Exemplo n.º 1
0
void smf_collapse_tseries( const smfData *indata, int nclip, const float clip[],
                           double snrlim, int flagconst, smf_dtype dtype,
                           smfData **outdata,
                           int *status ) {

  /* Per type pointers */
  double *avg_d = NULL;
  double *var_d = NULL;
  int *avg_i = NULL;
  int *var_i = NULL;

  dim_t dims[2];      /* dimensions of data array */
  smfHead *hdr = NULL; /* copy of header */
  AstKeyMap * history = NULL; /* history */
  size_t nbperel;  /* Number of bytes in dtype */
  size_t nelem;   /* number of elements in mean image */
  void *pntr[] = { NULL, NULL }; /* pointers to data */

  if (*status != SAI__OK) return;

  /* see if we have a 2d input (likely reduced) */
  if (indata->ndims == 2 ||
      (indata->ndims == 3 && (indata->dims)[2] == 1) ) {
    *outdata = NULL;
    return;
  }

  /* Trap SMF__NULL */
  if (dtype == SMF__NULL) dtype = indata->dtype;

  /* Get some memory of the right type - data and variance */
  dims[0] = (indata->dims)[0];
  dims[1] = (indata->dims)[1];
  nelem = dims[0] * dims[1];
  nbperel = smf_dtype_sz(dtype, status);
  pntr[0] = astMalloc( nelem*nbperel );
  pntr[1] = astMalloc( nelem*nbperel );


  /* Assign the pointers */
  smf_select_pntr( pntr, dtype, &avg_d, &var_d, &avg_i, &var_i, status );

  if (*status == SAI__OK) {
    dim_t i,j;

    /* get statistics for each bolometer */
    for (i = 0; i < dims[0]; i++) {
      for (j = 0; j < dims[1]; j++) {
        double mean = VAL__BADD;
        double stdev = VAL__BADD;
        double variance = VAL__BADD;
        dim_t index;
        index = ( j * dims[0] ) + i;

        smf_calc_stats( indata, "b", index, 0, 0, nclip, clip,
                        &mean, &stdev, status );

        if (flagconst && stdev == 0.0) {
          mean = VAL__BADD;
          stdev = VAL__BADD;
        }
        if (snrlim > 0 && mean != VAL__BADD && stdev != VAL__BADD
            && stdev != 0.0) {
          double snr;
          snr = fabs(mean/stdev);
          if (snr < snrlim) {
            mean = VAL__BADD;
            stdev = VAL__BADD;
          }
        }
        if (stdev != VAL__BADD) {
          variance = stdev * stdev;
        }

        switch (dtype) {
        case SMF__DOUBLE:
          avg_d[index] = mean;
          var_d[index] = variance;
          break;
        case SMF__INTEGER:
          if (isnan(mean) || mean == VAL__BADD ) {
            avg_i[index] = VAL__BADI;
          } else {
            avg_i[index] = (int)mean;
          }
          if (isnan(stdev) || stdev == VAL__BADD) {
            var_i[index] = VAL__BADI;
          } else if ( variance > (double)VAL__MAXI ) {
            /* overflow. Convert to BAD */
            var_i[index] = VAL__BADI;
            avg_i[index] = VAL__BADI;
          } else {
            var_i[index] = (int)variance;
          }
          break;
        default:
          *status = SAI__ERROR;
          errRep( " ", "Should be impossible to get here", status );
          goto L999;
        }

      }
    }
  }

 L999:

  /* now create a new smfData - we need to copy the header info */
  hdr = smf_deepcopy_smfHead( indata->hdr, status );
  if (indata->history) history = astCopy( indata->history );

  *outdata = smf_construct_smfData( NULL, NULL,  hdr, NULL, NULL,
                                    dtype, pntr, NULL, SMF__QFAM_TSERIES,
                                    NULL, 0, 1, dims, indata->lbnd, 2, 0, 0,
                                    NULL, history, status );

  /* must free the data if outdata is null */
  if (*outdata == NULL) {
    pntr[0] = astFree( pntr[0] );
    pntr[1] = astFree( pntr[1] );
  }

  return;
}
Exemplo n.º 2
0
void smf_fit_qui( ThrWorkForce *wf, smfData *idata, smfData **odataq,
                  smfData **odatau, smfData **odatai, dim_t box, int ipolcrd,
                  int pasign, double paoff, double angrot, int north,
                  int *status ){

/* Local Variables: */
   AstFrameSet *wcs;        /* WCS FrameSet for current time slice */
   JCMTState *instate=NULL; /* Pointer to input JCMTState */
   JCMTState *outstate=NULL;/* Pointer to output JCMTState */
   const char *usesys;      /* Tracking system */
   dim_t *box_starts;       /* Array holding time slice at start of each box */
   dim_t box_size;          /* First time slice in box */
   dim_t intslice;          /* ntslice of idata */
   dim_t istart;            /* Input time index at start of fitting box */
   dim_t itime;             /* Time slice index */
   dim_t nbolo;             /* No. of bolometers */
   dim_t ncol;              /* No. of columns of bolometers in the array */
   dim_t ntime;             /* Time slices to check */
   dim_t ondata;            /* ndata of odata */
   dim_t ontslice;          /* ntslice of odata */
   double scale;            /* how much longer new samples are */
   int bstep;               /* Bolometer step between threads */
   int iworker;             /* Index of a worker thread */
   int nworker;             /* No. of worker threads */
   size_t i;                /* loop counter */
   smfData *indksquid=NULL; /* Pointer to input dksquid data */
   smfFitQUIJobData *job_data = NULL; /* Pointer to all job data */
   smfFitQUIJobData *pdata = NULL;/* Pointer to next job data */
   smfHead *hdr;            /* Pointer to data header this time slice */
   smf_qual_t *qua;         /* Input quality pointer */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Check supplied arguments. */
   if( !idata || !odataq || !odatau ) {
      *status = SAI__ERROR;
      errRep( "", "smf_fit_qui: NULL inputs supplied", status );
      return;
   }

   if( idata->ndims != 3 ) {
      *status = SAI__ERROR;
      errRep( "", "smf_fit_qui: idata is not 3-dimensional", status );
      return;
   }

/* Ensure the supplied smfData is time-ordered. So "bstride" is 1 and "tstride"
   is nbolo. */
   smf_dataOrder( wf, idata, 1, status );

/* Dimensions of input. */
   smf_get_dims( idata, NULL, &ncol, &nbolo, &intslice, NULL, NULL, NULL,
                 status );

/* Store a pointer to the quality array for the input smfData. */
   qua = smf_select_qualpntr( idata, NULL, status );;

/* Go through the first thousand POL_ANG values to see if they are in
   units of radians (new data) or arbitrary encoder units (old data).
   They are assumed to be in radians if no POL_ANG value is larger than
   20. This function can only handle new data. */
   hdr = idata->hdr;
   instate = hdr->allState;
   ntime = ( intslice > 1000 ) ? 1000 : intslice;
   for( itime = 0; itime < ntime; itime++,instate++ ) {
      if( instate->pol_ang > 20 ) {
         *status = SAI__ERROR;
         errRep( " ","   POL2 data contains POL_ANG values in encoder "
                 "units - connot fit to such old data.", status );
         break;
      }
   }

/* Find the input time slice at which each fitting box starts, and the
   length of the output time axis (in time-slices). */
   smf1_find_boxes( intslice, hdr->allState, box, &ontslice, &box_starts,
                    status );

/* Time axis scaling factor. */
   scale = (double) intslice / (double) ontslice;

/* First copy everything from input to output except for the data that needs
   to be downsampled */

/* We want to copy everything in the smfHead except for allState. So we
   make a copy of the allState pointer, and then set it to NULL in the
   header before the copy */
   if( idata->hdr ) {
     instate = idata->hdr->allState;
     idata->hdr->allState = NULL;
   }

/* Similarly, we want everything in the smfDa except for the dksquid. */
   if( idata->da ) {
     indksquid = idata->da->dksquid;
     idata->da->dksquid = NULL;
   }

/* Create copies, storing them in the supplied  output smfData
   structures. Omit the header for U and I, as we will be copying the Q
   header into them.  */
   *odataq = smf_deepcopy_smfData( wf, idata, 0, SMF__NOCREATE_DATA |
                                SMF__NOCREATE_VARIANCE | SMF__NOCREATE_QUALITY,
                                0, 0, status );

   *odatau = smf_deepcopy_smfData( wf, idata, 0, SMF__NOCREATE_DATA |
                                SMF__NOCREATE_VARIANCE | SMF__NOCREATE_QUALITY |
                                SMF__NOCREATE_HEAD, 0, 0, status );

   if( odatai ) {
      *odatai = smf_deepcopy_smfData( wf, idata, 0, SMF__NOCREATE_DATA |
                                SMF__NOCREATE_VARIANCE | SMF__NOCREATE_QUALITY |
                                SMF__NOCREATE_HEAD, 0, 0, status );
   }

/* Restore values in idata now that we're done */
   if( instate ) idata->hdr->allState = instate;
   if( indksquid ) idata->da->dksquid = indksquid;

/* Store the required length for the output time axis. The time axis is
   axis two because the data is time-ordered. */
   (*odataq)->dims[ 2 ] = ontslice;
   (*odatau)->dims[ 2 ] = ontslice;
   if( odatai) (*odatai)->dims[ 2 ] = ontslice;

/* Get output dimensions - assumed to be the same for all three outputs. */
   ondata = ontslice*idata->dims[0]*idata->dims[1];

/* Allocate the data arrays for the outputs. */
   (*odataq)->pntr[0] = astCalloc( ondata, sizeof(double) );
   (*odatau)->pntr[0] = astCalloc( ondata, sizeof(double) );
   if( odatai ) (*odatai)->pntr[0] = astCalloc( ondata, sizeof(double) );

/* Allocate arrays for the output variances. */
   (*odataq)->pntr[1] = astCalloc( ondata, sizeof(double) );
   (*odatau)->pntr[1] = astCalloc( ondata, sizeof(double) );
   if( odatai ) (*odatai)->pntr[1] = astCalloc( ondata, sizeof(double) );

/* Create structures used to pass information to the worker threads. */
   nworker = wf ? wf->nworker : 1;
   job_data = astMalloc( nworker*sizeof( *job_data ) );
   if( *status == SAI__OK ) {

/* Determine which bolometers are to be processed by which threads. */
      bstep = nbolo/nworker;
      if( bstep < 1 ) bstep = 1;

      for( iworker = 0; iworker < nworker; iworker++ ) {
         pdata = job_data + iworker;
         pdata->b1 = iworker*bstep;
         pdata->b2 = pdata->b1 + bstep - 1;
      }

/* Ensure that the last thread picks up any left-over bolometers */
      pdata->b2 = nbolo - 1;

/* Loop round all output time slices. */
      for( itime = 0; itime < ontslice; itime++ ) {

/* Get the index of the first input time slice that contributes to the
   current output time slice. */
         istart = box_starts[ itime ];

/* Get the number of input time slices that contribute to the output time
   slice. */
         box_size = box_starts[ itime + 1 ] - istart;

/* If we are using north as the reference direction, get the WCS FrameSet
   for the input time slice that is at the middle of the output time
   slice, and set its current Frame to the tracking frame. */
         if( north ) {
            smf_tslice_ast( idata, istart + box_size/2, 1, NO_FTS, status );
            wcs = idata->hdr->wcs;
            usesys = sc2ast_convert_system( (idata->hdr->allState)[0].tcs_tr_sys,
                                            status );
            astSetC( wcs, "System", usesys );
         } else {
            wcs = NULL;
         }

/* Now enter the parellel code in which each thread calculates the values
   for a range of bolometers at the current output slice. */
         for( iworker = 0; iworker < nworker; iworker++ ) {
            pdata = job_data + iworker;

            pdata->dat = ((double *) idata->pntr[0] ) + istart*nbolo;
            pdata->qua = qua + istart*nbolo;
            pdata->allstates = hdr->allState + istart;

            pdata->ipi = odatai ? ( (double*) (*odatai)->pntr[0] ) + itime*nbolo : NULL;
            pdata->ipq = ( (double*) (*odataq)->pntr[0] ) + itime*nbolo;
            pdata->ipu = ( (double*) (*odatau)->pntr[0] ) + itime*nbolo;
            pdata->ipv = ( (double*) (*odataq)->pntr[1] ) + itime*nbolo;

            pdata->nbolo = nbolo;
            pdata->ncol = ncol;
            pdata->box_size = box_size;
            pdata->ipolcrd = ipolcrd;
            pdata->pasign = pasign ? +1: -1;
            pdata->paoff = paoff;
            pdata->angrot = angrot;
            if( wcs ) {
               pdata->wcs = astCopy( wcs );
               astUnlock( pdata->wcs, 1 );
            } else {
               pdata->wcs = NULL;
            }

/* Pass the job to the workforce for execution. */
            thrAddJob( wf, THR__REPORT_JOB, pdata, smf1_fit_qui_job, 0, NULL,
                         status );
         }

/* Wait for the workforce to complete all jobs. */
         thrWait( wf, status );

/* Lock and annul the AST objects used by each thread. */
         if( wcs ) {
            for( iworker = 0; iworker < nworker; iworker++ ) {
               pdata = job_data + iworker;
               astLock( pdata->wcs, 0 );
               pdata->wcs = astAnnul( pdata->wcs );
            }
         }
      }

/* Down-sample the smfHead -------------------------------------------------*/
      smfHead *hdr = (*odataq)->hdr;

      hdr->curframe = (dim_t) (((double) hdr->curframe + 0.5) / scale);
      hdr->nframes = ontslice;
      hdr->steptime *= scale;
      strcpy( hdr->dlabel, "Q" );
      strncpy( hdr->title, "POL-2 Stokes parameter Q", SMF__CHARLABEL );

/* Down-sample all the JCMTState values using nearest neighbours */
      instate = idata->hdr->allState;
      if( instate ) {

         hdr->allState = astCalloc( ontslice, sizeof(*instate) );
         outstate = hdr->allState;

         if( *status == SAI__OK ) {
            size_t frame;  /* index of nearest neighbour JCMTState */

            for( i=0; i<ontslice; i++ ) {
               frame = (size_t) round(((double) i + 0.5)*scale);
               memcpy( outstate + i, instate + frame, sizeof(*instate) );
            }

/* Then go back and properly down-sample the more important fast-changing
   fields like pointing. Note that since there are approximate values there
   already we need to explicitly re-initialize to 0. */

            RESAMPSTATE(instate, outstate, rts_end, intslice, ontslice, 0);

            RESAMPSTATE(instate, outstate, smu_az_jig_x, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_az_jig_y, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_az_chop_x, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_az_chop_y, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_tr_jig_x, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_tr_jig_y, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_tr_chop_x, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, smu_tr_chop_y, intslice, ontslice, 0);

            RESAMPSTATE(instate, outstate, tcs_tai, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, tcs_airmass, intslice, ontslice, 0);

/* Second coordinates (Dec, El etc) can not wrap 0 to 360 so we do not need
   to test for those cases */
            RESAMPSTATE(instate, outstate, tcs_az_ang, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_az_ac1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_az_ac2, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, tcs_az_dc1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_az_dc2, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, tcs_az_bc1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_az_bc2, intslice, ontslice, 0);

            RESAMPSTATE(instate, outstate, tcs_tr_ang, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_tr_ac1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_tr_ac2, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, tcs_tr_dc1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_tr_dc2, intslice, ontslice, 0);
            RESAMPSTATE(instate, outstate, tcs_tr_bc1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_tr_bc2, intslice, ontslice, 0);

            RESAMPSTATE(instate, outstate, tcs_en_dc1, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_en_dc2, intslice, ontslice, 0);

            RESAMPSTATE(instate, outstate, tcs_dm_abs, intslice, ontslice, 1);
            RESAMPSTATE(instate, outstate, tcs_dm_rel, intslice, ontslice, 0);

/* Wait for all the above smf_downsamp1 jobs to finish. */
            thrWait( wf, status );

         }
      }

/* Add a keyword to the Q header indicating the polarimetric reference
   direction. */
      smf_fits_updateL( (*odataq)->hdr, "POLNORTH", north,
                        north ? "Pol ref dir is tracking north" :
                                "Pol ref dir is focal plane Y", status );

/* Copy the Q header to the other outputs. */
      hdr = smf_deepcopy_smfHead( (*odataq)->hdr, status );
      (*odatau)->hdr = hdr;
      if( *status == SAI__OK ) {
         strcpy( hdr->dlabel, "U" );
         strncpy( hdr->title, "POL-2 Stokes parameter U", SMF__CHARLABEL );
      }

      if( odatai ) {
         hdr = smf_deepcopy_smfHead( (*odataq)->hdr, status );
         (*odatai)->hdr = hdr;
         if( *status == SAI__OK ) {
            strcpy( hdr->dlabel, "I" );
            strncpy( hdr->title, "POL-2 Stokes parameter I", SMF__CHARLABEL );
         }
      }
   }

/* Copy the variances from the Q smfData into the U and (and I) smfData. */
   if( *odataq && *status == SAI__OK ) {
      if( *odatau ) {
         memcpy( (*odatau)->pntr[1], (*odataq)->pntr[1], ondata*sizeof(double));
      }
      if( odatai && *odatai ) {
         memcpy( (*odatai)->pntr[1], (*odataq)->pntr[1], ondata*sizeof(double));
      }
   }

/* Ensure all smfDatas are time-ordered. */
   smf_dataOrder( wf, idata, 1, status );
   if( odatai && *odatai ) smf_dataOrder( wf, *odatai, 1, status );
   if( *odataq ) smf_dataOrder( wf, *odataq, 1, status );
   if( *odatau ) smf_dataOrder( wf, *odatau, 1, status );

/* Free resources. */
   job_data = astFree( job_data );
   box_starts = astFree( box_starts );
}