Exemplo n.º 1
0
// Position to velocity controller for Z axis
static void updateAltitudeVelocityAndPitchController_FW(uint32_t deltaMicros)
{
    static pt1Filter_t velzFilterState;

    // On a fixed wing we might not have a reliable climb rate source (if no BARO available), so we can't apply PID controller to
    // velocity error. We use PID controller on altitude error and calculate desired pitch angle from desired climb rate and forward velocity

    // FIXME: Use airspeed here
    float forwardVelocity = MAX(posControl.actualState.velXY, 300.0f);   // Limit min velocity for PID controller at about 10 km/h

    // Calculate max climb rate from current forward velocity and maximum pitch angle (climb angle is fairly small, approximate tan=sin)
    float maxVelocityClimb = forwardVelocity * sin_approx(DEGREES_TO_RADIANS(posControl.navConfig->fw_max_climb_angle));
    float maxVelocityDive = -forwardVelocity * sin_approx(DEGREES_TO_RADIANS(posControl.navConfig->fw_max_dive_angle));

    posControl.desiredState.vel.V.Z = navPidApply2(posControl.desiredState.pos.V.Z, posControl.actualState.pos.V.Z, US2S(deltaMicros), &posControl.pids.fw_alt, maxVelocityDive, maxVelocityClimb, false);
    posControl.desiredState.vel.V.Z = pt1FilterApply4(&velzFilterState, posControl.desiredState.vel.V.Z, NAV_FW_VEL_CUTOFF_FREQENCY_HZ, US2S(deltaMicros));

    // Calculate climb angle ( >0 - climb, <0 - dive)
    int16_t climbAngleDeciDeg = RADIANS_TO_DECIDEGREES(atan2_approx(posControl.desiredState.vel.V.Z, forwardVelocity));
    climbAngleDeciDeg = constrain(climbAngleDeciDeg, -posControl.navConfig->fw_max_dive_angle * 10, posControl.navConfig->fw_max_climb_angle * 10);
    posControl.rcAdjustment[PITCH] = climbAngleDeciDeg;

#if defined(NAV_BLACKBOX)
    navDesiredVelocity[Z] = constrain(posControl.desiredState.vel.V.Z, -32678, 32767);
    navTargetPosition[Z] = constrain(posControl.desiredState.pos.V.Z, -32678, 32767);
#endif
}
Exemplo n.º 2
0
void buildRotationMatrix(fp_angles_t *delta, float matrix[3][3])
{
    float cosx, sinx, cosy, siny, cosz, sinz;
    float coszcosx, sinzcosx, coszsinx, sinzsinx;

    cosx = cos_approx(delta->angles.roll);
    sinx = sin_approx(delta->angles.roll);
    cosy = cos_approx(delta->angles.pitch);
    siny = sin_approx(delta->angles.pitch);
    cosz = cos_approx(delta->angles.yaw);
    sinz = sin_approx(delta->angles.yaw);

    coszcosx = cosz * cosx;
    sinzcosx = sinz * cosx;
    coszsinx = sinx * cosz;
    sinzsinx = sinx * sinz;

    matrix[0][X] = cosz * cosy;
    matrix[0][Y] = -cosy * sinz;
    matrix[0][Z] = siny;
    matrix[1][X] = sinzcosx + (coszsinx * siny);
    matrix[1][Y] = coszcosx - (sinzsinx * siny);
    matrix[1][Z] = -sinx * cosy;
    matrix[2][X] = (sinzsinx) - (coszcosx * siny);
    matrix[2][Y] = (coszsinx) + (sinzcosx * siny);
    matrix[2][Z] = cosy * cosx;
}
Exemplo n.º 3
0
Arquivo: filter.c Projeto: npsm/inav
/* sets up a biquad Filter */
void biquadFilterInit(biquadFilter_t *newState, uint8_t filterCutFreq, int16_t samplingRate)
{
    float omega, sn, cs, alpha;
    float a0, a1, a2, b0, b1, b2;

    /* If sampling rate == 0 - use main loop target rate */
    if (!samplingRate) {
        samplingRate = 1000000 / targetLooptime;
    }

    /* setup variables */
    omega = 2 * M_PIf * (float)filterCutFreq / (float)samplingRate;
    sn = sin_approx(omega);
    cs = cos_approx(omega);
    alpha = sn / (2 * BIQUAD_Q);

    b0 = (1 - cs) / 2;
    b1 = 1 - cs;
    b2 = (1 - cs) / 2;
    a0 = 1 + alpha;
    a1 = -2 * cs;
    a2 = 1 - alpha;

    /* precompute the coefficients */
    newState->b0 = b0 / a0;
    newState->b1 = b1 / a0;
    newState->b2 = b2 / a0;
    newState->a1 = a1 / a0;
    newState->a2 = a2 / a0;

    /* zero initial samples */
    newState->d1 = newState->d2 = 1;
}
Exemplo n.º 4
0
////////////////////////////////////////////////////////////////////////////////////
// Calculate the desired nav_lat and nav_lon for distance flying such as RTH
//
static void GPS_calc_nav_rate(uint16_t max_speed)
{
    float trig[2];
    float temp;
    int axis;

    // push us towards the original track
    GPS_update_crosstrack();

    // nav_bearing includes crosstrack
    temp = (9000l - nav_bearing) * RADX100;
    trig[GPS_X] = cos_approx(temp);
    trig[GPS_Y] = sin_approx(temp);

    for (axis = 0; axis < 2; axis++) {
        rate_error[axis] = (trig[axis] * max_speed) - actual_speed[axis];
        rate_error[axis] = constrain(rate_error[axis], -1000, 1000);
        // P + I + D
        nav[axis] = get_P(rate_error[axis], &navPID_PARAM) +
                    get_I(rate_error[axis], &dTnav, &navPID[axis], &navPID_PARAM) +
                    get_D(rate_error[axis], &dTnav, &navPID[axis], &navPID_PARAM);

        nav[axis] = constrain(nav[axis], -NAV_BANK_MAX, NAV_BANK_MAX);
        poshold_ratePID[axis].integrator = navPID[axis].integrator;
    }
}
Exemplo n.º 5
0
void annexCode(void)
{

    int32_t throttleValue;

    // Compute ROLL PITCH and YAW command
    rcCommand[ROLL] = getAxisRcCommand(rcData[ROLL], currentControlRateProfile->rcExpo8, currentProfile->rcControlsConfig.deadband);
    rcCommand[PITCH] = getAxisRcCommand(rcData[PITCH], currentControlRateProfile->rcExpo8, currentProfile->rcControlsConfig.deadband);
    rcCommand[YAW] = -getAxisRcCommand(rcData[YAW], currentControlRateProfile->rcYawExpo8, currentProfile->rcControlsConfig.yaw_deadband);

    //Compute THROTTLE command
    throttleValue = constrain(rcData[THROTTLE], masterConfig.rxConfig.mincheck, PWM_RANGE_MAX);
    throttleValue = (uint32_t)(throttleValue - masterConfig.rxConfig.mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - masterConfig.rxConfig.mincheck);       // [MINCHECK;2000] -> [0;1000]
    rcCommand[THROTTLE] = rcLookupThrottle(throttleValue);

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        const float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        const float cosDiff = cos_approx(radDiff);
        const float sinDiff = sin_approx(radDiff);
        const int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (IS_RC_MODE_ACTIVE(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!STATE(SMALL_ANGLE)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

#if defined(NAV)
        if (naivationBlockArming()) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }
#endif

        if (ARMING_FLAG(OK_TO_ARM)) {
            warningLedDisable();
        } else {
            warningLedFlash();
        }

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Exemplo n.º 6
0
void updateBoardAlignment(int16_t roll, int16_t pitch)
{
    const float sinAlignYaw = sin_approx(DECIDEGREES_TO_RADIANS(boardAlignment()->yawDeciDegrees));
    const float cosAlignYaw = cos_approx(DECIDEGREES_TO_RADIANS(boardAlignment()->yawDeciDegrees));

    boardAlignmentMutable()->rollDeciDegrees += -sinAlignYaw * pitch + cosAlignYaw * roll;
    boardAlignmentMutable()->pitchDeciDegrees += cosAlignYaw * pitch + sinAlignYaw * roll;

    initBoardAlignment();
}
Exemplo n.º 7
0
////////////////////////////////////////////////////////////////////////////////////
// Calculating cross track error, this tries to keep the copter on a direct line
// when flying to a waypoint.
//
static void GPS_update_crosstrack(void)
{
    if (ABS(wrap_18000(target_bearing - original_target_bearing)) < 4500) {     // If we are too far off or too close we don't do track following
        float temp = (target_bearing - original_target_bearing) * RADX100;
        crosstrack_error = sin_approx(temp) * (wp_distance * CROSSTRACK_GAIN); // Meters we are off track line
        nav_bearing = target_bearing + constrain(crosstrack_error, -3000, 3000);
        nav_bearing = wrap_36000(nav_bearing);
    } else {
        nav_bearing = target_bearing;
    }
}
Exemplo n.º 8
0
/*
* Baseflight calculation by Luggi09 originates from arducopter
* ============================================================
* This function rotates magnetic vector to cancel actual yaw and
* pitch of craft. Then it computes it's direction in X/Y plane.
* This value is returned as compass heading, value is 0-360 degrees.
*
* Note that Earth's magnetic field is not parallel with ground unless
* you are near equator. Its inclination is considerable, >60 degrees
* towards ground in most of Europe.
*
* First we consider it in 2D:
*
* An example, the vector <1, 1> would be turned into the heading
* 45 degrees, representing it's angle clockwise from north.
*
*      ***************** *
*      *       |   <1,1> *
*      *       |  /      *
*      *       | /       *
*      *       |/        *
*      *       *         *
*      *                 *
*      *                 *
*      *                 *
*      *                 *
*      *******************
*
* //TODO: Add explanation for how it uses the Z dimension.
*/
int16_t imuCalculateHeading(t_fp_vector *vec)
{
    int16_t head;

    float cosineRoll = cos_approx(anglerad[AI_ROLL]);
    float sineRoll = sin_approx(anglerad[AI_ROLL]);
    float cosinePitch = cos_approx(anglerad[AI_PITCH]);
    float sinePitch = sin_approx(anglerad[AI_PITCH]);
    float Xh = vec->A[X] * cosinePitch + vec->A[Y] * sineRoll * sinePitch + vec->A[Z] * sinePitch * cosineRoll;
    float Yh = vec->A[Y] * cosineRoll - vec->A[Z] * sineRoll;
    //TODO: Replace this comment with an explanation of why Yh and Xh can never simultanoeusly be zero,
    // or handle the case in which they are and (atan2f(0, 0) is undefined.
    float hd = (atan2f(Yh, Xh) * 1800.0f / M_PIf + magneticDeclination) / 10.0f;
    head = lrintf(hd);

    // Arctan returns a value in the range -180 to 180 degrees. We 'normalize' negative angles to be positive.
    if (head < 0)
        head += 360;

    return head;
}
Exemplo n.º 9
0
Arquivo: imu.c Projeto: Feldsalat/inav
STATIC_UNIT_TESTED void imuComputeQuaternionFromRPY(int16_t initialRoll, int16_t initialPitch, int16_t initialYaw)
{
    if (initialRoll > 1800) initialRoll -= 3600;
    if (initialPitch > 1800) initialPitch -= 3600;
    if (initialYaw > 1800) initialYaw -= 3600;

    float cosRoll = cos_approx(DECIDEGREES_TO_RADIANS(initialRoll) * 0.5f);
    float sinRoll = sin_approx(DECIDEGREES_TO_RADIANS(initialRoll) * 0.5f);

    float cosPitch = cos_approx(DECIDEGREES_TO_RADIANS(initialPitch) * 0.5f);
    float sinPitch = sin_approx(DECIDEGREES_TO_RADIANS(initialPitch) * 0.5f);

    float cosYaw = cos_approx(DECIDEGREES_TO_RADIANS(-initialYaw) * 0.5f);
    float sinYaw = sin_approx(DECIDEGREES_TO_RADIANS(-initialYaw) * 0.5f);

    q0 = cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw;
    q1 = sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw;
    q2 = cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw;
    q3 = cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw;

    imuComputeRotationMatrix();
}
Exemplo n.º 10
0
void updateGpsStateForHomeAndHoldMode(void)
{
    float sin_yaw_y = sin_approx(DECIDEGREES_TO_DEGREES(attitude.values.yaw) * 0.0174532925f);
    float cos_yaw_x = cos_approx(DECIDEGREES_TO_DEGREES(attitude.values.yaw) * 0.0174532925f);
    if (gpsProfile()->nav_slew_rate) {
        nav_rated[LON] += constrain(wrap_18000(nav[LON] - nav_rated[LON]), -gpsProfile()->nav_slew_rate, gpsProfile()->nav_slew_rate); // TODO check this on uint8
        nav_rated[LAT] += constrain(wrap_18000(nav[LAT] - nav_rated[LAT]), -gpsProfile()->nav_slew_rate, gpsProfile()->nav_slew_rate);
        GPS_angle[AI_ROLL] = (nav_rated[LON] * cos_yaw_x - nav_rated[LAT] * sin_yaw_y) / 10;
        GPS_angle[AI_PITCH] = (nav_rated[LON] * sin_yaw_y + nav_rated[LAT] * cos_yaw_x) / 10;
    } else {
        GPS_angle[AI_ROLL] = (nav[LON] * cos_yaw_x - nav[LAT] * sin_yaw_y) / 10;
        GPS_angle[AI_PITCH] = (nav[LON] * sin_yaw_y + nav[LAT] * cos_yaw_x) / 10;
    }
}
Exemplo n.º 11
0
int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value)
{
    /*
    * Use 0 as the throttle angle correction if we are inverted, vertical or with a
    * small angle < 0.86 deg
    * TODO: Define this small angle in config.
    */
    if (rMat[2][2] <= 0.015f) {
        return 0;
    }
    int angle = lrintf(acosf(rMat[2][2]) * throttleAngleScale);
    if (angle > 900)
        angle = 900;
    return lrintf(throttle_correction_value * sin_approx(angle / (900.0f * M_PIf / 2.0f)));
}
Exemplo n.º 12
0
void scaleRcCommandToFpvCamAngle(void) {
    //recalculate sin/cos only when masterConfig.rxConfig.fpvCamAngleDegrees changed
    static uint8_t lastFpvCamAngleDegrees = 0;
    static float cosFactor = 1.0;
    static float sinFactor = 0.0;

    if (lastFpvCamAngleDegrees != masterConfig.rxConfig.fpvCamAngleDegrees){
        lastFpvCamAngleDegrees = masterConfig.rxConfig.fpvCamAngleDegrees;
        cosFactor = cos_approx(masterConfig.rxConfig.fpvCamAngleDegrees * RAD);
        sinFactor = sin_approx(masterConfig.rxConfig.fpvCamAngleDegrees * RAD);
    }

    int16_t roll = rcCommand[ROLL];
    int16_t yaw = rcCommand[YAW];
    rcCommand[ROLL] = constrain(roll * cosFactor -  yaw * sinFactor, -500, 500);
    rcCommand[YAW]  = constrain(yaw  * cosFactor + roll * sinFactor, -500, 500);
}
Exemplo n.º 13
0
int16_t calculateThrottleAngleCorrection(uint8_t throttle_correction_value)
{
    float cosZ = EstG.V.Z / sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z);

    /*
    * Use 0 as the throttle angle correction if we are inverted, vertical or with a
    * small angle < 0.86 deg
    * TODO: Define this small angle in config.
    */
    if (cosZ <= 0.015f) {
        return 0;
    }
    int angle = lrintf(acosf(cosZ) * throttleAngleScale);
    if (angle > 900)
        angle = 900;
    return lrintf(throttle_correction_value * sin_approx(angle / (900.0f * M_PIf / 2.0f)));
}
Exemplo n.º 14
0
void annexCode(void)
{
    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (rcModeIsActive(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!imuIsAircraftArmable(armingConfig()->max_arm_angle)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        } else {
            if (ARMING_FLAG(OK_TO_ARM)) {
                warningLedDisable();
            } else {
                warningLedFlash();
            }
        }

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Exemplo n.º 15
0
/*
This function processes RX dependent coefficients when new RX commands are available
Those are: TPA, throttle expo
*/
void processRxDependentCoefficients(void) {

    int32_t tmp, tmp2;
    int32_t axis, prop1 = 0, prop2;

    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (rcControlsConfig()->deadband) {
                if (tmp > rcControlsConfig()->deadband) {
                    tmp -= rcControlsConfig()->deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
        } else if (axis == YAW) {
            if (rcControlsConfig()->yaw_deadband) {
                if (tmp > rcControlsConfig()->yaw_deadband) {
                    tmp -= rcControlsConfig()->yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            tmp2 = tmp / 100;
            rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -rcControlsConfig()->yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
        }
#ifndef SKIP_PID_MW23
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)pidProfile()->P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)pidProfile()->I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)pidProfile()->D8[axis] * prop1 / 100;
#endif
        // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
        if (axis == YAW) {
            PIDweight[axis] = 100;
        }
        else {
            PIDweight[axis] = prop2;
        }

        if (rcData[axis] < rxConfig()->midrc)
            rcCommand[axis] = -rcCommand[axis];
    }
    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }
}
Exemplo n.º 16
0
static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
                                bool useAcc, float ax, float ay, float az,
                                bool useMag, float mx, float my, float mz,
                                bool useYaw, float yawError)
{
    static float integralFBx = 0.0f,  integralFBy = 0.0f, integralFBz = 0.0f;    // integral error terms scaled by Ki
    float recipNorm;
    float hx, hy, bx;
    float ex = 0, ey = 0, ez = 0;
    float qa, qb, qc;

    // Calculate general spin rate (rad/s)
    float spin_rate = sqrtf(sq(gx) + sq(gy) + sq(gz));

    // Use raw heading error (from GPS or whatever else)
    if (useYaw) {
        while (yawError >  M_PIf) yawError -= (2.0f * M_PIf);
        while (yawError < -M_PIf) yawError += (2.0f * M_PIf);

        ez += sin_approx(yawError / 2.0f);
    }

    // Use measured magnetic field vector
    recipNorm = sq(mx) + sq(my) + sq(mz);
    if (useMag && recipNorm > 0.01f) {
        // Normalise magnetometer measurement
        recipNorm = invSqrt(recipNorm);
        mx *= recipNorm;
        my *= recipNorm;
        mz *= recipNorm;

        // For magnetometer correction we make an assumption that magnetic field is perpendicular to gravity (ignore Z-component in EF).
        // This way magnetic field will only affect heading and wont mess roll/pitch angles

        // (hx; hy; 0) - measured mag field vector in EF (assuming Z-component is zero)
        // (bx; 0; 0) - reference mag field vector heading due North in EF (assuming Z-component is zero)
        hx = rMat[0][0] * mx + rMat[0][1] * my + rMat[0][2] * mz;
        hy = rMat[1][0] * mx + rMat[1][1] * my + rMat[1][2] * mz;
        bx = sqrtf(hx * hx + hy * hy);

        // magnetometer error is cross product between estimated magnetic north and measured magnetic north (calculated in EF)
        float ez_ef = -(hy * bx);

        // Rotate mag error vector back to BF and accumulate
        ex += rMat[2][0] * ez_ef;
        ey += rMat[2][1] * ez_ef;
        ez += rMat[2][2] * ez_ef;
    }

    // Use measured acceleration vector
    recipNorm = sq(ax) + sq(ay) + sq(az);
    if (useAcc && recipNorm > 0.01f) {
        // Normalise accelerometer measurement
        recipNorm = invSqrt(recipNorm);
        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;

        // Error is sum of cross product between estimated direction and measured direction of gravity
        ex += (ay * rMat[2][2] - az * rMat[2][1]);
        ey += (az * rMat[2][0] - ax * rMat[2][2]);
        ez += (ax * rMat[2][1] - ay * rMat[2][0]);
    }

    // Compute and apply integral feedback if enabled
    if(imuRuntimeConfig->dcm_ki > 0.0f) {
        // Stop integrating if spinning beyond the certain limit
        if (spin_rate < DEGREES_TO_RADIANS(SPIN_RATE_LIMIT)) {
            float dcmKiGain = imuRuntimeConfig->dcm_ki;
            integralFBx += dcmKiGain * ex * dt;    // integral error scaled by Ki
            integralFBy += dcmKiGain * ey * dt;
            integralFBz += dcmKiGain * ez * dt;
        }
    }
    else {
        integralFBx = 0.0f;    // prevent integral windup
        integralFBy = 0.0f;
        integralFBz = 0.0f;
    }

    // Calculate kP gain. If we are acquiring initial attitude (not armed and within 20 sec from powerup) scale the kP to converge faster
    float dcmKpGain = imuRuntimeConfig->dcm_kp * imuGetPGainScaleFactor();

    // Apply proportional and integral feedback
    gx += dcmKpGain * ex + integralFBx;
    gy += dcmKpGain * ey + integralFBy;
    gz += dcmKpGain * ez + integralFBz;

    // Integrate rate of change of quaternion
    gx *= (0.5f * dt);
    gy *= (0.5f * dt);
    gz *= (0.5f * dt);

    qa = q0;
    qb = q1;
    qc = q2;
    q0 += (-qb * gx - qc * gy - q3 * gz);
    q1 += (qa * gx + qc * gz - q3 * gy);
    q2 += (qa * gy - qb * gz + q3 * gx);
    q3 += (qa * gz + qb * gy - qc * gx);

    // Normalise quaternion
    recipNorm = invSqrt(sq(q0) + sq(q1) + sq(q2) + sq(q3));
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;

    // Pre-compute rotation matrix from quaternion
    imuComputeRotationMatrix();
}
Exemplo n.º 17
0
float cos_approx(float x)
{
    return sin_approx(x + (0.5f * M_PIf));
}
Exemplo n.º 18
0
/**
 * Translate the trigonometric functions COS, SIN, and SCS
 * using only the basic instructions
 *  MOV, ADD, MUL, MAD, FRC
 */
int r300_transform_trig_simple(struct radeon_compiler* c,
	struct rc_instruction* inst,
	void* unused)
{
	unsigned int constants[2];
	unsigned int tempreg;

	if (inst->U.I.Opcode != RC_OPCODE_COS &&
	    inst->U.I.Opcode != RC_OPCODE_SIN &&
	    inst->U.I.Opcode != RC_OPCODE_SCS)
		return 0;

	tempreg = rc_find_free_temporary(c);

	sincos_constants(c, constants);

	if (inst->U.I.Opcode == RC_OPCODE_COS) {
		/* MAD tmp.x, src, 1/(2*PI), 0.75 */
		/* FRC tmp.x, tmp.x */
		/* MAD tmp.z, tmp.x, 2*PI, -PI */
		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_xxxx(inst->U.I.SrcReg[0]),
			swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])),
			swizzle_xxxx(srcreg(RC_FILE_CONSTANT, constants[1])));
		emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)));
		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)),
			swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])),
			negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0]))));

		sin_approx(c, inst, inst->U.I.DstReg,
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)),
			constants);
	} else if (inst->U.I.Opcode == RC_OPCODE_SIN) {
		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_xxxx(inst->U.I.SrcReg[0]),
			swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])),
			swizzle_yyyy(srcreg(RC_FILE_CONSTANT, constants[1])));
		emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)));
		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_W),
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)),
			swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])),
			negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0]))));

		sin_approx(c, inst, inst->U.I.DstReg,
			swizzle_wwww(srcreg(RC_FILE_TEMPORARY, tempreg)),
			constants);
	} else {
		struct rc_dst_register dst;

		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY),
			swizzle_xxxx(inst->U.I.SrcReg[0]),
			swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[1])),
			swizzle(srcreg(RC_FILE_CONSTANT, constants[1]), RC_SWIZZLE_X, RC_SWIZZLE_Y, RC_SWIZZLE_Z, RC_SWIZZLE_W));
		emit1(c, inst->Prev, RC_OPCODE_FRC, 0, dstregtmpmask(tempreg, RC_MASK_XY),
			srcreg(RC_FILE_TEMPORARY, tempreg));
		emit3(c, inst->Prev, RC_OPCODE_MAD, 0, dstregtmpmask(tempreg, RC_MASK_XY),
			srcreg(RC_FILE_TEMPORARY, tempreg),
			swizzle_wwww(srcreg(RC_FILE_CONSTANT, constants[1])),
			negate(swizzle_zzzz(srcreg(RC_FILE_CONSTANT, constants[0]))));

		dst = inst->U.I.DstReg;

		dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_X;
		sin_approx(c, inst, dst,
			swizzle_xxxx(srcreg(RC_FILE_TEMPORARY, tempreg)),
			constants);

		dst.WriteMask = inst->U.I.DstReg.WriteMask & RC_MASK_Y;
		sin_approx(c, inst, dst,
			swizzle_yyyy(srcreg(RC_FILE_TEMPORARY, tempreg)),
			constants);
	}

	rc_remove_instruction(inst);

	return 1;
}
Exemplo n.º 19
0
void annexCode(void)
{
    int32_t tmp, tmp2;
    int32_t axis, prop1 = 0, prop2;

    static uint32_t vbatLastServiced = 0;
    static uint32_t ibatLastServiced = 0;
    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = MIN(ABS(rcData[axis] - masterConfig.rxConfig.midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (currentProfile->rcControlsConfig.deadband) {
                if (tmp > currentProfile->rcControlsConfig.deadband) {
                    tmp -= currentProfile->rcControlsConfig.deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
        } else if (axis == YAW) {
            if (currentProfile->rcControlsConfig.yaw_deadband) {
                if (tmp > currentProfile->rcControlsConfig.yaw_deadband) {
                    tmp -= currentProfile->rcControlsConfig.yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            tmp2 = tmp / 100;
            rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -masterConfig.yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
        }
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)currentProfile->pidProfile.P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)currentProfile->pidProfile.I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)currentProfile->pidProfile.D8[axis] * prop1 / 100;

        // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
        if (axis == YAW) {
            PIDweight[axis] = 100;
        }
        else {
            PIDweight[axis] = prop2;
        }

        if (rcData[axis] < masterConfig.rxConfig.midrc)
            rcCommand[axis] = -rcCommand[axis];
    }

    tmp = constrain(rcData[THROTTLE], masterConfig.rxConfig.mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - masterConfig.rxConfig.mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - masterConfig.rxConfig.mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (feature(FEATURE_VBAT)) {
        if (cmp32(currentTime, vbatLastServiced) >= VBATINTERVAL) {
            vbatLastServiced = currentTime;
            updateBattery();
        }
    }

    if (feature(FEATURE_CURRENT_METER)) {
        int32_t ibatTimeSinceLastServiced = cmp32(currentTime, ibatLastServiced);

        if (ibatTimeSinceLastServiced >= IBATINTERVAL) {
            ibatLastServiced = currentTime;
            updateCurrentMeter(ibatTimeSinceLastServiced, &masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
        }
    }

    beeperUpdate();          //call periodic beeper handler

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (IS_RC_MODE_ACTIVE(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!STATE(SMALL_ANGLE)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        } else {
            if (ARMING_FLAG(OK_TO_ARM)) {
                warningLedDisable();
            } else {
                warningLedFlash();
            }
        }

        warningLedUpdate();
    }

#ifdef TELEMETRY
    telemetryCheckState();
#endif

    handleSerial();

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        updateGpsIndicator(currentTime);
    }
#endif

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Exemplo n.º 20
0
static void updateRcCommands(void)
{
    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    int32_t prop;
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (int axis = 0; axis < 3; axis++) {
        // non coupled PID reduction scaler used in PID controller 1 and PID controller 2.
        PIDweight[axis] = prop;

        int32_t tmp = MIN(ABS(rcData[axis] - masterConfig.rxConfig.midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (tmp > masterConfig.rcControlsConfig.deadband) {
                tmp -= masterConfig.rcControlsConfig.deadband;
            } else {
                tmp = 0;
            }
            rcCommand[axis] = tmp;
        } else if (axis == YAW) {
            if (tmp > masterConfig.rcControlsConfig.yaw_deadband) {
                tmp -= masterConfig.rcControlsConfig.yaw_deadband;
            } else {
                tmp = 0;
            }
            rcCommand[axis] = tmp * -masterConfig.yaw_control_direction;
        }
        if (rcData[axis] < masterConfig.rxConfig.midrc) {
            rcCommand[axis] = -rcCommand[axis];
        }
    }

    int32_t tmp;
    if (feature(FEATURE_3D)) {
        tmp = constrain(rcData[THROTTLE], PWM_RANGE_MIN, PWM_RANGE_MAX);
        tmp = (uint32_t)(tmp - PWM_RANGE_MIN);
    } else {
        tmp = constrain(rcData[THROTTLE], masterConfig.rxConfig.mincheck, PWM_RANGE_MAX);
        tmp = (uint32_t)(tmp - masterConfig.rxConfig.mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - masterConfig.rxConfig.mincheck);
    }
    rcCommand[THROTTLE] = rcLookupThrottle(tmp);

    if (feature(FEATURE_3D) && IS_RC_MODE_ACTIVE(BOX3DDISABLESWITCH) && !failsafeIsActive()) {
        fix12_t throttleScaler = qConstruct(rcCommand[THROTTLE] - 1000, 1000);
        rcCommand[THROTTLE] = masterConfig.rxConfig.midrc + qMultiply(throttleScaler, PWM_RANGE_MAX - masterConfig.rxConfig.midrc);
    }

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        const float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        const float cosDiff = cos_approx(radDiff);
        const float sinDiff = sin_approx(radDiff);
        const int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }
}
Exemplo n.º 21
0
Arquivo: imu.c Projeto: Feldsalat/inav
static void imuMahonyAHRSupdate(float dt, float gx, float gy, float gz,
                                int accWeight, float ax, float ay, float az,
                                bool useMag, float mx, float my, float mz,
                                bool useCOG, float courseOverGround)
{
    static float integralAccX = 0.0f,  integralAccY = 0.0f, integralAccZ = 0.0f;    // integral error terms scaled by Ki
    static float integralMagX = 0.0f,  integralMagY = 0.0f, integralMagZ = 0.0f;    // integral error terms scaled by Ki
    float recipNorm;
    float ex, ey, ez;
    float qa, qb, qc;

    /* Calculate general spin rate (rad/s) */
    float spin_rate_sq = sq(gx) + sq(gy) + sq(gz);

    /* Step 1: Yaw correction */
    // Use measured magnetic field vector
    if (useMag || useCOG) {
        float kpMag = imuRuntimeConfig->dcm_kp_mag * imuGetPGainScaleFactor();

        recipNorm = mx * mx + my * my + mz * mz;
        if (useMag && recipNorm > 0.01f) {
            // Normalise magnetometer measurement
            recipNorm = invSqrt(recipNorm);
            mx *= recipNorm;
            my *= recipNorm;
            mz *= recipNorm;

            // For magnetometer correction we make an assumption that magnetic field is perpendicular to gravity (ignore Z-component in EF).
            // This way magnetic field will only affect heading and wont mess roll/pitch angles

            // (hx; hy; 0) - measured mag field vector in EF (assuming Z-component is zero)
            // (bx; 0; 0) - reference mag field vector heading due North in EF (assuming Z-component is zero)
            float hx = rMat[0][0] * mx + rMat[0][1] * my + rMat[0][2] * mz;
            float hy = rMat[1][0] * mx + rMat[1][1] * my + rMat[1][2] * mz;
            float bx = sqrtf(hx * hx + hy * hy);

            // magnetometer error is cross product between estimated magnetic north and measured magnetic north (calculated in EF)
            float ez_ef = -(hy * bx);

            // Rotate mag error vector back to BF and accumulate
            ex = rMat[2][0] * ez_ef;
            ey = rMat[2][1] * ez_ef;
            ez = rMat[2][2] * ez_ef;
        }
        else if (useCOG) {
            // Use raw heading error (from GPS or whatever else)
            while (courseOverGround >  M_PIf) courseOverGround -= (2.0f * M_PIf);
            while (courseOverGround < -M_PIf) courseOverGround += (2.0f * M_PIf);

            // William Premerlani and Paul Bizard, Direction Cosine Matrix IMU - Eqn. 22-23
            // (Rxx; Ryx) - measured (estimated) heading vector (EF)
            // (cos(COG), sin(COG)) - reference heading vector (EF)
            // error is cross product between reference heading and estimated heading (calculated in EF)
            float ez_ef = - sin_approx(courseOverGround) * rMat[0][0] - cos_approx(courseOverGround) * rMat[1][0];

            ex = rMat[2][0] * ez_ef;
            ey = rMat[2][1] * ez_ef;
            ez = rMat[2][2] * ez_ef;
        }
        else {
            ex = 0;
            ey = 0;
            ez = 0;
        }

        // Compute and apply integral feedback if enabled
        if(imuRuntimeConfig->dcm_ki_mag > 0.0f) {
            // Stop integrating if spinning beyond the certain limit
            if (spin_rate_sq < sq(DEGREES_TO_RADIANS(SPIN_RATE_LIMIT))) {
                integralMagX += imuRuntimeConfig->dcm_ki_mag * ex * dt;    // integral error scaled by Ki
                integralMagY += imuRuntimeConfig->dcm_ki_mag * ey * dt;
                integralMagZ += imuRuntimeConfig->dcm_ki_mag * ez * dt;

                gx += integralMagX;
                gy += integralMagY;
                gz += integralMagZ;
            }
        }

        // Calculate kP gain and apply proportional feedback
        gx += kpMag * ex;
        gy += kpMag * ey;
        gz += kpMag * ez;
    }


    /* Step 2: Roll and pitch correction -  use measured acceleration vector */
    if (accWeight > 0) {
        float kpAcc = imuRuntimeConfig->dcm_kp_acc * imuGetPGainScaleFactor();

        // Just scale by 1G length - That's our vector adjustment. Rather than 
        // using one-over-exact length (which needs a costly square root), we already 
        // know the vector is enough "roughly unit length" and since it is only weighted
        // in by a certain amount anyway later, having that exact is meaningless. (c) MasterZap
        recipNorm = 1.0f / GRAVITY_CMSS;

        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;

        float fAccWeightScaler = accWeight / (float)MAX_ACC_SQ_NEARNESS;

        // Error is sum of cross product between estimated direction and measured direction of gravity
        ex = (ay * rMat[2][2] - az * rMat[2][1]) * fAccWeightScaler;
        ey = (az * rMat[2][0] - ax * rMat[2][2]) * fAccWeightScaler;
        ez = (ax * rMat[2][1] - ay * rMat[2][0]) * fAccWeightScaler;

        // Compute and apply integral feedback if enabled
        if(imuRuntimeConfig->dcm_ki_acc > 0.0f) {
            // Stop integrating if spinning beyond the certain limit
            if (spin_rate_sq < sq(DEGREES_TO_RADIANS(SPIN_RATE_LIMIT))) {
                integralAccX += imuRuntimeConfig->dcm_ki_acc * ex * dt;    // integral error scaled by Ki
                integralAccY += imuRuntimeConfig->dcm_ki_acc * ey * dt;
                integralAccZ += imuRuntimeConfig->dcm_ki_acc * ez * dt;

                gx += integralAccX;
                gy += integralAccY;
                gz += integralAccZ;
            }
        }

        // Calculate kP gain and apply proportional feedback
        gx += kpAcc * ex;
        gy += kpAcc * ey;
        gz += kpAcc * ez;
    }

    // Integrate rate of change of quaternion
    gx *= (0.5f * dt);
    gy *= (0.5f * dt);
    gz *= (0.5f * dt);

    qa = q0;
    qb = q1;
    qc = q2;
    q0 += (-qb * gx - qc * gy - q3 * gz);
    q1 += (qa * gx + qc * gz - q3 * gy);
    q2 += (qa * gy - qb * gz + q3 * gx);
    q3 += (qa * gz + qb * gy - qc * gx);

    // Normalise quaternion
    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;

    // Pre-compute rotation matrix from quaternion
    imuComputeRotationMatrix();
}
Exemplo n.º 22
0
Arquivo: mw.c Projeto: risnandar/inav
void annexCode(void)
{
    int32_t tmp;

    for (int axis = 0; axis < 3; axis++) {
        tmp = MIN(ABS(rcData[axis] - masterConfig.rxConfig.midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (currentProfile->rcControlsConfig.deadband) {
                if (tmp > currentProfile->rcControlsConfig.deadband) {
                    tmp -= currentProfile->rcControlsConfig.deadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = rcLookupPitchRoll(tmp);
        } else if (axis == YAW) {
            if (currentProfile->rcControlsConfig.yaw_deadband) {
                if (tmp > currentProfile->rcControlsConfig.yaw_deadband) {
                    tmp -= currentProfile->rcControlsConfig.yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = rcLookupYaw(tmp) * -1;
        }

        if (rcData[axis] < masterConfig.rxConfig.midrc) {
            rcCommand[axis] = -rcCommand[axis];
        }
    }

    tmp = constrain(rcData[THROTTLE], masterConfig.rxConfig.mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - masterConfig.rxConfig.mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - masterConfig.rxConfig.mincheck);       // [MINCHECK;2000] -> [0;1000]
    rcCommand[THROTTLE] = rcLookupThrottle(tmp);

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        const float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        const float cosDiff = cos_approx(radDiff);
        const float sinDiff = sin_approx(radDiff);
        const int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (IS_RC_MODE_ACTIVE(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!STATE(SMALL_ANGLE)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }

#if defined(NAV)
        if (naivationBlockArming()) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        }
#endif

        if (ARMING_FLAG(OK_TO_ARM)) {
            warningLedDisable();
        } else {
            warningLedFlash();
        }

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Exemplo n.º 23
0
void annexCode(void)
{
    int32_t tmp, tmp2;
    int32_t axis, prop1 = 0, prop2;

    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (axis = 0; axis < 3; axis++) {
        tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (rcControlsConfig()->deadband) {
                if (tmp > rcControlsConfig()->deadband) {
                    tmp -= rcControlsConfig()->deadband;
                } else {
                    tmp = 0;
                }
            }

            tmp2 = tmp / 100;
            rcCommand[axis] = lookupPitchRollRC[tmp2] + (tmp - tmp2 * 100) * (lookupPitchRollRC[tmp2 + 1] - lookupPitchRollRC[tmp2]) / 100;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
        } else if (axis == YAW) {
            if (rcControlsConfig()->yaw_deadband) {
                if (tmp > rcControlsConfig()->yaw_deadband) {
                    tmp -= rcControlsConfig()->yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            tmp2 = tmp / 100;
            rcCommand[axis] = (lookupYawRC[tmp2] + (tmp - tmp2 * 100) * (lookupYawRC[tmp2 + 1] - lookupYawRC[tmp2]) / 100) * -rcControlsConfig()->yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
        }
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)pidProfile()->P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)pidProfile()->I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)pidProfile()->D8[axis] * prop1 / 100;

        // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. YAW TPA disabled. 100 means 100% of the pids
        if (axis == YAW) {
            PIDweight[axis] = 100;
        }
        else {
            PIDweight[axis] = prop2;
        }

        if (rcData[axis] < rxConfig()->midrc)
            rcCommand[axis] = -rcCommand[axis];
    }

    tmp = constrain(rcData[THROTTLE], rxConfig()->mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck);       // [MINCHECK;2000] -> [0;1000]
    tmp2 = tmp / 100;
    rcCommand[THROTTLE] = lookupThrottleRC[tmp2] + (tmp - tmp2 * 100) * (lookupThrottleRC[tmp2 + 1] - lookupThrottleRC[tmp2]) / 100;    // [0;1000] -> expo -> [MINTHROTTLE;MAXTHROTTLE]

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }

    if (ARMING_FLAG(ARMED)) {
        LED0_ON;
    } else {
        if (IS_RC_MODE_ACTIVE(BOXARM) == 0) {
            ENABLE_ARMING_FLAG(OK_TO_ARM);
        }

        if (!imuIsAircraftArmable(armingConfig()->max_arm_angle)) {
            DISABLE_ARMING_FLAG(OK_TO_ARM);
            debug[3] = ARMING_FLAG(OK_TO_ARM);
        }

        if (isCalibrating() || isSystemOverloaded()) {
            warningLedFlash();
            DISABLE_ARMING_FLAG(OK_TO_ARM);
        } else {
            if (ARMING_FLAG(OK_TO_ARM)) {
                warningLedDisable();
            } else {
                warningLedFlash();
            }
        }

        debug[3] = ARMING_FLAG(OK_TO_ARM);

        warningLedUpdate();
    }

    // Read out gyro temperature. can use it for something somewhere. maybe get MCU temperature instead? lots of fun possibilities.
    if (gyro.temperature)
        gyro.temperature(&telemTemperature1);
}
Exemplo n.º 24
0
/*
This function processes RX dependent coefficients when new RX commands are available
Those are: TPA, throttle expo
*/
static void updateRcCommands(void)
{
    int32_t prop2;

    // PITCH & ROLL only dynamic PID adjustment,  depending on throttle value
    if (rcData[THROTTLE] < currentControlRateProfile->tpa_breakpoint) {
        prop2 = 100;
    } else {
        if (rcData[THROTTLE] < 2000) {
            prop2 = 100 - (uint16_t)currentControlRateProfile->dynThrPID * (rcData[THROTTLE] - currentControlRateProfile->tpa_breakpoint) / (2000 - currentControlRateProfile->tpa_breakpoint);
        } else {
            prop2 = 100 - currentControlRateProfile->dynThrPID;
        }
    }

    for (int axis = 0; axis < 3; axis++) {
        int32_t prop1;
        int32_t tmp = MIN(ABS(rcData[axis] - rxConfig()->midrc), 500);
        if (axis == ROLL || axis == PITCH) {
            if (rcControlsConfig()->deadband) {
                if (tmp > rcControlsConfig()->deadband) {
                    tmp -= rcControlsConfig()->deadband;
                } else {
                    tmp = 0;
                }
            }

            rcCommand[axis] = rcLookupPitchRoll(tmp);
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * tmp / 500;
            prop1 = (uint16_t)prop1 * prop2 / 100;
            // non coupled PID reduction scaler used in PID controller 1 and PID controller 2. 100 means 100% of the pids
            PIDweight[axis] = prop2;
        } else {
            if (rcControlsConfig()->yaw_deadband) {
                if (tmp > rcControlsConfig()->yaw_deadband) {
                    tmp -= rcControlsConfig()->yaw_deadband;
                } else {
                    tmp = 0;
                }
            }
            rcCommand[axis] = rcLookupYaw(tmp) * -rcControlsConfig()->yaw_control_direction;
            prop1 = 100 - (uint16_t)currentControlRateProfile->rates[axis] * ABS(tmp) / 500;
            // YAW TPA disabled.
            PIDweight[axis] = 100;
        }
#ifdef USE_PID_MW23
        // FIXME axis indexes into pids.  use something like lookupPidIndex(rc_alias_e alias) to reduce coupling.
        dynP8[axis] = (uint16_t)pidProfile()->P8[axis] * prop1 / 100;
        dynI8[axis] = (uint16_t)pidProfile()->I8[axis] * prop1 / 100;
        dynD8[axis] = (uint16_t)pidProfile()->D8[axis] * prop1 / 100;
#endif

        if (rcData[axis] < rxConfig()->midrc) {
            rcCommand[axis] = -rcCommand[axis];
        }
    }

    int32_t tmp = constrain(rcData[THROTTLE], rxConfig()->mincheck, PWM_RANGE_MAX);
    tmp = (uint32_t)(tmp - rxConfig()->mincheck) * PWM_RANGE_MIN / (PWM_RANGE_MAX - rxConfig()->mincheck);       // [MINCHECK;2000] -> [0;1000]
    rcCommand[THROTTLE] = rcLookupThrottle(tmp);

    if (FLIGHT_MODE(HEADFREE_MODE)) {
        float radDiff = degreesToRadians(DECIDEGREES_TO_DEGREES(attitude.values.yaw) - headFreeModeHold);
        float cosDiff = cos_approx(radDiff);
        float sinDiff = sin_approx(radDiff);
        int16_t rcCommand_PITCH = rcCommand[PITCH] * cosDiff + rcCommand[ROLL] * sinDiff;
        rcCommand[ROLL] = rcCommand[ROLL] * cosDiff - rcCommand[PITCH] * sinDiff;
        rcCommand[PITCH] = rcCommand_PITCH;
    }
}
Exemplo n.º 25
0
static void calculateVirtualPositionTarget_FW(float trackingPeriod)
{
    float posErrorX = posControl.desiredState.pos.V.X - posControl.actualState.pos.V.X;
    float posErrorY = posControl.desiredState.pos.V.Y - posControl.actualState.pos.V.Y;

    float distanceToActualTarget = sqrtf(sq(posErrorX) + sq(posErrorY));

    // Limit minimum forward velocity to 1 m/s
    float trackingDistance = trackingPeriod * MAX(posControl.actualState.velXY, 100.0f);

    // If angular visibility of a waypoint is less than 30deg, don't calculate circular loiter, go straight to the target
    #define TAN_15DEG    0.26795f
    bool needToCalculateCircularLoiter = isApproachingLastWaypoint()
                                            && (distanceToActualTarget <= (posControl.navConfig->fw_loiter_radius / TAN_15DEG))
                                            && (distanceToActualTarget > 50.0f);

    // Calculate virtual position for straight movement
    if (needToCalculateCircularLoiter) {
        // We are closing in on a waypoint, calculate circular loiter
        float loiterAngle = atan2_approx(-posErrorY, -posErrorX) + DEGREES_TO_RADIANS(45.0f);

        float loiterTargetX = posControl.desiredState.pos.V.X + posControl.navConfig->fw_loiter_radius * cos_approx(loiterAngle);
        float loiterTargetY = posControl.desiredState.pos.V.Y + posControl.navConfig->fw_loiter_radius * sin_approx(loiterAngle);

        // We have temporary loiter target. Recalculate distance and position error
        posErrorX = loiterTargetX - posControl.actualState.pos.V.X;
        posErrorY = loiterTargetY - posControl.actualState.pos.V.Y;
        distanceToActualTarget = sqrtf(sq(posErrorX) + sq(posErrorY));
    }

    // Calculate virtual waypoint
    virtualDesiredPosition.V.X = posControl.actualState.pos.V.X + posErrorX * (trackingDistance / distanceToActualTarget);
    virtualDesiredPosition.V.Y = posControl.actualState.pos.V.Y + posErrorY * (trackingDistance / distanceToActualTarget);

    // Shift position according to pilot's ROLL input (up to max_manual_speed velocity)
    if (posControl.flags.isAdjustingPosition) {
        int16_t rcRollAdjustment = applyDeadband(rcCommand[ROLL], posControl.rcControlsConfig->pos_hold_deadband);

        if (rcRollAdjustment) {
            float rcShiftY = rcRollAdjustment * posControl.navConfig->max_manual_speed / 500.0f * trackingPeriod;

            // Rotate this target shift from body frame to to earth frame and apply to position target
            virtualDesiredPosition.V.X += -rcShiftY * posControl.actualState.sinYaw;
            virtualDesiredPosition.V.Y +=  rcShiftY * posControl.actualState.cosYaw;

            posControl.flags.isAdjustingPosition = true;
        }
    }
}