Exemplo n.º 1
0
void send_fragment() { // {{{
	if (host_block) {
		current_fragment_pos = 0;
		return;
	}
	if (current_fragment_pos <= 0 || stopping || sending_fragment) {
		debug("no send fragment %d %d %d", current_fragment_pos, stopping, sending_fragment);
		return;
	}
	if (num_active_motors == 0) {
		if (current_fragment_pos < 2) {
			// TODO: find out why this is attempted and avoid it.
			debug("not sending short fragment for 0 motors; %d %d", current_fragment, running_fragment);
			if (history[current_fragment].cbs) {
				if (settings.queue_start == settings.queue_end && !settings.queue_full) {
					// Send cbs immediately.
					if (!host_block) {
						send_host(CMD_MOVECB, history[current_fragment].cbs);  
						history[current_fragment].cbs = 0;
					}
				}
			}
			current_fragment_pos = 0;
			return;
		}
		else
			debug("sending fragment for 0 motors at position %d", current_fragment_pos);
		//abort();
	}
	//debug("sending %d prevcbs %d", current_fragment, settings[(current_fragment - 1) % FRAGMENTS_PER_BUFFER].cbs);
	if (arch_send_fragment()) {
		current_fragment = (current_fragment + 1) % FRAGMENTS_PER_BUFFER;
		//debug("current send -> %x", current_fragment);
		store_settings();
		if ((current_fragment - running_fragment + FRAGMENTS_PER_BUFFER) % FRAGMENTS_PER_BUFFER >= MIN_BUFFER_FILL && !stopping)
			arch_start_move(0);
	}
} // }}}
Exemplo n.º 2
0
void run_file_fill_queue() {
	static bool lock = false;
	if (lock)
		return;
	lock = true;
	rundebug("run queue, wait = %d tempwait = %d q = %d %d %d finish = %d", run_file_wait, run_file_wait_temp, settings.queue_end, settings.queue_start, settings.queue_full, run_file_finishing);
	if (run_file_audio >= 0) {
		while (true) {
			if (!run_file_map || run_file_wait || run_file_finishing)
				break;
			if (settings.run_file_current >= run_file_num_records) {
				run_file_finishing = true;
				//debug("done running audio");
				break;
			}
			int16_t next = (current_fragment + 1) % FRAGMENTS_PER_BUFFER;
			if (next == running_fragment)
				break;
			settings.run_file_current = arch_send_audio(&reinterpret_cast <uint8_t *>(run_file_map)[sizeof(double)], settings.run_file_current, run_file_num_records, run_file_audio);
			current_fragment = next;
			store_settings();
			if ((current_fragment - running_fragment + FRAGMENTS_PER_BUFFER) % FRAGMENTS_PER_BUFFER >= MIN_BUFFER_FILL && !stopping)
				arch_start_move(0);
		}
		lock = false;
		return;
	}
	while (run_file_map	// There is a file to run.
			&& (settings.queue_end - settings.queue_start + QUEUE_LENGTH) % QUEUE_LENGTH < 4	// There is space in the queue.
			&& !settings.queue_full	// Really, there is space in the queue.
			&& settings.run_file_current < run_file_num_records	// There are records to send.
			&& !run_file_wait_temp	// We are not waiting for a temp alarm.
			&& !run_file_wait	// We are not waiting for something else (pause or confirm).
			&& !run_file_finishing) {	// We are not waiting for underflow (should be impossible anyway, if there are commands in the queue).
		int t = run_file_map[settings.run_file_current].type;
		if (t != RUN_LINE && t != RUN_PRE_LINE && t != RUN_PRE_ARC && t != RUN_ARC && (arch_running() || settings.queue_end != settings.queue_start || computing_move))
			break;
		Run_Record &r = run_file_map[settings.run_file_current];
		rundebug("running %d: %d %d", settings.run_file_current, r.type, r.tool);
		switch (r.type) {
			case RUN_SYSTEM:
			{
				char const *cmd = strndupa(&reinterpret_cast<char const *>(run_file_map)[run_file_first_string + strings[r.tool].start], strings[r.tool].len);
				debug("Running system command: %ld %d %s", strings[r.tool].start, strings[r.tool].len, cmd);
				int ret = system(cmd);
				debug("Done running system command, return = %d", ret);
				break;
			}
			case RUN_PRE_ARC:
			{
				double x = r.X * run_file_cosa - r.Y * run_file_sina + run_file_refx;
				double y = r.Y * run_file_cosa + r.X * run_file_sina + run_file_refy;
				double z = r.Z;
				//debug("line %f %f %f", x, y, z);
				queue[settings.queue_end].center[0] = x;
				queue[settings.queue_end].center[1] = y;
				queue[settings.queue_end].center[2] = handle_probe(x, y, z);
				queue[settings.queue_end].normal[0] = r.E;
				queue[settings.queue_end].normal[1] = r.f;
				queue[settings.queue_end].normal[2] = r.F;
				break;
			}
			case RUN_PRE_LINE:
			{
				run_preline.X = r.X;
				run_preline.Y = r.Y;
				run_preline.Z = r.Z;
				run_preline.E = r.E;
				run_preline.tool = r.tool;
				break;
			}
			case RUN_LINE:
			case RUN_ARC:
			{
				queue[settings.queue_end].single = false;
				queue[settings.queue_end].probe = false;
				queue[settings.queue_end].arc = r.type == RUN_ARC;
				queue[settings.queue_end].f[0] = r.f;
				queue[settings.queue_end].f[1] = r.F;
				double x = r.X * run_file_cosa - r.Y * run_file_sina + run_file_refx;
				double y = r.Y * run_file_cosa + r.X * run_file_sina + run_file_refy;
				double z = r.Z;
				//debug("line/arc %f %f %f", x, y, z);
				int num0 = spaces[0].num_axes;
				if (num0 > 0) {
					queue[settings.queue_end].data[0] = x;
					if (num0 > 1) {
						queue[settings.queue_end].data[1] = y;
						if (num0 > 2) {
							queue[settings.queue_end].data[2] = handle_probe(x, y, z);
							if (num0 > 3) {
								queue[settings.queue_end].data[3] = run_preline.X;
								if (num0 > 4) {
									queue[settings.queue_end].data[4] = run_preline.Y;
									if (num0 > 5) {
										queue[settings.queue_end].data[5] = run_preline.Z;
									}
								}
								run_preline.X = NAN;
								run_preline.Y = NAN;
								run_preline.Z = NAN;
							}
						}
					}
				}
				for (int i = 6; i < num0; ++i)
					queue[settings.queue_end].data[i] = NAN;
				for (int i = 0; i < spaces[1].num_axes; ++i) {
					queue[settings.queue_end].data[num0 + i] = (i == r.tool ? r.E : i == run_preline.tool ? run_preline.E : NAN);
					//debug("queue %d + %d = %f", num0, i, queue[settings.queue_end].data[num0 + i]);
				}
				run_preline.E = NAN;
				num0 += spaces[1].num_axes;
				for (int s = 2; s < NUM_SPACES; ++s) {
					for (int i = 0; i < spaces[s].num_axes; ++i)
						queue[settings.queue_end].data[num0 + i] = NAN;
					num0 += spaces[s].num_axes;
				}
				queue[settings.queue_end].time = r.time;
				queue[settings.queue_end].dist = r.dist;
				queue[settings.queue_end].cb = false;
				settings.queue_end = (settings.queue_end + 1) % QUEUE_LENGTH;
				if (!computing_move)
					next_move();
				else
					rundebug("no");
				buffer_refill();
				break;
			}
			case RUN_GPIO:
			{
				int tool = r.tool;
				if (tool == -2)
					tool = fan_id;
				else if (tool == -3)
					tool = spindle_id;
				if (tool < 0 || tool >= num_gpios) {
					if (tool != -1)
						debug("cannot set invalid gpio %d", tool);
					break;
				}
				if (r.X) {
					gpios[tool].state = 1;
					SET(gpios[tool].pin);
				}
				else {
					gpios[tool].state = 0;
					RESET(gpios[tool].pin);
				}
				send_host(CMD_UPDATE_PIN, tool, gpios[tool].state);
				break;
			}
			case RUN_SETTEMP:
			{
				int tool = r.tool;
				if (tool == -1)
					tool = bed_id;
				rundebug("settemp %d %f", tool, r.X);
				settemp(tool, r.X);
				send_host(CMD_UPDATE_TEMP, tool, 0, r.X);
				break;
			}
			case RUN_WAITTEMP:
			{
				int tool = r.tool;
				if (tool == -2)
					tool = bed_id;
				if (tool == -3) {
					for (int i = 0; i < num_temps; ++i) {
						if (temps[i].min_alarm >= 0 || temps[i].max_alarm < MAXINT) {
							run_file_wait_temp += 1;
							waittemp(i, temps[i].min_alarm, temps[i].max_alarm);
						}
					}
					break;
				}
				if (tool < 0 || tool >= num_temps) {
					if (tool != -1)
						debug("cannot wait for invalid temp %d", tool);
					break;
				}
				else
					rundebug("waittemp %d", tool);
				if (temps[tool].adctarget[0] >= 0 && temps[tool].adctarget[0] < MAXINT) {
					rundebug("waiting");
					run_file_wait_temp += 1;
					waittemp(tool, temps[tool].target[0], temps[tool].max_alarm);
				}
				else
					rundebug("not waiting");
				break;
			}
			case RUN_SETPOS:
				if (r.tool >= spaces[1].num_axes) {
					debug("Not setting position of invalid extruder %d", r.tool);
					break;
				}
				setpos(1, r.tool, r.X);
				break;
			case RUN_WAIT:
				if (r.X > 0) {
					run_file_timer.it_value.tv_sec = r.X;
					run_file_timer.it_value.tv_nsec = (r.X - run_file_timer.it_value.tv_sec) * 1e9;
					run_file_wait += 1;
					timerfd_settime(pollfds[0].fd, 0, &run_file_timer, NULL);
				}
				break;
			case RUN_CONFIRM:
			{
				int len = min(strings[r.tool].len, 250);
				memcpy(datastore, &reinterpret_cast<char const *>(run_file_map)[run_file_first_string + strings[r.tool].start], len);
				run_file_wait += 1;
				send_host(CMD_CONFIRM, r.X ? 1 : 0, 0, 0, 0, len);
				break;
			}
			case RUN_PARK:
				run_file_wait += 1;
				send_host(CMD_PARKWAIT);
				break;
			default:
				debug("Invalid record type %d in %s", r.type, run_file_name);
				break;
		}
		settings.run_file_current += 1;
	}
	rundebug("run queue done");
	if (run_file_map && settings.run_file_current >= run_file_num_records && !run_file_wait_temp && !run_file_wait && !run_file_finishing) {
		// Done.
		//debug("done running file");
		if (!computing_move && !sending_fragment && !arch_running()) {
			send_host(CMD_FILE_DONE);
			abort_run_file();
		}
		else
			run_file_finishing = true;
	}
	lock = false;
	return;
}
Exemplo n.º 3
0
static void handle_motors(unsigned long long current_time) { // {{{
	// Check for move.
	if (!computing_move) {
		movedebug("handle motors not moving");
		return;
	}
	movedebug("handling %d %d", computing_move, cbs_after_current_move);
	double factor = 1;
	double t = (current_time - settings.start_time) / 1e6;
	if (t >= settings.t0 + settings.tp) {	// Finish this move and prepare next. {{{
		movedebug("finishing %f %f %f %ld %ld", t, settings.t0, settings.tp, long(current_time), long(settings.start_time));
		//debug("finish steps");
		for (int s = 0; s < NUM_SPACES; ++s) {
			if (!settings.single && s == 2)
				continue;
			Space &sp = spaces[s];
			bool new_move = false;
			if (!isnan(sp.settings.dist[0])) {
				for (int a = 0; a < sp.num_axes; ++a) {
					if (!isnan(sp.axis[a]->settings.dist[0])) {
						sp.axis[a]->settings.source += sp.axis[a]->settings.dist[0];
						sp.axis[a]->settings.dist[0] = NAN;
						//debug("new source %d %f", a, sp.axis[a]->settings.source);
					}
				}
				sp.settings.dist[0] = NAN;
			}
			for (int a = 0; a < sp.num_axes; ++a)
				sp.axis[a]->settings.target = sp.axis[a]->settings.source;
			move_axes(&sp, current_time, factor);
			//debug("f %f", factor);
		}
		//debug("f2 %f %ld %ld", factor, settings.last_time, current_time);
		bool did_steps = do_steps(factor, current_time);
		//debug("f3 %f", factor);
		// Start time may have changed; recalculate t.
		t = (current_time - settings.start_time) / 1e6;
		if (t / (settings.t0 + settings.tp) >= done_factor) {
			int had_cbs = cbs_after_current_move;
			//debug("clearing %d cbs after current move for later inserting into history", cbs_after_current_move);
			cbs_after_current_move = 0;
			run_file_fill_queue();
			if (settings.queue_start != settings.queue_end || settings.queue_full) {
				had_cbs += next_move();
				if (!aborting && had_cbs > 0) {
					int fragment;
					if (num_active_motors == 0)
						fragment = (current_fragment + FRAGMENTS_PER_BUFFER - 1) % FRAGMENTS_PER_BUFFER;
					else
						fragment = current_fragment;
					//debug("adding %d cbs to fragment %d", had_cbs, fragment);
					history[fragment].cbs += had_cbs;
				}
				return;
			}
			cbs_after_current_move += had_cbs;
			//debug("adding %d to cbs after current move making it %d", had_cbs, cbs_after_current_move);
			if (factor == 1) {
				//debug("queue done");
				if (!did_steps) {
					//debug("done move");
					computing_move = false;
					// Cut off final sample, which was no steps anyway.
					current_fragment_pos -= 1;
				}
				for (int s = 0; s < NUM_SPACES; ++s) {
					Space &sp = spaces[s];
					for (int m = 0; m < sp.num_motors; ++m)
						sp.motor[m]->settings.last_v = 0;
				}
				if (cbs_after_current_move > 0) {
					if (!aborting) {
						int fragment;
						if (num_active_motors == 0)
							if (running_fragment == current_fragment) {
								//debug("sending movecbs immediately");
								send_host(CMD_MOVECB, cbs_after_current_move);
								cbs_after_current_move = 0;
								return;
							}
							else
								fragment = (current_fragment + FRAGMENTS_PER_BUFFER - 1) % FRAGMENTS_PER_BUFFER;
						else
							fragment = current_fragment;
						//debug("adding %d cbs to final fragment %d", cbs_after_current_move, fragment);
						history[fragment].cbs += cbs_after_current_move;
					}
					//debug("clearing %d cbs after current move in final", cbs_after_current_move);
					cbs_after_current_move = 0;
				}
			}
		}
		return;
	} // }}}
	if (t < settings.t0) {	// Main part. {{{
		double t_fraction = t / settings.t0;
		double current_f = (settings.f1 * (2 - t_fraction) + settings.f2 * t_fraction) * t_fraction;
		movedebug("main t %f t0 %f tp %f tfrac %f f1 %f f2 %f cf %f", t, settings.t0, settings.tp, t_fraction, settings.f1, settings.f2, current_f);
		//debug("main steps");
		for (int s = 0; s < NUM_SPACES; ++s) {
			if (!settings.single && s == 2)
				continue;
			Space &sp = spaces[s];
			for (int a = 0; a < sp.num_axes; ++a) {
				if (isnan(sp.axis[a]->settings.dist[0])) {
					sp.axis[a]->settings.target = NAN;
					continue;
				}
				sp.axis[a]->settings.target = sp.axis[a]->settings.source;
			}
			make_target(sp, current_f, false);
			move_axes(&sp, current_time, factor);
		}
	} // }}}
	else {	// Connector part. {{{
		movedebug("connector %f %f %f", t, settings.t0, settings.tp);
		double tc = t - settings.t0;
		double t_fraction = tc / settings.tp;
		double current_f2 = settings.fp * (2 - t_fraction) * t_fraction;
		double current_f3 = settings.fq * t_fraction * t_fraction;
		//debug("connect steps");
		for (int s = 0; s < NUM_SPACES; ++s) {
			if (!settings.single && s == 2)
				continue;
			Space &sp = spaces[s];
			for (int a = 0; a < sp.num_axes; ++a) {
				if (isnan(sp.axis[a]->settings.dist[0]) && isnan(sp.axis[a]->settings.dist[1])) {
					sp.axis[a]->settings.target = NAN;
					continue;
				}
				sp.axis[a]->settings.target = sp.axis[a]->settings.source;
			}
			make_target(sp, (1 - settings.fp) + current_f2, false);
			make_target(sp, current_f3, true);
			move_axes(&sp, current_time, factor);
		}
	} // }}}
	do_steps(factor, current_time);
} // }}}
Exemplo n.º 4
0
// Used from previous segment (if prepared): tp, vq.
uint8_t next_move() { // {{{
	settings.probing = false;
	moving_to_current = 0;
	uint8_t num_cbs = 0;
	uint8_t a0;
	run_file_fill_queue();
	if (settings.queue_start == settings.queue_end && !settings.queue_full) {
		//debug("no next move");
		computing_move = false;
		prepared = false;
		return num_cbs;
	}
#ifdef DEBUG_MOVE
	debug("Next move; queue start = %d, end = %d", settings.queue_start, settings.queue_end);
#endif
	// Set everything up for running queue[settings.queue_start].
	uint8_t n = (settings.queue_start + 1) % QUEUE_LENGTH;

	// Make sure printer state is good. {{{
	// If the source is unknown, determine it from current_pos.
	//for (uint8_t a = 0; a < num_axes; ++a)
	//	debug("target %d %f", a, queue[settings.queue_start].data[a]);
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			if (isnan(sp.axis[a]->settings.source)) {
				space_types[sp.type].reset_pos(&sp);
				for (uint8_t aa = 0; aa < sp.num_axes; ++aa)
					sp.axis[aa]->settings.current = sp.axis[aa]->settings.source;
				break;
			}
#ifdef DEBUG_MOVE
			else
				debug("non-nan: %d %d %f %d", s, a, sp.axis[a]->settings.source, sp.motor[a]->settings.current_pos);
#endif
		}
	}
	// }}}

	settings.f0 = settings.fq;
	// If no move is prepared, set dist[1] from the queue; it will be used as dist[0] below. {{{
	if (!prepared) {
#ifdef DEBUG_MOVE
		debug("No move prepared.");
#endif
		settings.f0 = 0;
		a0 = 0;
		change0(settings.queue_start);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			space_types[sp.type].check_position(&sp, &queue[settings.queue_start].data[a0]);
			sp.settings.dist[0] = 0;
			for (int a = 0; a < sp.num_axes; ++a) {
				sp.axis[a]->settings.dist[0] = 0;
				sp.axis[a]->settings.endpos[0] = sp.axis[a]->settings.source;
			}
			set_from_queue(s, settings.queue_start, a0, false);
			a0 += sp.num_axes;
		}
	}
	// }}}
	// Fill unspecified coordinates with previous values. {{{
	a0 = 0;
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			if (n != settings.queue_end) {
				// If only one of them is set, set the other one as well to make the rounded corner work.
				if (!isnan(queue[settings.queue_start].data[a0 + a]) && isnan(queue[n].data[a0 + a])) {
					queue[n].data[a0 + a] = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[1] - (s == 0 && a == 2 ? zoffset : 0);
#ifdef DEBUG_MOVE
					debug("filling next %d with %f", a0 + a, queue[n].data[a0 + a]);
#endif
				}
				if (isnan(queue[settings.queue_start].data[a]) && !isnan(queue[n].data[a])) {
					queue[settings.queue_start].data[a0 + a] = sp.axis[a]->settings.source;
#ifdef DEBUG_MOVE
					debug("filling %d with %f", a0 + a, queue[settings.queue_start].data[a0 + a]);
#endif
				}
			}
			if ((!isnan(queue[settings.queue_start].data[a0 + a]) || (n != settings.queue_end && !isnan(queue[n].data[a0 + a]))) && isnan(sp.axis[a]->settings.source)) {
				debug("Motor positions are not known, so move cannot take place; aborting move and removing it from the queue: %f %f %f", queue[settings.queue_start].data[a0 + a], queue[n].data[a0 + a], sp.axis[a]->settings.source);
				// This possibly removes one move too many, but it shouldn't happen anyway.
				if (queue[settings.queue_start].cb)
					++num_cbs;
				if (settings.queue_end == settings.queue_start)
					send_host(CMD_CONTINUE, 0);
				settings.queue_start = n;
				settings.queue_full = false;
				abort_move(current_fragment_pos);
				return num_cbs;
			}
		}
		a0 += sp.num_axes;
	}
	// }}}
	// We are prepared and can start the segment.
	bool action = false;
	double vq;
	if (n == settings.queue_end) { // There is no next segment; we should stop at the end. {{{
		prepared = false;
#ifdef DEBUG_MOVE
		debug("Building final segment.");
#endif
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			copy_next(s);
			if (sp.settings.dist[0] != 0)
				action = true;
		}
		vq = 0;
	}
	// }}}
	else { // There is a next segment; we should connect to it. {{{
		prepared = true;
#ifdef DEBUG_MOVE
		debug("Building a connecting segment.");
#endif
		a0 = 0;
		change0(n);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			space_types[sp.type].check_position(&sp, &queue[n].data[a0]);
			copy_next(s);
			set_from_queue(s, n, a0, true);
			if (sp.settings.dist[1] != 0 || sp.settings.dist[0] != 0)
				action = true;
			a0 += sp.num_axes;
		}
		vq = queue[n].f[0] * feedrate;
	}
	// }}}

	double v0 = queue[settings.queue_start].f[0] * feedrate;
	double vp = queue[settings.queue_start].f[1] * feedrate;
	settings.probing = queue[settings.queue_start].probe;
	settings.run_time = queue[settings.queue_start].time;
	settings.run_dist = queue[settings.queue_start].dist;

	if (queue[settings.queue_start].cb)
		cbs_after_current_move += 1;
	//debug("add cb to current starting at %d", current_fragment);
	if (settings.queue_end == settings.queue_start)
		send_host(CMD_CONTINUE, 0);
	settings.queue_full = false;
	settings.queue_start = n;

	if (!action) {	// Skip zero-distance move. {{{
#ifdef DEBUG_MOVE
		debug("Skipping zero-distance prepared move");
#endif
		num_cbs += cbs_after_current_move;
		cbs_after_current_move = 0;
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			sp.settings.dist[0] = NAN;
			for (uint8_t a = 0; a < sp.num_axes; ++a)
				sp.axis[a]->settings.dist[0] = NAN;
		}
		settings.fq = 0;
		return num_cbs + next_move();
	} // }}}

	// Currently set up:
	// f0: fraction of move already done by connection.
	// v0: this move's requested starting speed.
	// vp: this move's requested ending speed.
	// vq: next move's requested starting speed.
	// cbs_after_current_move: number of cbs that should be fired after this segment is complete.
	// dist[0]: total distance of this segment (mm).
	// dist[1]: total distance of next segment (mm).
	// mtr->dist[0]: motor distance of this segment (mm).
	// mtr->dist[1]: motor distance of next segment (mm).
#ifdef DEBUG_MOVE
	debug("Set up: v0 = %f /s, vp = %f /s, vq = %f /s", v0, vp, vq);
#endif

	// Limit v0, vp, vq. {{{
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		double limit;
		if (s == 0)
			limit = max_v;
		else if (current_extruder < sp.num_motors)
			limit = sp.motor[current_extruder]->limit_v;
		else
			continue;
		if (isnan(limit) || isinf(limit) || limit <= 0)
			continue;
		// max_mm is the maximum speed in mm/s.
		double max_mm = settings.probing ? space_types[sp.type].probe_speed(&sp) : limit;
		double max = max_mm / sp.settings.dist[0];
		if (v0 < 0)
			v0 = -v0 / sp.settings.dist[0];
		if (vp < 0)
			vp = -vp / sp.settings.dist[0];
		if (vq < 0)
			vq = -vq / sp.settings.dist[1];
		if (v0 > max)
			v0 = max;
		if (vp > max)
			vp = max;
		max = max_mm / sp.settings.dist[1];
		if (vq > max)
			vq = max;
	}
#ifdef DEBUG_MOVE
	debug("After limiting, v0 = %f /s, vp = %f /s and vq = %f /s", v0, vp, vq);
#endif
	// }}}
	// Already set up: f0, v0, vp, vq, dist[0], dist[1], mtr->dist[0], mtr->dist[1].
	// To do: start_time, t0, tp, fmain, fp, fq, mtr->main_dist
#ifdef DEBUG_MOVE
	debug("Preparation did f0 = %f", settings.f0);
#endif

	// Use maximum deviation to find fraction where to start rounded corner. {{{
	double factor = vq / vp;
	done_factor = NAN;
	if (vq == 0) {
		settings.fp = 0;
		settings.fq = 0;
	}
	else {
		settings.fp = factor > 1 ? .5 / factor : .5;
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			if (sp.num_axes < 2)
				continue;
			if (s != 0 || max_deviation == 0) {
				settings.fp = 0;
				break;
			}
			double nd = sp.settings.dist[1] * factor;
			double d = sp.settings.dist[0] - sp.settings.dist[1];
			// Calculate distances and ignore spaces which don't have two segments.
			if (nd <= 0)
				continue;
			if (sp.settings.dist[0] <= 0)
				continue;
			double done = 1 - max_deviation / sp.settings.dist[0];
			// Set it also if done_factor is NaN.
			if (!(done <= done_factor))
				done_factor = done;
			double new_fp = max_deviation / sqrt(nd / (sp.settings.dist[0] + nd) * d);
#ifdef DEBUG_MOVE
			debug("Space %d fp %f dev %f", s, settings.fp, max_deviation);
#endif
			if (new_fp < settings.fp)
				settings.fp = new_fp;
		}
		settings.fq = settings.fp * factor;
	}
	if (isnan(done_factor))
		done_factor = 1;
	// }}}

	settings.t0 = (1 - settings.fp) / (fabs(v0 + vp) / 2);
	settings.tp = settings.fp / (fabs(vp) / 2);
	settings.f1 = .5 * fabs(v0) * settings.t0;
	settings.f2 = 1 - settings.fp - settings.f1;

	// Set up endpos. {{{
	for (uint8_t s = 0; s < 2; ++s) {
		Space &sp = spaces[s];
		for (uint8_t a = 0; a < sp.num_axes; ++a) {
			sp.axis[a]->settings.main_dist = sp.axis[a]->settings.dist[0] * (1 - settings.fp);
			// Fill target for filling endpos below.
			if ((sp.axis[a]->settings.dist[0] > 0 && sp.axis[a]->settings.dist[1] < 0) || (sp.axis[a]->settings.dist[0] < 0 && sp.axis[a]->settings.dist[1] > 0))
				sp.axis[a]->settings.target = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[0];
			else
				sp.axis[a]->settings.target = sp.axis[a]->settings.source + sp.axis[a]->settings.dist[0] + sp.axis[a]->settings.dist[1] * settings.fq;
#ifdef DEBUG_MOVE
			debug("Axis %d %d dist %f main dist = %f, next dist = %f currentpos = %d current = %f", s, a, sp.axis[a]->settings.dist[0], sp.axis[a]->settings.main_dist, sp.axis[a]->settings.dist[1], sp.motor[a]->settings.current_pos, sp.axis[a]->settings.current);
#endif
		}
		bool ok = true;
		// Using NULL as target fills endpos.
		space_types[sp.type].xyz2motors(&sp, NULL, &ok);
	}
	// }}}

	// Enable motors if they weren't. {{{
	if (!motors_busy) {
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			for (uint8_t m = 0; m < sp.num_motors; ++m)
				SET(sp.motor[m]->enable_pin);
		}
		motors_busy = true;
	} // }}}
#ifdef DEBUG_MOVE
	debug("Segment has been set up: f0=%f fp=%f fq=%f v0=%f /s vp=%f /s vq=%f /s t0=%f s tp=%f s", settings.f0, settings.fp, settings.fq, v0, vp, vq, settings.t0, settings.tp);
#endif
	// Reset time. {{{
	settings.hwtime = 0;
	settings.last_time = 0;
	settings.last_current_time = 0;
	settings.start_time = settings.last_time - uint32_t(settings.f0 / fabs(vp) * 1e6);
	// }}}

	if (!computing_move) {	// Set up source if this is a new move. {{{
#ifdef DEBUG_MOVE
		debug("starting new move");
#endif
		//debug("current %d running %d", current_fragment, running_fragment);
		for (uint8_t s = 0; s < 2; ++s) {
			Space &sp = spaces[s];
			for (uint8_t a = 0; a < sp.num_axes; ++a)
				sp.axis[a]->settings.source = sp.axis[a]->settings.current;
		}
		store_settings();
#ifdef DEBUG_PATH
		fprintf(stderr, "\n");
#endif
	} // }}}

	first_fragment = current_fragment;	// Do this every time, because otherwise the queue must be regenerated.	TODO: send partial fragment to make sure this hack actually works, or fix it properly.
	computing_move = true;
	return num_cbs;
} // }}}
Exemplo n.º 5
0
void handle_temp(int id, int temp) { // {{{
	if (store_adc)
		fprintf(store_adc, "%d %d %f %d\n", millis(), id, temps[id].fromadc(temp), temp);
	if (requested_temp == id) {
		//debug("replying temp");
		double result = temps[requested_temp].fromadc(temp);
		requested_temp = ~0;
		send_host(CMD_TEMP, 0, 0, result);
	}
	//debug("temp for %d: %d", id, temp);
	// If an alarm should be triggered, do so.  Adc values are higher for lower temperatures.
	//debug("alarms: %d %d %d %d", id, temps[id].adcmin_alarm, temps[id].adcmax_alarm, temp);
	if (temps[id].adcmin_alarm >= temp || temps[id].adcmax_alarm <= temp) {
		//debug("alarm: %d %d %d %d", id, temps[id].adcmin_alarm, temps[id].adcmax_alarm, temp);
		temps[id].min_alarm = NAN;
		temps[id].max_alarm = NAN;
		temps[id].adcmin_alarm = -1;
		temps[id].adcmax_alarm = MAXINT;
		if (run_file_wait_temp) {
			run_file_wait_temp -= 1;
			run_file_fill_queue();
		}
		else
			send_host(CMD_TEMPCB, id);
	}
	/*
	// TODO: Make this work and decide on units.
	// We have model settings.
	uint32_t dt = current_time - temps[id].last_temp_time;
	if (dt == 0)
		return;
	temps[id].last_temp_time = current_time;
	// Heater and core/shell transfer.
	if (temps[id].is_on)
		temps[id].core_T += temps[id].power / temps[id].core_C * dt;
	double Q = temps[id].transfer * (temps[id].core_T - temps[id].shell_T) * dt;
	temps[id].core_T -= Q / temps[id].core_C;
	temps[id].shell_T += Q / temps[id].shell_C;
	if (temps[id].is_on)
		temps[id].core_T += temps[id].power / temps[id].core_C * dt / 2;
	// Set shell to measured value.
	temps[id].shell_T = temp;
	// Add energy if required.
	double E = temps[id].core_T * temps[id].core_C + temps[id].shell_T * temps[id].shell_C;
	double T = E / (temps[id].core_C + temps[id].shell_C);
	// Set the pin to correct value.
	if (T < temps[id].target) {
		if (!temps[id].is_on) {
			SET(temps[id].power_pin);
			temps[id].is_on = true;
			++temps_busy;
		}
		else
			temps[id].time_on += current_time - temps[id].last_temp_time;
	}
	else {
		if (temps[id].is_on) {
			RESET(temps[id].power_pin);
			temps[id].is_on = false;
			temps[id].time_on += current_time - temps[id].last_temp_time;
			--temps_busy;
		}
	}
	*/
} // }}}