Exemplo n.º 1
0
void
cpu_set_tss_gates(struct cpu_info *ci)
{
	struct segment_descriptor sd;

	ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE);
	cpu_init_tss(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
	    IDTVEC(tss_trap08));
	setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
	    SDT_SYS386TSS, SEL_KPL, 0, 0);
	ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
	setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
	    GSEL(GTRAPTSS_SEL, SEL_KPL));

#if defined(DDB) && defined(MULTIPROCESSOR)
	/*
	 * Set up separate handler for the DDB IPI, so that it doesn't
	 * stomp on a possibly corrupted stack.
	 *
	 * XXX overwriting the gate set in db_machine_init.
	 * Should rearrange the code so that it's set only once.
	 */
	ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE);
	cpu_init_tss(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
	    Xintrddbipi);

	setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
	    SDT_SYS386TSS, SEL_KPL, 0, 0);
	ci->ci_gdt[GIPITSS_SEL].sd = sd;

	setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
	    GSEL(GIPITSS_SEL, SEL_KPL));
#endif
}
Exemplo n.º 2
0
void trap_init()
{
	int i;
	extern uint32_t trap_handlers[];

	for(i = 0;i < 256; i++) {
		setgate(idt[i], 0, _KERNEL_CS_, trap_handlers[i], 0);
	}
	
	setgate(idt[T_SYSCALL], 0, _KERNEL_CS_, trap_handlers[T_SYSCALL], 3);

	trap_init_percpu();
}
Exemplo n.º 3
0
void
idt_vec_set(int vec, void (*function)(void))
{

	KASSERT(mutex_owned(&cpu_lock) || !mp_online);
	KASSERT(idt_allocmap[vec] == 1);
	setgate(&idt[vec], function, 0, SDT_SYS386IGT, SEL_KPL,
	    GSEL(GCODE_SEL, SEL_KPL));
}
Exemplo n.º 4
0
void
idt_vec_set(int vec, void (*function)(void))
{
	/*
	 * Vector should be allocated, so no locking needed.
	 */
	KASSERT(idt_allocmap[vec] == 1);
	setgate(&idt[vec], function, 0, SDT_SYS386IGT, SEL_KPL,
	    GSEL(GCODE_SEL, SEL_KPL));
}
Exemplo n.º 5
0
/*
 * Fill in default interrupt table (in case of spurious interrupt
 * during configuration of kernel), setup interrupt control unit
 */
void
intr_default_setup(void)
{
	int i;

	/* icu vectors */
	for (i = 0; i < NUM_LEGACY_IRQS; i++) {
		idt_allocmap[ICU_OFFSET + i] = 1;
		setgate(&idt[ICU_OFFSET + i],
		    i8259_stubs[i].ist_entry, 0, SDT_SYS386IGT,
		    SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
	}

	/*
	 * Eventually might want to check if it's actually there.
	 */
	i8259_default_setup();
}
Exemplo n.º 6
0
/*
 * Fill in default interrupt table (in case of spurious interrupt
 * during configuration of kernel, setup interrupt control unit
 */
void
isa_defaultirq(void)
{
	int i;

	/* icu vectors */
	for (i = 0; i < ICU_LEN; i++)
		setgate(&idt[ICU_OFFSET + i], IDTVEC(intr)[i], 0,
		    SDT_SYS386IGT, SEL_KPL, GICODE_SEL);
  
	/* initialize 8259's */
	outb(IO_ICU1, 0x11);		/* reset; program device, four bytes */
	outb(IO_ICU1+1, ICU_OFFSET);	/* starting at this vector index */
	outb(IO_ICU1+1, 1 << IRQ_SLAVE); /* slave on line 2 */
#ifdef AUTO_EOI_1
	outb(IO_ICU1+1, 2 | 1);		/* auto EOI, 8086 mode */
#else
	outb(IO_ICU1+1, 1);		/* 8086 mode */
#endif
	outb(IO_ICU1+1, 0xff);		/* leave interrupts masked */
	outb(IO_ICU1, 0x68);		/* special mask mode (if available) */
	outb(IO_ICU1, 0x0a);		/* Read IRR by default. */
#ifdef REORDER_IRQ
	outb(IO_ICU1, 0xc0 | (3 - 1));	/* pri order 3-7, 0-2 (com2 first) */
#endif

	outb(IO_ICU2, 0x11);		/* reset; program device, four bytes */
	outb(IO_ICU2+1, ICU_OFFSET+8);	/* staring at this vector index */
	outb(IO_ICU2+1, IRQ_SLAVE);
#ifdef AUTO_EOI_2
	outb(IO_ICU2+1, 2 | 1);		/* auto EOI, 8086 mode */
#else
	outb(IO_ICU2+1, 1);		/* 8086 mode */
#endif
	outb(IO_ICU2+1, 0xff);		/* leave interrupts masked */
	outb(IO_ICU2, 0x68);		/* special mask mode (if available) */
	outb(IO_ICU2, 0x0a);		/* Read IRR by default. */
}
Exemplo n.º 7
0
void
init_x86_64(paddr_t first_avail)
{
	extern void consinit(void);
	extern struct extent *iomem_ex;
	struct region_descriptor region;
	struct mem_segment_descriptor *ldt_segp;
	int x, first16q, ist;
	u_int64_t seg_start, seg_end;
	u_int64_t seg_start1, seg_end1;

	cpu_init_msrs(&cpu_info_primary);

	proc0.p_addr = proc0paddr;
	cpu_info_primary.ci_curpcb = &proc0.p_addr->u_pcb;

	x86_bus_space_init();

	consinit();	/* XXX SHOULD NOT BE DONE HERE */

	/*
	 * Initailize PAGE_SIZE-dependent variables.
	 */
	uvm_setpagesize();

#if 0
	uvmexp.ncolors = 2;
#endif
 
	/*
	 * Boot arguments are in a single page specified by /boot.
	 *
	 * We require the "new" vector form, as well as memory ranges
	 * to be given in bytes rather than KB.
	 *
	 * locore copies the data into bootinfo[] for us.
	 */
	if ((bootapiver & (BAPIV_VECTOR | BAPIV_BMEMMAP)) ==
	    (BAPIV_VECTOR | BAPIV_BMEMMAP)) {
		if (bootinfo_size >= sizeof(bootinfo))
			panic("boot args too big");

		getbootinfo(bootinfo, bootinfo_size);
	} else
		panic("invalid /boot");

	avail_start = PAGE_SIZE; /* BIOS leaves data in low memory */
				 /* and VM system doesn't work with phys 0 */
#ifdef MULTIPROCESSOR
	if (avail_start < MP_TRAMPOLINE + PAGE_SIZE)
		avail_start = MP_TRAMPOLINE + PAGE_SIZE;
#endif

	/*
	 * Call pmap initialization to make new kernel address space.
	 * We must do this before loading pages into the VM system.
	 */
	pmap_bootstrap(VM_MIN_KERNEL_ADDRESS,
	    IOM_END + trunc_page(KBTOB(biosextmem)));

	if (avail_start != PAGE_SIZE)
		pmap_prealloc_lowmem_ptps();

	if (mem_cluster_cnt == 0) {
		/*
		 * Allocate the physical addresses used by RAM from the iomem
		 * extent map.  This is done before the addresses are
		 * page rounded just to make sure we get them all.
		 */
		if (extent_alloc_region(iomem_ex, 0, KBTOB(biosbasemem),
		    EX_NOWAIT)) {
			/* XXX What should we do? */
			printf("WARNING: CAN'T ALLOCATE BASE MEMORY FROM "
			    "IOMEM EXTENT MAP!\n");
		}
		mem_clusters[0].start = 0;
		mem_clusters[0].size = trunc_page(KBTOB(biosbasemem));
		physmem += atop(mem_clusters[0].size);
		if (extent_alloc_region(iomem_ex, IOM_END, KBTOB(biosextmem),
		    EX_NOWAIT)) {
			/* XXX What should we do? */
			printf("WARNING: CAN'T ALLOCATE EXTENDED MEMORY FROM "
			    "IOMEM EXTENT MAP!\n");
		}
#if 0
#if NISADMA > 0
		/*
		 * Some motherboards/BIOSes remap the 384K of RAM that would
		 * normally be covered by the ISA hole to the end of memory
		 * so that it can be used.  However, on a 16M system, this
		 * would cause bounce buffers to be allocated and used.
		 * This is not desirable behaviour, as more than 384K of
		 * bounce buffers might be allocated.  As a work-around,
		 * we round memory down to the nearest 1M boundary if
		 * we're using any isadma devices and the remapped memory
		 * is what puts us over 16M.
		 */
		if (biosextmem > (15*1024) && biosextmem < (16*1024)) {
			char pbuf[9];

			format_bytes(pbuf, sizeof(pbuf),
			    biosextmem - (15*1024));
			printf("Warning: ignoring %s of remapped memory\n",
			    pbuf);
			biosextmem = (15*1024);
		}
#endif
#endif
		mem_clusters[1].start = IOM_END;
		mem_clusters[1].size = trunc_page(KBTOB(biosextmem));
		physmem += atop(mem_clusters[1].size);

		mem_cluster_cnt = 2;

		avail_end = IOM_END + trunc_page(KBTOB(biosextmem));
	}

	/*
	 * If we have 16M of RAM or less, just put it all on
	 * the default free list.  Otherwise, put the first
	 * 16M of RAM on a lower priority free list (so that
	 * all of the ISA DMA'able memory won't be eaten up
	 * first-off).
	 */
	if (avail_end <= (16 * 1024 * 1024))
		first16q = VM_FREELIST_DEFAULT;
	else
		first16q = VM_FREELIST_FIRST16;

	/* Make sure the end of the space used by the kernel is rounded. */
	first_avail = round_page(first_avail);
	kern_end = KERNBASE + first_avail;

	/*
	 * Now, load the memory clusters (which have already been
	 * rounded and truncated) into the VM system.
	 *
	 * NOTE: WE ASSUME THAT MEMORY STARTS AT 0 AND THAT THE KERNEL
	 * IS LOADED AT IOM_END (1M).
	 */
	for (x = 0; x < mem_cluster_cnt; x++) {
		seg_start = mem_clusters[x].start;
		seg_end = mem_clusters[x].start + mem_clusters[x].size;
		seg_start1 = 0;
		seg_end1 = 0;

		if (seg_start > 0xffffffffULL) {
			printf("skipping %lld bytes of memory above 4GB\n",
			    seg_end - seg_start);
			continue;
		}
		if (seg_end > 0x100000000ULL) {
			printf("skipping %lld bytes of memory above 4GB\n",
			    seg_end - 0x100000000ULL);
			seg_end = 0x100000000ULL;
		}

		/*
		 * Skip memory before our available starting point.
		 */
		if (seg_end <= avail_start)
			continue;

		if (avail_start >= seg_start && avail_start < seg_end) {
			if (seg_start != 0)
				panic("init_x86_64: memory doesn't start at 0");
			seg_start = avail_start;
			if (seg_start == seg_end)
				continue;
		}

		/*
		 * If this segment contains the kernel, split it
		 * in two, around the kernel.
		 */
		if (seg_start <= IOM_END && first_avail <= seg_end) {
			seg_start1 = first_avail;
			seg_end1 = seg_end;
			seg_end = IOM_END;
		}

		/* First hunk */
		if (seg_start != seg_end) {
			if (seg_start <= (16 * 1024 * 1024) &&
			    first16q != VM_FREELIST_DEFAULT) {
				u_int64_t tmp;

				if (seg_end > (16 * 1024 * 1024))
					tmp = (16 * 1024 * 1024);
				else
					tmp = seg_end;
#if DEBUG_MEMLOAD
				printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
				    (unsigned long long)seg_start,
				    (unsigned long long)tmp,
				    atop(seg_start), atop(tmp));
#endif
				uvm_page_physload(atop(seg_start),
				    atop(tmp), atop(seg_start),
				    atop(tmp), first16q);
				seg_start = tmp;
			}

			if (seg_start != seg_end) {
#if DEBUG_MEMLOAD
				printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
				    (unsigned long long)seg_start,
				    (unsigned long long)seg_end,
				    atop(seg_start), atop(seg_end));
#endif
				uvm_page_physload(atop(seg_start),
				    atop(seg_end), atop(seg_start),
				    atop(seg_end), VM_FREELIST_DEFAULT);
			}
		}

		/* Second hunk */
		if (seg_start1 != seg_end1) {
			if (seg_start1 <= (16 * 1024 * 1024) &&
			    first16q != VM_FREELIST_DEFAULT) {
				u_int64_t tmp;

				if (seg_end1 > (16 * 1024 * 1024))
					tmp = (16 * 1024 * 1024);
				else
					tmp = seg_end1;
#if DEBUG_MEMLOAD
				printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
				    (unsigned long long)seg_start1,
				    (unsigned long long)tmp,
				    atop(seg_start1), atop(tmp));
#endif
				uvm_page_physload(atop(seg_start1),
				    atop(tmp), atop(seg_start1),
				    atop(tmp), first16q);
				seg_start1 = tmp;
			}

			if (seg_start1 != seg_end1) {
#if DEBUG_MEMLOAD
				printf("loading 0x%qx-0x%qx (0x%lx-0x%lx)\n",
				    (unsigned long long)seg_start1,
				    (unsigned long long)seg_end1,
				    atop(seg_start1), atop(seg_end1));
#endif
				uvm_page_physload(atop(seg_start1),
				    atop(seg_end1), atop(seg_start1),
				    atop(seg_end1), VM_FREELIST_DEFAULT);
			}
		}
	}

	/*
	 * Steal memory for the message buffer (at end of core).
	 */
	{
		struct vm_physseg *vps = NULL;
		psize_t sz = round_page(MSGBUFSIZE);
		psize_t reqsz = sz;

		for (x = 0; x < vm_nphysseg; x++) {
			vps = &vm_physmem[x];
			if (ptoa(vps->avail_end) == avail_end)
				break;
		}
		if (x == vm_nphysseg)
			panic("init_x86_64: can't find end of memory");

		/* Shrink so it'll fit in the last segment. */
		if ((vps->avail_end - vps->avail_start) < atop(sz))
			sz = ptoa(vps->avail_end - vps->avail_start);

		vps->avail_end -= atop(sz);
		vps->end -= atop(sz);
		msgbuf_paddr = ptoa(vps->avail_end);

		/* Remove the last segment if it now has no pages. */
		if (vps->start == vps->end) {
			for (vm_nphysseg--; x < vm_nphysseg; x++)
				vm_physmem[x] = vm_physmem[x + 1];
		}

		/* Now find where the new avail_end is. */
		for (avail_end = 0, x = 0; x < vm_nphysseg; x++)
			if (vm_physmem[x].avail_end > avail_end)
				avail_end = vm_physmem[x].avail_end;
		avail_end = ptoa(avail_end);

		/* Warn if the message buffer had to be shrunk. */
		if (sz != reqsz)
			printf("WARNING: %ld bytes not available for msgbuf "
			    "in last cluster (%ld used)\n", reqsz, sz);
	}

	/*
	 * XXXfvdl todo: acpi wakeup code.
	 */

	pmap_growkernel(VM_MIN_KERNEL_ADDRESS + 32 * 1024 * 1024);

	pmap_kenter_pa(idt_vaddr, idt_paddr, VM_PROT_READ|VM_PROT_WRITE);
	pmap_kenter_pa(idt_vaddr + PAGE_SIZE, idt_paddr + PAGE_SIZE,
	    VM_PROT_READ|VM_PROT_WRITE);

	pmap_kenter_pa(lo32_vaddr, lo32_paddr, VM_PROT_READ|VM_PROT_WRITE);

	idt = (struct gate_descriptor *)idt_vaddr;
	gdtstore = (char *)(idt + NIDT);
	ldtstore = gdtstore + DYNSEL_START;

	/* make gdt gates and memory segments */
	set_mem_segment(GDT_ADDR_MEM(gdtstore, GCODE_SEL), 0, 0xfffff, SDT_MEMERA,
	    SEL_KPL, 1, 0, 1);

	set_mem_segment(GDT_ADDR_MEM(gdtstore, GDATA_SEL), 0, 0xfffff, SDT_MEMRWA,
	    SEL_KPL, 1, 0, 1);

	set_sys_segment(GDT_ADDR_SYS(gdtstore, GLDT_SEL), ldtstore, LDT_SIZE - 1,
	    SDT_SYSLDT, SEL_KPL, 0);

	set_mem_segment(GDT_ADDR_MEM(gdtstore, GUCODE_SEL), 0,
	    atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMERA, SEL_UPL, 1, 0, 1);

	set_mem_segment(GDT_ADDR_MEM(gdtstore, GUDATA_SEL), 0,
	    atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMRWA, SEL_UPL, 1, 0, 1);

	/* make ldt gates and memory segments */
	setgate((struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL),
	    &IDTVEC(oosyscall), 0, SDT_SYS386CGT, SEL_UPL,
	    GSEL(GCODE_SEL, SEL_KPL));

	*(struct mem_segment_descriptor *)(ldtstore + LUCODE_SEL) =
	    *GDT_ADDR_MEM(gdtstore, GUCODE_SEL);
	*(struct mem_segment_descriptor *)(ldtstore + LUDATA_SEL) =
	    *GDT_ADDR_MEM(gdtstore, GUDATA_SEL);

	/*
	 * 32 bit GDT entries.
	 */

	set_mem_segment(GDT_ADDR_MEM(gdtstore, GUCODE32_SEL), 0,
	    atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMERA, SEL_UPL, 1, 1, 0);

	set_mem_segment(GDT_ADDR_MEM(gdtstore, GUDATA32_SEL), 0,
	    atop(VM_MAXUSER_ADDRESS) - 1, SDT_MEMRWA, SEL_UPL, 1, 1, 0);

	/*
	 * 32 bit LDT entries.
	 */
	ldt_segp = (struct mem_segment_descriptor *)(ldtstore + LUCODE32_SEL);
	set_mem_segment(ldt_segp, 0, atop(VM_MAXUSER_ADDRESS32) - 1,
	    SDT_MEMERA, SEL_UPL, 1, 1, 0);
	ldt_segp = (struct mem_segment_descriptor *)(ldtstore + LUDATA32_SEL);
	set_mem_segment(ldt_segp, 0, atop(VM_MAXUSER_ADDRESS32) - 1,
	    SDT_MEMRWA, SEL_UPL, 1, 1, 0);

	/*
	 * Other entries.
	 */
	memcpy((struct gate_descriptor *)(ldtstore + LSOL26CALLS_SEL),
	    (struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL),
	    sizeof (struct gate_descriptor));
	memcpy((struct gate_descriptor *)(ldtstore + LBSDICALLS_SEL),
	    (struct gate_descriptor *)(ldtstore + LSYS5CALLS_SEL),
	    sizeof (struct gate_descriptor));

	/* exceptions */
	for (x = 0; x < 32; x++) {
		ist = (x == 8) ? 1 : 0;
		setgate(&idt[x], IDTVEC(exceptions)[x], ist, SDT_SYS386IGT,
		    (x == 3 || x == 4) ? SEL_UPL : SEL_KPL,
		    GSEL(GCODE_SEL, SEL_KPL));
		idt_allocmap[x] = 1;
	}

	/* new-style interrupt gate for syscalls */
	setgate(&idt[128], &IDTVEC(osyscall), 0, SDT_SYS386IGT, SEL_UPL,
	    GSEL(GCODE_SEL, SEL_KPL));
	idt_allocmap[128] = 1;

	setregion(&region, gdtstore, DYNSEL_START - 1);
	lgdt(&region);

	cpu_init_idt();

#ifdef DDB
	db_machine_init();
	ddb_init();
	if (boothowto & RB_KDB)
		Debugger();
#endif
#ifdef KGDB
	kgdb_port_init();
	if (boothowto & RB_KDB) {
		kgdb_debug_init = 1;
		kgdb_connect(1);
	}
#endif

	intr_default_setup();

	softintr_init();
	splraise(IPL_IPI);
	enable_intr();

        /* Make sure maxproc is sane */ 
        if (maxproc > cpu_maxproc())
                maxproc = cpu_maxproc();
}