %s after %lu iterations\n\n", name, count);
}
Exemplo n.º 3
0
double root(double fitvalue) {
    double step = 1.1;
    double e = 1.0e-12;
    double x = 0.1;		// just so we use secant method
    double xx, value;
 
    int s = (f(x)> 0.0);

    
    if (debug>3)  printf("# gcore= %g gtail= %g factorcore= %g factortail= %g\n",gcore_g,gtail_g,factorcore_g,factortail_g);
    value_g=fitvalue;

 
    while (x < 1e9) {
        value = f(x);
	if (debug>3) printf("%g %g %g\n",x,value,ickingfunk(x));
        if (fabs(value) < e) {
	  if (debug >3) printf("Root found at x= %12.9f\n", x);
	    return x;
        }
        else if ((value > 0.0) != s) {
            xx = secant(x/step, x,&f);
            if (xx != -99.0)   // -99 meaning secant method failed
	      return xx;
            else
	      return xx;
        }
        x *= step;
    }
    return x;
 }
Exemplo n.º 4
0
double secant(double x_1, double x_2, double (*func)(double)){
    double f_x_1 = (*func)(x_1);
    double f_x_2 = (*func)(x_2);
    double x_3 = x_2 - f_x_2*((x_2-x_1)/(f_x_2- f_x_1));
    printf("%.3f\n", x_3);
    if(fabs((*func)(x_3) - (double) 0.0) < (1/pow(10.0,12))){return x_3;}
    secant(x_3,x_2,(*func));
        return 9.0;

}
Exemplo n.º 5
0
double secant(double x_low, double x_high, double x_accuracy, double f_x_low, double f_x_high, double f_accuracy, const T & function, int limit_depth = 500){
    theta_assert(std::isfinite(x_low) && std::isfinite(x_high));
    theta_assert(x_low <= x_high);
    theta_assert(std::isfinite(f_x_low) && std::isfinite(f_x_high));
    theta_assert(limit_depth > 0);
    if(f_x_low * f_x_high >= 0) throw std::invalid_argument("secant: function values have the same sign!");
    if(std::fabs(f_x_low) <= f_accuracy) return x_low;
    if(std::fabs(f_x_high) <= f_accuracy) return x_high;

    const double old_interval_length = x_high - x_low;    
    //calculate intersection point for secant method:
    double x_intersect = x_low - (x_high - x_low) / (f_x_high - f_x_low) * f_x_low;
    theta_assert(x_intersect >= x_low);
    theta_assert(x_intersect <= x_high);
    if(old_interval_length < x_accuracy){
        return x_intersect;
    }
    double f_x_intersect = function(x_intersect);
    double f_mult = f_x_low * f_x_intersect;
    //fall back to bisection if the new interval would not be much smaller:
    double new_interval_length = f_mult < 0 ? x_intersect - x_low : x_high - x_intersect;
    if(new_interval_length > 0.5 * old_interval_length){
        x_intersect = 0.5*(x_low + x_high);
        f_x_intersect = function(x_intersect);
        f_mult = f_x_low * f_x_intersect;
    }
    if(f_mult < 0){
        return secant(x_low, x_intersect, x_accuracy, f_x_low, f_x_intersect, f_accuracy, function, limit_depth - 1);
    }
    else if(f_mult > 0.0){
        return secant(x_intersect, x_high, x_accuracy, f_x_intersect, f_x_high, f_accuracy, function, limit_depth - 1);
    }
    //it can actually happen that we have 0.0. In this case, return the x value for
    // the smallest absolute function value:
    else{
        f_x_intersect = fabs(f_x_intersect);
        f_x_low = fabs(f_x_low);
        f_x_high = fabs(f_x_high);
        if(f_x_low < f_x_high && f_x_low < f_x_intersect) return x_low;
        if(f_x_high < f_x_intersect) return x_high;
        return x_intersect;
    }
}
Exemplo n.º 6
0
int main()
{
	double p,q,r,s,t,u;

	while(scanf("%lf %lf %lf %lf %lf %lf", &p, &q, &r, &s, &t, &u) == 6){
		secant(p,q,r,s,t,u);

	}

	return 0;
}
Exemplo n.º 7
0
Arquivo: Pr11_1.c Projeto: Nigsia/MN1
int main(void)
{
	double *x;

	x = dmallocv(2);
	x[0] = 3;
	x[1] = 2;

	secant(x, 1.e-15, 20);

	printf("Secant %lf\n", x[0] );

	return 0;
}
int
main ()
{
  //findgraph ( 2, 3, .1, .0001, 5,    &fsqrt, "Find square Root of 5");
  //findgraph (10,500, 5, .0000001,    5487, &fsqrt, "Find square Root of 5487");

  findgraph ( 0, 1,   .1,  .0001,  0, &hw2p1, "hw2p1");
  findgraph ( 1, 3.2, .1,  .0001,  0, &hw2p2, "hw2p2");
  findgraph ( 1, 2,   .1,  .0001,  0, &hw2p3, "hw2p3");

  findgraph (-1, 0,   .01, .001,  0, &hw2p4, "hw2p4");
  secant (-1, 0, .001,  0, &hw2p4, "hw2p4");
  falseposition (-1, 0, .001,  0, &hw2p4, "hw2p4");

  findgraph (-1, 0,   .01, .00001, 0, &hw2p5, "hw2p5 from -1 to 0");
  findgraph ( 0, 1,   .01, .00001, 0, &hw2p5, "hw2p5 from 0 to 1");
  findgraph (-1 , 1,  .1,  .00001, 0, &hw2p5, "hw2p5 from 0 to 1");

  findpoint (0, 2, 0, 1, .001, 8, &hw2p6, "hw2p6");

  // testing the point function
  //findpoint (0, 2, 1, 1, .001, 8, &hw2p6, "hw2p6");
  //findpoint (1, 3, 2, 4, .001, 8, &hw2p6, "hw2p6");
  //findpoint (1, 4, 0, 2, .001, 8, &hw2p6, "hw2p6");
  //findpoint (1, 8, 18, 0, .001, 8, &hw2p6, "hw2p6");

  findgraph (0, 1, .1,  .01,  12.4,  &hw2p7a, "hw2p7 trough with 12.4 volume");

///*
  printf ("finding a range of values for testing.\n");
  long double i;
  for (i=0; i< 1; i=i+.1){
    char name[40];
    sprintf(name, "hw2p7 %Lf", i);
    //findgraph (0, 1, .01, .00001, i,    &hw2p7, name);
    hw2p7(i, 0);
    hw2p7a(i, 0);
  }
//*/

  //findgraph (-1, 3, .1, .001, 38, &hw2ptri, "hw2ptri full");
  //findgraph (-1, 3, .1, .001, 10, &hw2ptri, "hw2ptri half full");
  //findgraph (-1, 3, .1, .001, .1, &hw2ptri, "hw2ptri empty");

  //findgraph   ( 0, 2, .1, .00000001, 0, &fex, "fex");
}
Exemplo n.º 9
0
void testRoot(){

 printf("\nRoot finding and minimisation\n");
 golden(functionTest3,0,2);
 golden(functionTest1,3,7);
 golden(functionTest2,5,7);
 golden(poly,-0.5,1.0); 

 brute (poly,-1.0,1.0, 0.0001); 
 brute (functionTest1,3,7, 0.0001); 
 secant(poly,0.0,1.0);
 newton(poly, dpoly, 0.0); 
 regulaFalsi(poly,-1.0,1.0); 
 bisect(poly,-1.0,1.0);
 fixedPointIteration(cosine,1.0); 
 squareRoot(20); 
 
} 
int main(int argc, char **argv){
  double x0 = 1;
  double exact = sqrt(5);
  const unsigned N = 16;
  double X_search[N], X_NR[N], X_secant[N];
  search(&test_function, X_search, x0, 1.0, N);
  Newton_Rhapson(&test_function, &test_function_deriv, X_NR, x0, N);
  secant(&test_function, X_secant, x0, N);
  printf("#iteration search Newton_Rhapson secant");
  for(unsigned n = 0;n < N; n++){
    printf("\n%u %e %e %e",
      n,
      fabs(exact-X_search[n]),
      fabs(exact-X_NR[n]),
      fabs(exact-X_secant[n])
    );
  }
  return 0;
}
Exemplo n.º 11
0
int sweep_secant(double (*func)(double x),double xstart,double xstop,double xinc,int nmax,double tol) {
  double a,b,fa,fb;
  int retval;

  xstop = xstop + (xinc * 0.5);
  a = xstart;
  fa = (*func)(a);
  b = a + xinc;
  while (((xinc > 0.0) && (b < xstop)) || ((xinc < 0.0) && (b > xstop))) {
    fb = (*func)(b);
    if ((fa * fb) < 0.0) {   /*root bracketed, converge with secant*/
      retval = secant(func,a,b,nmax,tol);
      if (retval > 0) return(retval);
    }
    a = b;
    fa = fb;
    b = b + xinc;
  }
  return(0);
}
Exemplo n.º 12
0
void Bernsteins::find_bernstein_roots(Bezier bz,
                                      unsigned depth,
                                      double left_t,
                                      double right_t)
{
    debug(std::cout << left_t << ", " << right_t << std::endl);
    size_t n_crossings = 0;

    int old_sign = SGN(bz[0]);
    //std::cout << "w[0] = " << bz[0] << std::endl;
    int sign;
    for (size_t i = 1; i < bz.size(); i++)
    {
        //std::cout << "w[" << i << "] = " << w[i] << std::endl;
        sign = SGN(bz[i]);
        if (sign != 0)
        {
            if (sign != old_sign && old_sign != 0)
            {
                ++n_crossings;
            }
            old_sign = sign;
        }
    }
    //std::cout << "n_crossings = " << n_crossings << std::endl;
    if (n_crossings == 0)  return; // no solutions here

    if (n_crossings == 1) /* Unique solution  */
    {
        //std::cout << "depth = " << depth << std::endl;
        /* Stop recursion when the tree is deep enough  */
        /* if deep enough, return 1 solution at midpoint  */
        if (depth > MAX_DEPTH)
        {
            //printf("bottom out %d\n", depth);
            const double Ax = right_t - left_t;
            const double Ay = bz.at1() - bz.at0();

            solutions.push_back(left_t - Ax*bz.at0() / Ay);
            return;
        }

        double r = secant(bz);
        solutions.push_back(r*right_t + (1-r)*left_t);
        return;
    }
    /* Otherwise, solve recursively after subdividing control polygon  */
    Bezier::Order o(bz);
    Bezier Left(o), Right = bz;
    double split_t = (left_t + right_t) * 0.5;

    // If subdivision is working poorly, split around the leftmost root of the derivative
    if (depth > 2) {
        debug(std::cout << "derivative mode\n");
        Bezier dbz = derivative(bz);
    
        debug(std::cout << "initial = " << dbz << std::endl);
        std::vector<double> dsolutions = dbz.roots(Interval(left_t, right_t));
        debug(std::cout << "dsolutions = " << dsolutions << std::endl);
        
        double dsplit_t = 0.5;
        if(!dsolutions.empty()) {
            dsplit_t = dsolutions[0];
            split_t = left_t + (right_t - left_t)*dsplit_t;
            debug(std::cout << "split_value = " << bz(split_t) << std::endl);
            debug(std::cout << "spliting around " << dsplit_t << " = " 
                  << split_t << "\n");
        
        }
        std::pair<Bezier, Bezier> LR = bz.subdivide(dsplit_t);
        Left = LR.first;
        Right = LR.second;
    } else {
        // split at midpoint, because it is cheap
        Left[0] = Right[0];
        for (size_t i = 1; i < bz.size(); ++i)
        {
            for (size_t j = 0; j < bz.size()-i; ++j)
            {
                Right[j] = (Right[j] + Right[j+1]) * 0.5;
            }
            Left[i] = Right[0];
        }
    }
    debug(std::cout << "Solution is exactly on the subdivision point.\n");
    debug(std::cout << Left << " , " << Right << std::endl);
    Left = reverse(Left);
    while(Right.order() > 0 and fabs(Right[0]) <= 1e-10) {
        debug(std::cout << "deflate\n");
        Right = Right.deflate();
        Left = Left.deflate();
        solutions.push_back(split_t);
    }
    Left = reverse(Left);
    if (Right.order() > 0) {
        debug(std::cout << Left << " , " << Right << std::endl);
        find_bernstein_roots(Left, depth+1, left_t, split_t);
        find_bernstein_roots(Right, depth+1, split_t, right_t);
    }
}
Exemplo n.º 13
0
double secant (double xold, double xnew, double tolerance, double func()) {
	double fxold = (*func)(xold), fxnew = (*func)(xnew);
	if (fabs(fxnew) <= tolerance) return xnew;
	return secant(xnew, xnew + fxnew * (xold - xnew) / (fxold - fxnew),
                      tolerance, func);
}