Exemplo n.º 1
0
  /**
   * Prepare a bilinear-leveled linear move on Cartesian,
   * splitting the move where it crosses grid borders.
   */
  void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
    // Get current and destination cells for this line
    int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
        cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
        cx2 = CELL_INDEX(X, destination[X_AXIS]),
        cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
    cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
    cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
    cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
    cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);

    // Start and end in the same cell? No split needed.
    if (cx1 == cx2 && cy1 == cy2) {
      buffer_line_to_destination(fr_mm_s);
      set_current_from_destination();
      return;
    }

    #define LINE_SEGMENT_END(A) (current_position[_AXIS(A)] + (destination[_AXIS(A)] - current_position[_AXIS(A)]) * normalized_dist)

    float normalized_dist, end[XYZE];
    const int8_t gcx = MAX(cx1, cx2), gcy = MAX(cy1, cy2);

    // Crosses on the X and not already split on this X?
    // The x_splits flags are insurance against rounding errors.
    if (cx2 != cx1 && TEST(x_splits, gcx)) {
      // Split on the X grid line
      CBI(x_splits, gcx);
      COPY(end, destination);
      destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
      normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
      destination[Y_AXIS] = LINE_SEGMENT_END(Y);
    }
    // Crosses on the Y and not already split on this Y?
    else if (cy2 != cy1 && TEST(y_splits, gcy)) {
      // Split on the Y grid line
      CBI(y_splits, gcy);
      COPY(end, destination);
      destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
      normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
      destination[X_AXIS] = LINE_SEGMENT_END(X);
    }
    else {
      // Must already have been split on these border(s)
      // This should be a rare case.
      buffer_line_to_destination(fr_mm_s);
      set_current_from_destination();
      return;
    }

    destination[Z_AXIS] = LINE_SEGMENT_END(Z);
    destination[E_AXIS] = LINE_SEGMENT_END(E);

    // Do the split and look for more borders
    bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);

    // Restore destination from stack
    COPY(destination, end);
    bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  }
Exemplo n.º 2
0
    void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
      /**
       * Much of the nozzle movement will be within the same cell. So we will do as little computation
       * as possible to determine if this is the case. If this move is within the same cell, we will
       * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
       */
      #if ENABLED(SKEW_CORRECTION)
        // For skew correction just adjust the destination point and we're done
        float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
              end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
        planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
        planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
      #else
        const float (&start)[XYZE] = current_position,
                      (&end)[XYZE] = destination;
      #endif

      const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
                cell_start_yi = get_cell_index_y(start[Y_AXIS]),
                cell_dest_xi  = get_cell_index_x(end[X_AXIS]),
                cell_dest_yi  = get_cell_index_y(end[Y_AXIS]);

      if (g26_debug_flag) {
        SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
        SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
        SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
        SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]);
        SERIAL_CHAR(')');
        SERIAL_EOL();
        debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
      }

      // A move within the same cell needs no splitting
      if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {

        // For a move off the bed, use a constant Z raise
        if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {

          // Note: There is no Z Correction in this case. We are off the grid and don't know what
          // a reasonable correction would be.  If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
          // value, that will be used instead of a calculated (Bi-Linear interpolation) correction.

          const float z_raise = 0.0
            #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
              + UBL_Z_RAISE_WHEN_OFF_MESH
            #endif
          ;
          planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_AXIS], feed_rate, extruder);
          set_current_from_destination();

          if (g26_debug_flag)
            debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));

          return;
        }

        FINAL_MOVE:

        // The distance is always MESH_X_DIST so multiply by the constant reciprocal.
        const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0f / (MESH_X_DIST));

        float z1 = z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio *
                  (z_values[cell_dest_xi + 1][cell_dest_yi    ] - z_values[cell_dest_xi][cell_dest_yi    ]),
              z2 = z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio *
                  (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);

        if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;

        // X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
        const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0f / (MESH_Y_DIST)),
                    z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;

        // Undefined parts of the Mesh in z_values[][] are NAN.
        // Replace NAN corrections with 0.0 to prevent NAN propagation.
        planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_AXIS], feed_rate, extruder);

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));

        set_current_from_destination();
        return;
      }

      /**
       * Past this point the move is known to cross one or more mesh lines. Check for the most common
       * case - crossing only one X or Y line - after details are worked out to reduce computation.
       */

      const float dx = end[X_AXIS] - start[X_AXIS],
                  dy = end[Y_AXIS] - start[Y_AXIS];

      const int left_flag = dx < 0.0 ? 1 : 0,
                down_flag = dy < 0.0 ? 1 : 0;

      const float adx = left_flag ? -dx : dx,
                  ady = down_flag ? -dy : dy;

      const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
                dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;

      /**
       * Compute the extruder scaling factor for each partial move, checking for
       * zero-length moves that would result in an infinite scaling factor.
       * A float divide is required for this, but then it just multiplies.
       * Also select a scaling factor based on the larger of the X and Y
       * components. The larger of the two is used to preserve precision.
       */

      const bool use_x_dist = adx > ady;

      float on_axis_distance = use_x_dist ? dx : dy,
            e_position = end[E_AXIS] - start[E_AXIS],
            z_position = end[Z_AXIS] - start[Z_AXIS];

      const float e_normalized_dist = e_position / on_axis_distance,
                  z_normalized_dist = z_position / on_axis_distance;

      int current_xi = cell_start_xi,
          current_yi = cell_start_yi;

      const float m = dy / dx,
                  c = start[Y_AXIS] - m * start[X_AXIS];

      const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
                 inf_m_flag = (isinf(m) != 0);

      /**
       * Handle vertical lines that stay within one column.
       * These need not be perfectly vertical.
       */
      if (dxi == 0) {             // Vertical line?
        current_yi += down_flag;  // Line going down? Just go to the bottom.
        while (current_yi != cell_dest_yi + down_flag) {
          current_yi += dyi;
          const float next_mesh_line_y = mesh_index_to_ypos(current_yi);

          /**
           * Skip the calculations for an infinite slope.
           * For others the next X is the same so this can continue.
           * Calculate X at the next Y mesh line.
           */
          const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;

          float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          // Undefined parts of the Mesh in z_values[][] are NAN.
          // Replace NAN corrections with 0.0 to prevent NAN propagation.
          if (isnan(z0)) z0 = 0.0;

          const float ry = mesh_index_to_ypos(current_yi);

          /**
           * Without this check, it's possible to generate a zero length move, as in the case where
           * the line is heading down, starting exactly on a mesh line boundary. Since this is rare
           * it might be fine to remove this check and let planner.buffer_segment() filter it out.
           */
          if (ry != start[Y_AXIS]) {
            if (!inf_normalized_flag) {
              on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
              e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
              z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
            }
            else {
              e_position = end[E_AXIS];
              z_position = end[Z_AXIS];
            }

            planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
          } //else printf("FIRST MOVE PRUNED  ");
        }

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));

        // At the final destination? Usually not, but when on a Y Mesh Line it's completed.
        if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
          goto FINAL_MOVE;

        set_current_from_destination();
        return;
      }

      /**
       * Handle horizontal lines that stay within one row.
       * These need not be perfectly horizontal.
       */
      if (dyi == 0) {             // Horizontal line?
        current_xi += left_flag;  // Heading left? Just go to the left edge of the cell for the first move.
        while (current_xi != cell_dest_xi + left_flag) {
          current_xi += dxi;
          const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
                      ry = m * next_mesh_line_x + c;   // Calculate Y at the next X mesh line

          float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          // Undefined parts of the Mesh in z_values[][] are NAN.
          // Replace NAN corrections with 0.0 to prevent NAN propagation.
          if (isnan(z0)) z0 = 0.0;

          const float rx = mesh_index_to_xpos(current_xi);

          /**
           * Without this check, it's possible to generate a zero length move, as in the case where
           * the line is heading left, starting exactly on a mesh line boundary. Since this is rare
           * it might be fine to remove this check and let planner.buffer_segment() filter it out.
           */
          if (rx != start[X_AXIS]) {
            if (!inf_normalized_flag) {
              on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
              e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a horizontal move
              z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
            }
            else {
              e_position = end[E_AXIS];
              z_position = end[Z_AXIS];
            }

            if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))
              break;
          } //else printf("FIRST MOVE PRUNED  ");
        }

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));

        if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
          goto FINAL_MOVE;

        set_current_from_destination();
        return;
      }

      /**
       *
       * Handle the generic case of a line crossing both X and Y Mesh lines.
       *
       */

      int xi_cnt = cell_start_xi - cell_dest_xi,
          yi_cnt = cell_start_yi - cell_dest_yi;

      if (xi_cnt < 0) xi_cnt = -xi_cnt;
      if (yi_cnt < 0) yi_cnt = -yi_cnt;

      current_xi += left_flag;
      current_yi += down_flag;

      while (xi_cnt || yi_cnt) {

        const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
                    next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
                    ry = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
                    rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
                                                     // (No need to worry about m being zero.
                                                     //  If that was the case, it was already detected
                                                     //  as a vertical line move above.)

        if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
          // Yes!  Crossing a Y Mesh Line next
          float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          // Undefined parts of the Mesh in z_values[][] are NAN.
          // Replace NAN corrections with 0.0 to prevent NAN propagation.
          if (isnan(z0)) z0 = 0.0;

          if (!inf_normalized_flag) {
            on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
            z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
          }
          else {
            e_position = end[E_AXIS];
            z_position = end[Z_AXIS];
          }
          if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))
            break;
          current_yi += dyi;
          yi_cnt--;
        }
        else {
          // Yes!  Crossing a X Mesh Line next
          float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          // Undefined parts of the Mesh in z_values[][] are NAN.
          // Replace NAN corrections with 0.0 to prevent NAN propagation.
          if (isnan(z0)) z0 = 0.0;

          if (!inf_normalized_flag) {
            on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
            z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
          }
          else {
            e_position = end[E_AXIS];
            z_position = end[Z_AXIS];
          }

          if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))
            break;
          current_xi += dxi;
          xi_cnt--;
        }

        if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
      }

      if (g26_debug_flag)
        debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));

      if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
        goto FINAL_MOVE;

      set_current_from_destination();
    }
Exemplo n.º 3
0
/**
 * G26: Mesh Validation Pattern generation.
 *
 * Used to interactively edit the mesh by placing the
 * nozzle in a problem area and doing a G29 P4 R command.
 *
 * Parameters:
 *
 *  B  Bed Temperature
 *  C  Continue from the Closest mesh point
 *  D  Disable leveling before starting
 *  F  Filament diameter
 *  H  Hotend Temperature
 *  K  Keep heaters on when completed
 *  L  Layer Height
 *  O  Ooze extrusion length
 *  P  Prime length
 *  Q  Retraction multiplier
 *  R  Repetitions (number of grid points)
 *  S  Nozzle Size (diameter) in mm
 *  T  Tool index to change to, if included
 *  U  Random deviation (50 if no value given)
 *  X  X position
 *  Y  Y position
 */
void GcodeSuite::G26() {
  SERIAL_ECHOLNPGM("G26 starting...");

  // Don't allow Mesh Validation without homing first,
  // or if the parameter parsing did not go OK, abort
  if (axis_unhomed_error()) return;

  // Change the tool first, if specified
  if (parser.seenval('T')) tool_change(parser.value_int());

  g26_extrusion_multiplier    = EXTRUSION_MULTIPLIER;
  g26_retraction_multiplier   = RETRACTION_MULTIPLIER;
  g26_layer_height            = MESH_TEST_LAYER_HEIGHT;
  g26_prime_length            = PRIME_LENGTH;
  g26_bed_temp                = MESH_TEST_BED_TEMP;
  g26_hotend_temp             = MESH_TEST_HOTEND_TEMP;
  g26_prime_flag              = 0;

  float g26_nozzle            = MESH_TEST_NOZZLE_SIZE,
        g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
        g26_ooze_amount       = parser.linearval('O', OOZE_AMOUNT);

  bool g26_continue_with_closest = parser.boolval('C'),
       g26_keep_heaters_on       = parser.boolval('K');

  if (parser.seenval('B')) {
    g26_bed_temp = parser.value_celsius();
    if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) {
      SERIAL_ECHOLNPGM("?Specified bed temperature not plausible (40-140C).");
      return;
    }
  }

  if (parser.seenval('L')) {
    g26_layer_height = parser.value_linear_units();
    if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
      SERIAL_ECHOLNPGM("?Specified layer height not plausible.");
      return;
    }
  }

  if (parser.seen('Q')) {
    if (parser.has_value()) {
      g26_retraction_multiplier = parser.value_float();
      if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
        SERIAL_ECHOLNPGM("?Specified Retraction Multiplier not plausible.");
        return;
      }
    }
    else {
      SERIAL_ECHOLNPGM("?Retraction Multiplier must be specified.");
      return;
    }
  }

  if (parser.seenval('S')) {
    g26_nozzle = parser.value_float();
    if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
      SERIAL_ECHOLNPGM("?Specified nozzle size not plausible.");
      return;
    }
  }

  if (parser.seen('P')) {
    if (!parser.has_value()) {
      #if HAS_LCD_MENU
        g26_prime_flag = -1;
      #else
        SERIAL_ECHOLNPGM("?Prime length must be specified when not using an LCD.");
        return;
      #endif
    }
    else {
      g26_prime_flag++;
      g26_prime_length = parser.value_linear_units();
      if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
        SERIAL_ECHOLNPGM("?Specified prime length not plausible.");
        return;
      }
    }
  }

  if (parser.seenval('F')) {
    g26_filament_diameter = parser.value_linear_units();
    if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
      SERIAL_ECHOLNPGM("?Specified filament size not plausible.");
      return;
    }
  }
  g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
                                                                    // scale up or down the length needed to get the
                                                                    // same volume of filament

  g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size

  if (parser.seenval('H')) {
    g26_hotend_temp = parser.value_celsius();
    if (!WITHIN(g26_hotend_temp, 165, 280)) {
      SERIAL_ECHOLNPGM("?Specified nozzle temperature not plausible.");
      return;
    }
  }

  if (parser.seen('U')) {
    randomSeed(millis());
    // This setting will persist for the next G26
    random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  }

  int16_t g26_repeats;
  #if HAS_LCD_MENU
    g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  #else
    if (!parser.seen('R')) {
      SERIAL_ECHOLNPGM("?(R)epeat must be specified when not using an LCD.");
      return;
    }
    else
      g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  #endif
  if (g26_repeats < 1) {
    SERIAL_ECHOLNPGM("?(R)epeat value not plausible; must be at least 1.");
    return;
  }

  g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
  g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
  if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
    SERIAL_ECHOLNPGM("?Specified X,Y coordinate out of bounds.");
    return;
  }

  /**
   * Wait until all parameters are verified before altering the state!
   */
  set_bed_leveling_enabled(!parser.seen('D'));

  if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
    do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
    set_current_from_destination();
  }

  if (turn_on_heaters() != G26_OK) goto LEAVE;

  current_position[E_AXIS] = 0.0;
  sync_plan_position_e();

  if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;

  /**
   *  Bed is preheated
   *
   *  Nozzle is at temperature
   *
   *  Filament is primed!
   *
   *  It's  "Show Time" !!!
   */

  ZERO(circle_flags);
  ZERO(horizontal_mesh_line_flags);
  ZERO(vertical_mesh_line_flags);

  // Move nozzle to the specified height for the first layer
  set_destination_from_current();
  destination[Z_AXIS] = g26_layer_height;
  move_to(destination, 0.0);
  move_to(destination, g26_ooze_amount);

  #if HAS_LCD_MENU
    ui.capture();
  #endif

  //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));

  #if DISABLED(ARC_SUPPORT)

    /**
     * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
     */
    #define A_INT 30
    #define _ANGS (360 / A_INT)
    #define A_CNT (_ANGS / 2)
    #define _IND(A) ((A + _ANGS * 8) % _ANGS)
    #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
    #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
    #if A_CNT & 1
      #error "A_CNT must be a positive value. Please change A_INT."
    #endif
    float trig_table[A_CNT];
    for (uint8_t i = 0; i < A_CNT; i++)
      trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));

  #endif // !ARC_SUPPORT

  mesh_index_pair location;
  do {
     location = g26_continue_with_closest
      ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
      : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.

    if (location.x_index >= 0 && location.y_index >= 0) {
      const float circle_x = _GET_MESH_X(location.x_index),
                  circle_y = _GET_MESH_Y(location.y_index);

      // If this mesh location is outside the printable_radius, skip it.
      if (!position_is_reachable(circle_x, circle_y)) continue;

      // Determine where to start and end the circle,
      // which is always drawn counter-clockwise.
      const uint8_t xi = location.x_index, yi = location.y_index;
      const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;

      #if ENABLED(ARC_SUPPORT)

        #define ARC_LENGTH(quarters)  (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
        float sx = circle_x + INTERSECTION_CIRCLE_RADIUS,   // default to full circle
              ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
              sy = circle_y, ey = circle_y,
              arc_length = ARC_LENGTH(4);

        // Figure out where to start and end the arc - we always print counterclockwise
        if (xi == 0) {                             // left edge
          sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
          ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
          sy = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS);
          ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
          arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
        }
        else if (r) {                             // right edge
          sx = b ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x;
          ex = f ? circle_x - (INTERSECTION_CIRCLE_RADIUS) : circle_x;
          sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
          ey = f ? circle_y : circle_y - (INTERSECTION_CIRCLE_RADIUS);
          arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
        }
        else if (f) {
          sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
          ex = circle_x - (INTERSECTION_CIRCLE_RADIUS);
          sy = ey = circle_y;
          arc_length = ARC_LENGTH(2);
        }
        else if (b) {
          sx = circle_x - (INTERSECTION_CIRCLE_RADIUS);
          ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
          sy = ey = circle_y;
          arc_length = ARC_LENGTH(2);
        }
        const float arc_offset[2] = {
          circle_x - sx,
          circle_y - sy
        };

        const float dx_s = current_position[X_AXIS] - sx,   // find our distance from the start of the actual circle
                    dy_s = current_position[Y_AXIS] - sy,
                    dist_start = HYPOT2(dx_s, dy_s);
        const float endpoint[XYZE] = {
          ex, ey,
          g26_layer_height,
          current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
        };

        if (dist_start > 2.0) {
          retract_filament(destination);
          //todo:  parameterize the bump height with a define
          move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0);  // Z bump to minimize scraping
          move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
        }

        move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump

        recover_filament(destination);
        const float save_feedrate = feedrate_mm_s;
        feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;

        if (g26_debug_flag) {
          SERIAL_ECHOPAIR(" plan_arc(ex=", endpoint[X_AXIS]);
          SERIAL_ECHOPAIR(", ey=", endpoint[Y_AXIS]);
          SERIAL_ECHOPAIR(", ez=", endpoint[Z_AXIS]);
          SERIAL_ECHOPAIR(", len=", arc_length);
          SERIAL_ECHOPAIR(") -> (ex=", current_position[X_AXIS]);
          SERIAL_ECHOPAIR(", ey=", current_position[Y_AXIS]);
          SERIAL_ECHOPAIR(", ez=", current_position[Z_AXIS]);
          SERIAL_CHAR(')');
          SERIAL_EOL();
        }

        plan_arc(endpoint, arc_offset, false);  // Draw a counter-clockwise arc
        feedrate_mm_s = save_feedrate;
        set_destination_from_current();
        #if HAS_LCD_MENU
          if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
        #endif

      #else // !ARC_SUPPORT

        int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
        if (xi == 0) {                      // Left edge? Just right half.
          start_ind = f ? 0 : -3;           //  03:00 to 12:00 for front-left
          end_ind = b ? 0 : 2;              //  06:00 to 03:00 for back-left
        }
        else if (r) {                       // Right edge? Just left half.
          start_ind = b ? 6 : 3;            //  12:00 to 09:00 for front-right
          end_ind = f ? 5 : 8;              //  09:00 to 06:00 for back-right
        }
        else if (f) {                       // Front edge? Just back half.
          start_ind = 0;                    //  03:00
          end_ind = 5;                      //  09:00
        }
        else if (b) {                       // Back edge? Just front half.
          start_ind = 6;                    //  09:00
          end_ind = 11;                     //  03:00
        }

        for (int8_t ind = start_ind; ind <= end_ind; ind++) {

          #if HAS_LCD_MENU
            if (user_canceled()) goto LEAVE;          // Check if the user wants to stop the Mesh Validation
          #endif

          float rx = circle_x + _COS(ind),            // For speed, these are now a lookup table entry
                ry = circle_y + _SIN(ind),
                xe = circle_x + _COS(ind + 1),
                ye = circle_y + _SIN(ind + 1);

          #if IS_KINEMATIC
            // Check to make sure this segment is entirely on the bed, skip if not.
            if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
          #else                                               // not, we need to skip
            rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
            ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
            xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
            ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
          #endif

          print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
          SERIAL_FLUSH();  // Prevent host M105 buffer overrun.
        }

      #endif // !ARC_SUPPORT

      if (look_for_lines_to_connect()) goto LEAVE;
    }

    SERIAL_FLUSH(); // Prevent host M105 buffer overrun.

  } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);

  LEAVE:
  ui.set_status_P(PSTR("Leaving G26"), -1);

  retract_filament(destination);
  destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;

  //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  move_to(destination, 0); // Raise the nozzle
  //debug_current_and_destination(PSTR("done doing Z-Raise."));

  destination[X_AXIS] = g26_x_pos;                            // Move back to the starting position
  destination[Y_AXIS] = g26_y_pos;
  //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;         // Keep the nozzle where it is

  move_to(destination, 0);                                    // Move back to the starting position
  //debug_current_and_destination(PSTR("done doing X/Y move."));

  #if HAS_LCD_MENU
    ui.release();                                             // Give back control of the LCD
  #endif

  if (!g26_keep_heaters_on) {
    #if HAS_HEATED_BED
      thermalManager.setTargetBed(0);
    #endif
    thermalManager.setTargetHotend(active_extruder, 0);
  }
}
Exemplo n.º 4
0
    void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
      /**
       * Much of the nozzle movement will be within the same cell. So we will do as little computation
       * as possible to determine if this is the case. If this move is within the same cell, we will
       * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
       */
      #if ENABLED(SKEW_CORRECTION)
        // For skew correction just adjust the destination point and we're done
        float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] },
              end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] };
        planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
        planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
      #else
        const float (&start)[XYZE] = current_position,
                      (&end)[XYZE] = destination;
      #endif

      const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
                cell_start_yi = get_cell_index_y(start[Y_AXIS]),
                cell_dest_xi  = get_cell_index_x(end[X_AXIS]),
                cell_dest_yi  = get_cell_index_y(end[Y_AXIS]);

      if (g26_debug_flag) {
        SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
        SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
        SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
        SERIAL_ECHOPAIR(", ee=", destination[E_AXIS]);
        SERIAL_CHAR(')');
        SERIAL_EOL();
        debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
      }

      if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
        /**
         * we don't need to break up the move
         *
         * If we are moving off the print bed, we are going to allow the move at this level.
         * But we detect it and isolate it. For now, we just pass along the request.
         */

        if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {

          // Note: There is no Z Correction in this case. We are off the grid and don't know what
          // a reasonable correction would be.

          planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS], end[E_AXIS], feed_rate, extruder);
          set_current_from_destination();

          if (g26_debug_flag)
            debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));

          return;
        }

        FINAL_MOVE:

        /**
         * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
         * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
         * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
         * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
         * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
         * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
         */

        const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));

        float z1 = z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio *
                  (z_values[cell_dest_xi + 1][cell_dest_yi    ] - z_values[cell_dest_xi][cell_dest_yi    ]),
              z2 = z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio *
                  (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);

        if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;

        // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
        // are going to apply the Y-Distance into the cell to interpolate the final Z correction.

        const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
        float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;

        /**
         * If part of the Mesh is undefined, it will show up as NAN
         * in z_values[][] and propagate through the
         * calculations. If our correction is NAN, we throw it out
         * because part of the Mesh is undefined and we don't have the
         * information we need to complete the height correction.
         */
        if (isnan(z0)) z0 = 0.0;

        planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));

        set_current_from_destination();
        return;
      }

      /**
       * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
       * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
       * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
       * computation and in fact most lines are of this nature. We will check for that in the following
       * blocks of code:
       */

      const float dx = end[X_AXIS] - start[X_AXIS],
                  dy = end[Y_AXIS] - start[Y_AXIS];

      const int left_flag = dx < 0.0 ? 1 : 0,
                down_flag = dy < 0.0 ? 1 : 0;

      const float adx = left_flag ? -dx : dx,
                  ady = down_flag ? -dy : dy;

      const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
                dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;

      /**
       * Compute the scaling factor for the extruder for each partial move.
       * We need to watch out for zero length moves because it will cause us to
       * have an infinate scaling factor. We are stuck doing a floating point
       * divide to get our scaling factor, but after that, we just multiply by this
       * number. We also pick our scaling factor based on whether the X or Y
       * component is larger. We use the biggest of the two to preserve precision.
       */

      const bool use_x_dist = adx > ady;

      float on_axis_distance = use_x_dist ? dx : dy,
            e_position = end[E_AXIS] - start[E_AXIS],
            z_position = end[Z_AXIS] - start[Z_AXIS];

      const float e_normalized_dist = e_position / on_axis_distance,
                  z_normalized_dist = z_position / on_axis_distance;

      int current_xi = cell_start_xi,
          current_yi = cell_start_yi;

      const float m = dy / dx,
                  c = start[Y_AXIS] - m * start[X_AXIS];

      const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
                 inf_m_flag = (isinf(m) != 0);
      /**
       * This block handles vertical lines. These are lines that stay within the same
       * X Cell column. They do not need to be perfectly vertical. They just can
       * not cross into another X Cell column.
       */
      if (dxi == 0) {       // Check for a vertical line
        current_yi += down_flag;  // Line is heading down, we just want to go to the bottom
        while (current_yi != cell_dest_yi + down_flag) {
          current_yi += dyi;
          const float next_mesh_line_y = mesh_index_to_ypos(current_yi);

          /**
           * if the slope of the line is infinite, we won't do the calculations
           * else, we know the next X is the same so we can recover and continue!
           * Calculate X at the next Y mesh line
           */
          const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;

          float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          /**
           * If part of the Mesh is undefined, it will show up as NAN
           * in z_values[][] and propagate through the
           * calculations. If our correction is NAN, we throw it out
           * because part of the Mesh is undefined and we don't have the
           * information we need to complete the height correction.
           */
          if (isnan(z0)) z0 = 0.0;

          const float ry = mesh_index_to_ypos(current_yi);

          /**
           * Without this check, it is possible for the algorithm to generate a zero length move in the case
           * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
           * happens, it might be best to remove the check and always 'schedule' the move because
           * the planner.buffer_segment() routine will filter it if that happens.
           */
          if (ry != start[Y_AXIS]) {
            if (!inf_normalized_flag) {
              on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
              e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
              z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
            }
            else {
              e_position = end[E_AXIS];
              z_position = end[Z_AXIS];
            }

            planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
          } //else printf("FIRST MOVE PRUNED  ");
        }

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));

        //
        // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
        //
        if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
          goto FINAL_MOVE;

        set_current_from_destination();
        return;
      }

      /**
       *
       * This block handles horizontal lines. These are lines that stay within the same
       * Y Cell row. They do not need to be perfectly horizontal. They just can
       * not cross into another Y Cell row.
       *
       */

      if (dyi == 0) {             // Check for a horizontal line
        current_xi += left_flag;  // Line is heading left, we just want to go to the left
                                  // edge of this cell for the first move.
        while (current_xi != cell_dest_xi + left_flag) {
          current_xi += dxi;
          const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
                      ry = m * next_mesh_line_x + c;   // Calculate Y at the next X mesh line

          float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          /**
           * If part of the Mesh is undefined, it will show up as NAN
           * in z_values[][] and propagate through the
           * calculations. If our correction is NAN, we throw it out
           * because part of the Mesh is undefined and we don't have the
           * information we need to complete the height correction.
           */
          if (isnan(z0)) z0 = 0.0;

          const float rx = mesh_index_to_xpos(current_xi);

          /**
           * Without this check, it is possible for the algorithm to generate a zero length move in the case
           * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
           * that happens, it might be best to remove the check and always 'schedule' the move because
           * the planner.buffer_segment() routine will filter it if that happens.
           */
          if (rx != start[X_AXIS]) {
            if (!inf_normalized_flag) {
              on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
              e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  // is based on X or Y because this is a horizontal move
              z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
            }
            else {
              e_position = end[E_AXIS];
              z_position = end[Z_AXIS];
            }

            planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
          } //else printf("FIRST MOVE PRUNED  ");
        }

        if (g26_debug_flag)
          debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));

        if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
          goto FINAL_MOVE;

        set_current_from_destination();
        return;
      }

      /**
       *
       * This block handles the generic case of a line crossing both X and Y Mesh lines.
       *
       */

      int xi_cnt = cell_start_xi - cell_dest_xi,
          yi_cnt = cell_start_yi - cell_dest_yi;

      if (xi_cnt < 0) xi_cnt = -xi_cnt;
      if (yi_cnt < 0) yi_cnt = -yi_cnt;

      current_xi += left_flag;
      current_yi += down_flag;

      while (xi_cnt > 0 || yi_cnt > 0) {

        const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
                    next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
                    ry = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
                    rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
                                                     // (No need to worry about m being zero.
                                                     //  If that was the case, it was already detected
                                                     //  as a vertical line move above.)

        if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
          // Yes!  Crossing a Y Mesh Line next
          float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          /**
           * If part of the Mesh is undefined, it will show up as NAN
           * in z_values[][] and propagate through the
           * calculations. If our correction is NAN, we throw it out
           * because part of the Mesh is undefined and we don't have the
           * information we need to complete the height correction.
           */
          if (isnan(z0)) z0 = 0.0;

          if (!inf_normalized_flag) {
            on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
            z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
          }
          else {
            e_position = end[E_AXIS];
            z_position = end[Z_AXIS];
          }
          planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
          current_yi += dyi;
          yi_cnt--;
        }
        else {
          // Yes!  Crossing a X Mesh Line next
          float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
                     * planner.fade_scaling_factor_for_z(end[Z_AXIS]);

          /**
           * If part of the Mesh is undefined, it will show up as NAN
           * in z_values[][] and propagate through the
           * calculations. If our correction is NAN, we throw it out
           * because part of the Mesh is undefined and we don't have the
           * information we need to complete the height correction.
           */
          if (isnan(z0)) z0 = 0.0;

          if (!inf_normalized_flag) {
            on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
            z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
          }
          else {
            e_position = end[E_AXIS];
            z_position = end[Z_AXIS];
          }

          planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
          current_xi += dxi;
          xi_cnt--;
        }

        if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
      }

      if (g26_debug_flag)
        debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));

      if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
        goto FINAL_MOVE;

      set_current_from_destination();
    }