int create_resampler(uint32_t inSampleRate,
                    uint32_t outSampleRate,
                    uint32_t channelCount,
                    uint32_t quality,
                    struct resampler_buffer_provider* provider,
                    struct resampler_itfe **resampler)
{
    int error;
    struct resampler *rsmp;

    ALOGV("create_resampler() In SR %d Out SR %d channels %d",
         inSampleRate, outSampleRate, channelCount);

    if (resampler == NULL) {
        return -EINVAL;
    }

    *resampler = NULL;

    if (quality <= RESAMPLER_QUALITY_MIN || quality >= RESAMPLER_QUALITY_MAX) {
        return -EINVAL;
    }

    rsmp = (struct resampler *)calloc(1, sizeof(struct resampler));

    rsmp->speex_resampler = speex_resampler_init(channelCount,
                                      inSampleRate,
                                      outSampleRate,
                                      quality,
                                      &error);
    if (rsmp->speex_resampler == NULL) {
        ALOGW("ReSampler: Cannot create speex resampler: %s", speex_resampler_strerror(error));
        free(rsmp);
        return -ENODEV;
    }

    rsmp->itfe.reset = resampler_reset;
    rsmp->itfe.resample_from_provider = resampler_resample_from_provider;
    rsmp->itfe.resample_from_input = resampler_resample_from_input;
    rsmp->itfe.delay_ns = resampler_delay_ns;

    rsmp->provider = provider;
    rsmp->in_sample_rate = inSampleRate;
    rsmp->out_sample_rate = outSampleRate;
    rsmp->channel_count = channelCount;
    rsmp->in_buf = NULL;
    rsmp->in_buf_size = 0;

    resampler_reset(&rsmp->itfe);

    int frames = speex_resampler_get_input_latency(rsmp->speex_resampler);
    rsmp->speex_delay_ns = (int32_t)((1000000000 * (int64_t)frames) / rsmp->in_sample_rate);
    frames = speex_resampler_get_output_latency(rsmp->speex_resampler);
    rsmp->speex_delay_ns += (int32_t)((1000000000 * (int64_t)frames) / rsmp->out_sample_rate);

    *resampler = &rsmp->itfe;
    ALOGV("create_resampler() DONE rsmp %p &rsmp->itfe %p speex %p",
         rsmp, &rsmp->itfe, rsmp->speex_resampler);
    return 0;
}
Exemplo n.º 2
0
void
MediaDecodeTask::Decode()
{
  MOZ_ASSERT(!mThreadPool == NS_IsMainThread(),
             "We should be on the main thread only if we don't have a thread pool");

  mBufferDecoder->BeginDecoding(NS_GetCurrentThread());

  // Tell the decoder reader that we are not going to play the data directly,
  // and that we should not reject files with more channels than the audio
  // bakend support.
  mDecoderReader->SetIgnoreAudioOutputFormat();

  mDecoderReader->OnDecodeThreadStart();

  MediaInfo mediaInfo;
  nsAutoPtr<MetadataTags> tags;
  nsresult rv = mDecoderReader->ReadMetadata(&mediaInfo, getter_Transfers(tags));
  if (NS_FAILED(rv)) {
    ReportFailureOnMainThread(WebAudioDecodeJob::InvalidContent);
    return;
  }

  if (!mDecoderReader->HasAudio()) {
    ReportFailureOnMainThread(WebAudioDecodeJob::NoAudio);
    return;
  }

  while (mDecoderReader->DecodeAudioData()) {
    // consume all of the buffer
    continue;
  }

  mDecoderReader->OnDecodeThreadFinish();

  MediaQueue<AudioData>& audioQueue = mDecoderReader->AudioQueue();
  uint32_t frameCount = audioQueue.FrameCount();
  uint32_t channelCount = mediaInfo.mAudio.mChannels;
  uint32_t sampleRate = mediaInfo.mAudio.mRate;

  if (!frameCount || !channelCount || !sampleRate) {
    ReportFailureOnMainThread(WebAudioDecodeJob::InvalidContent);
    return;
  }

  const uint32_t destSampleRate = mDecodeJob.mContext->SampleRate();
  AutoResampler resampler;

  uint32_t resampledFrames = frameCount;
  if (sampleRate != destSampleRate) {
    resampledFrames = static_cast<uint32_t>(
        static_cast<uint64_t>(destSampleRate) *
        static_cast<uint64_t>(frameCount) /
        static_cast<uint64_t>(sampleRate)
      );

    resampler = speex_resampler_init(channelCount,
                                     sampleRate,
                                     destSampleRate,
                                     SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
    speex_resampler_skip_zeros(resampler);
    resampledFrames += speex_resampler_get_output_latency(resampler);
  }

  // Allocate the channel buffers.  Note that if we end up resampling, we may
  // write fewer bytes than mResampledFrames to the output buffer, in which
  // case mWriteIndex will tell us how many valid samples we have.
  static const fallible_t fallible = fallible_t();
  bool memoryAllocationSuccess = true;
  if (!mDecodeJob.mChannelBuffers.SetLength(channelCount)) {
    memoryAllocationSuccess = false;
  } else {
    for (uint32_t i = 0; i < channelCount; ++i) {
      mDecodeJob.mChannelBuffers[i] = new(fallible) float[resampledFrames];
      if (!mDecodeJob.mChannelBuffers[i]) {
        memoryAllocationSuccess = false;
        break;
      }
    }
  }
  if (!memoryAllocationSuccess) {
    ReportFailureOnMainThread(WebAudioDecodeJob::UnknownError);
    return;
  }

  nsAutoPtr<AudioData> audioData;
  while ((audioData = audioQueue.PopFront())) {
    audioData->EnsureAudioBuffer(); // could lead to a copy :(
    AudioDataValue* bufferData = static_cast<AudioDataValue*>
      (audioData->mAudioBuffer->Data());

    if (sampleRate != destSampleRate) {
      const uint32_t maxOutSamples = resampledFrames - mDecodeJob.mWriteIndex;

      for (uint32_t i = 0; i < audioData->mChannels; ++i) {
        uint32_t inSamples = audioData->mFrames;
        uint32_t outSamples = maxOutSamples;

        WebAudioUtils::SpeexResamplerProcess(
            resampler, i, &bufferData[i * audioData->mFrames], &inSamples,
            mDecodeJob.mChannelBuffers[i] + mDecodeJob.mWriteIndex,
            &outSamples);

        if (i == audioData->mChannels - 1) {
          mDecodeJob.mWriteIndex += outSamples;
          MOZ_ASSERT(mDecodeJob.mWriteIndex <= resampledFrames);
          MOZ_ASSERT(inSamples == audioData->mFrames);
        }
      }
    } else {
      for (uint32_t i = 0; i < audioData->mChannels; ++i) {
        ConvertAudioSamples(&bufferData[i * audioData->mFrames],
                            mDecodeJob.mChannelBuffers[i] + mDecodeJob.mWriteIndex,
                            audioData->mFrames);

        if (i == audioData->mChannels - 1) {
          mDecodeJob.mWriteIndex += audioData->mFrames;
        }
      }
    }
  }

  if (sampleRate != destSampleRate) {
    uint32_t inputLatency = speex_resampler_get_input_latency(resampler);
    const uint32_t maxOutSamples = resampledFrames - mDecodeJob.mWriteIndex;
    for (uint32_t i = 0; i < channelCount; ++i) {
      uint32_t inSamples = inputLatency;
      uint32_t outSamples = maxOutSamples;

      WebAudioUtils::SpeexResamplerProcess(
          resampler, i, (AudioDataValue*)nullptr, &inSamples,
          mDecodeJob.mChannelBuffers[i] + mDecodeJob.mWriteIndex,
          &outSamples);

      if (i == channelCount - 1) {
        mDecodeJob.mWriteIndex += outSamples;
        MOZ_ASSERT(mDecodeJob.mWriteIndex <= resampledFrames);
        MOZ_ASSERT(inSamples == inputLatency);
      }
    }
  }

  mPhase = PhaseEnum::AllocateBuffer;
  RunNextPhase();
}
void
MediaDecodeTask::FinishDecode()
{
  mDecoderReader->Shutdown();

  uint32_t frameCount = mAudioQueue.FrameCount();
  uint32_t channelCount = mMediaInfo.mAudio.mChannels;
  uint32_t sampleRate = mMediaInfo.mAudio.mRate;

  if (!frameCount || !channelCount || !sampleRate) {
    ReportFailureOnMainThread(WebAudioDecodeJob::InvalidContent);
    return;
  }

  const uint32_t destSampleRate = mDecodeJob.mContext->SampleRate();
  AutoResampler resampler;

  uint32_t resampledFrames = frameCount;
  if (sampleRate != destSampleRate) {
    resampledFrames = static_cast<uint32_t>(
        static_cast<uint64_t>(destSampleRate) *
        static_cast<uint64_t>(frameCount) /
        static_cast<uint64_t>(sampleRate)
      );

    resampler = speex_resampler_init(channelCount,
                                     sampleRate,
                                     destSampleRate,
                                     SPEEX_RESAMPLER_QUALITY_DEFAULT, nullptr);
    speex_resampler_skip_zeros(resampler);
    resampledFrames += speex_resampler_get_output_latency(resampler);
  }

  // Allocate the channel buffers.  Note that if we end up resampling, we may
  // write fewer bytes than mResampledFrames to the output buffer, in which
  // case mWriteIndex will tell us how many valid samples we have.
  mDecodeJob.mBuffer = ThreadSharedFloatArrayBufferList::
    Create(channelCount, resampledFrames, fallible);
  if (!mDecodeJob.mBuffer) {
    ReportFailureOnMainThread(WebAudioDecodeJob::UnknownError);
    return;
  }

  RefPtr<MediaData> mediaData;
  while ((mediaData = mAudioQueue.PopFront())) {
    RefPtr<AudioData> audioData = mediaData->As<AudioData>();
    audioData->EnsureAudioBuffer(); // could lead to a copy :(
    AudioDataValue* bufferData = static_cast<AudioDataValue*>
      (audioData->mAudioBuffer->Data());

    if (sampleRate != destSampleRate) {
      const uint32_t maxOutSamples = resampledFrames - mDecodeJob.mWriteIndex;

      for (uint32_t i = 0; i < audioData->mChannels; ++i) {
        uint32_t inSamples = audioData->mFrames;
        uint32_t outSamples = maxOutSamples;
        float* outData =
          mDecodeJob.mBuffer->GetDataForWrite(i) + mDecodeJob.mWriteIndex;

        WebAudioUtils::SpeexResamplerProcess(
            resampler, i, &bufferData[i * audioData->mFrames], &inSamples,
            outData, &outSamples);

        if (i == audioData->mChannels - 1) {
          mDecodeJob.mWriteIndex += outSamples;
          MOZ_ASSERT(mDecodeJob.mWriteIndex <= resampledFrames);
          MOZ_ASSERT(inSamples == audioData->mFrames);
        }
      }
    } else {
      for (uint32_t i = 0; i < audioData->mChannels; ++i) {
        float* outData =
          mDecodeJob.mBuffer->GetDataForWrite(i) + mDecodeJob.mWriteIndex;
        ConvertAudioSamples(&bufferData[i * audioData->mFrames],
                            outData, audioData->mFrames);

        if (i == audioData->mChannels - 1) {
          mDecodeJob.mWriteIndex += audioData->mFrames;
        }
      }
    }
  }

  if (sampleRate != destSampleRate) {
    uint32_t inputLatency = speex_resampler_get_input_latency(resampler);
    const uint32_t maxOutSamples = resampledFrames - mDecodeJob.mWriteIndex;
    for (uint32_t i = 0; i < channelCount; ++i) {
      uint32_t inSamples = inputLatency;
      uint32_t outSamples = maxOutSamples;
      float* outData =
        mDecodeJob.mBuffer->GetDataForWrite(i) + mDecodeJob.mWriteIndex;

      WebAudioUtils::SpeexResamplerProcess(
          resampler, i, (AudioDataValue*)nullptr, &inSamples,
          outData, &outSamples);

      if (i == channelCount - 1) {
        mDecodeJob.mWriteIndex += outSamples;
        MOZ_ASSERT(mDecodeJob.mWriteIndex <= resampledFrames);
        MOZ_ASSERT(inSamples == inputLatency);
      }
    }
  }

  mPhase = PhaseEnum::AllocateBuffer;
  NS_DispatchToMainThread(this);
}
int main(int argc, char **argv)
{
   int c;
   int option_index = 0;
   char *inFile, *outFile;
   FILE *fin, *fout=NULL, *frange=NULL;
   float *output;
   int frame_size=0;
   OpusMSDecoder *st=NULL;
   opus_int64 packet_count=0;
   int total_links=0;
   int stream_init = 0;
   int quiet = 0;
   ogg_int64_t page_granule=0;
   ogg_int64_t link_out=0;
   struct option long_options[] =
   {
      {"help", no_argument, NULL, 0},
      {"quiet", no_argument, NULL, 0},
      {"version", no_argument, NULL, 0},
      {"version-short", no_argument, NULL, 0},
      {"rate", required_argument, NULL, 0},
      {"gain", required_argument, NULL, 0},
      {"no-dither", no_argument, NULL, 0},
      {"packet-loss", required_argument, NULL, 0},
      {"save-range", required_argument, NULL, 0},
      {0, 0, 0, 0}
   };
   ogg_sync_state oy;
   ogg_page       og;
   ogg_packet     op;
   ogg_stream_state os;
   int close_in=0;
   int eos=0;
   ogg_int64_t audio_size=0;
   double last_coded_seconds=0;
   float loss_percent=-1;
   float manual_gain=0;
   int channels=-1;
   int mapping_family;
   int rate=0;
   int wav_format=0;
   int preskip=0;
   int gran_offset=0;
   int has_opus_stream=0;
   ogg_int32_t opus_serialno;
   int dither=1;
   shapestate shapemem;
   SpeexResamplerState *resampler=NULL;
   float gain=1;
   int streams=0;
   size_t last_spin=0;
#ifdef WIN_UNICODE
   int argc_utf8;
   char **argv_utf8;
#endif

   if(query_cpu_support()){
     fprintf(stderr,"\n\n** WARNING: This program with compiled with SSE%s\n",query_cpu_support()>1?"2":"");
     fprintf(stderr,"            but this CPU claims to lack these instructions. **\n\n");
   }

#ifdef WIN_UNICODE
   (void)argc;
   (void)argv;

   init_console_utf8();
   init_commandline_arguments_utf8(&argc_utf8, &argv_utf8);
#endif

   output=0;
   shapemem.a_buf=0;
   shapemem.b_buf=0;
   shapemem.mute=960;
   shapemem.fs=0;

   /*Process options*/
   while(1)
   {
      c = getopt_long (argc_utf8, argv_utf8, "hV",
                       long_options, &option_index);
      if (c==-1)
         break;

      switch(c)
      {
      case 0:
         if (strcmp(long_options[option_index].name,"help")==0)
         {
            usage();
            quit(0);
         } else if (strcmp(long_options[option_index].name,"quiet")==0)
         {
            quiet = 1;
         } else if (strcmp(long_options[option_index].name,"version")==0)
         {
            version();
            quit(0);
         } else if (strcmp(long_options[option_index].name,"version-short")==0)
         {
            version_short();
            quit(0);
         } else if (strcmp(long_options[option_index].name,"no-dither")==0)
         {
            dither=0;
         } else if (strcmp(long_options[option_index].name,"rate")==0)
         {
            rate=atoi (optarg);
         } else if (strcmp(long_options[option_index].name,"gain")==0)
         {
            manual_gain=atof (optarg);
         }else if(strcmp(long_options[option_index].name,"save-range")==0){
          frange=fopen_utf8(optarg,"w");
          if(frange==NULL){
            perror(optarg);
            fprintf(stderr,"Could not open save-range file: %s\n",optarg);
            fprintf(stderr,"Must provide a writable file name.\n");
            quit(1);
          }
         } else if (strcmp(long_options[option_index].name,"packet-loss")==0)
         {
            loss_percent = atof(optarg);
         }
         break;
      case 'h':
         usage();
         quit(0);
         break;
      case 'V':
         version();
         quit(0);
         break;
      case '?':
         usage();
         quit(1);
         break;
      }
   }
   if (argc_utf8-optind!=2 && argc_utf8-optind!=1)
   {
      usage();
      quit(1);
   }
   inFile=argv_utf8[optind];

   /*Output to a file or playback?*/
   if (argc_utf8-optind==2){
     /*If we're outputting to a file, should we apply a wav header?*/
     int i;
     char *ext;
     outFile=argv_utf8[optind+1];
     ext=".wav";
     i=strlen(outFile)-4;
     wav_format=i>=0;
     while(wav_format&&ext&&outFile[i]) {
       wav_format&=tolower(outFile[i++])==*ext++;
     }
   }else {
     outFile="";
     wav_format=0;
     /*If playing to audio out, default the rate to 48000
       instead of the original rate. The original rate is
       only important for minimizing surprise about the rate
       of output files and preserving length, which aren't
       relevant for playback. Many audio devices sound
       better at 48kHz and not resampling also saves CPU.*/
     if(rate==0)rate=48000;
   }

   /*Open input file*/
   if (strcmp(inFile, "-")==0)
   {
#if defined WIN32 || defined _WIN32
      _setmode(_fileno(stdin), _O_BINARY);
#endif
      fin=stdin;
   }
   else
   {
      fin = fopen_utf8(inFile, "rb");
      if (!fin)
      {
         perror(inFile);
         quit(1);
      }
      close_in=1;
   }

   /* .opus files use the Ogg container to provide framing and timekeeping.
    * http://tools.ietf.org/html/draft-terriberry-oggopus
    * The easiest way to decode the Ogg container is to use libogg, so
    *  thats what we do here.
    * Using libogg is fairly straight forward-- you take your stream of bytes
    *  and feed them to ogg_sync_ and it periodically returns Ogg pages, you
    *  check if the pages belong to the stream you're decoding then you give
    *  them to libogg and it gives you packets. You decode the packets. The
    *  pages also provide timing information.*/
   ogg_sync_init(&oy);

   /*Main decoding loop*/
   while (1)
   {
      char *data;
      int i, nb_read;
      /*Get the ogg buffer for writing*/
      data = ogg_sync_buffer(&oy, 200);
      /*Read bitstream from input file*/
      nb_read = fread(data, sizeof(char), 200, fin);
      ogg_sync_wrote(&oy, nb_read);

      /*Loop for all complete pages we got (most likely only one)*/
      while (ogg_sync_pageout(&oy, &og)==1)
      {
         if (stream_init == 0) {
            ogg_stream_init(&os, ogg_page_serialno(&og));
            stream_init = 1;
         }
         if (ogg_page_serialno(&og) != os.serialno) {
            /* so all streams are read. */
            ogg_stream_reset_serialno(&os, ogg_page_serialno(&og));
         }
         /*Add page to the bitstream*/
         ogg_stream_pagein(&os, &og);
         page_granule = ogg_page_granulepos(&og);
         /*Extract all available packets*/
         while (ogg_stream_packetout(&os, &op) == 1)
         {
            /*OggOpus streams are identified by a magic string in the initial
              stream header.*/
            if (op.b_o_s && op.bytes>=8 && !memcmp(op.packet, "OpusHead", 8)) {
               if(!has_opus_stream)
               {
                 opus_serialno = os.serialno;
                 has_opus_stream = 1;
                 link_out = 0;
                 packet_count = 0;
                 eos = 0;
                 total_links++;
               } else {
                 fprintf(stderr,"Warning: ignoring opus stream %" I64FORMAT "\n",(long long)os.serialno);
               }
            }
            if (!has_opus_stream || os.serialno != opus_serialno)
               break;
            /*If first packet in a logical stream, process the Opus header*/
            if (packet_count==0)
            {
               st = process_header(&op, &rate, &mapping_family, &channels, &preskip, &gain, manual_gain, &streams, wav_format, quiet);
               if (!st)
                  quit(1);

               /*Remember how many samples at the front we were told to skip
                 so that we can adjust the timestamp counting.*/
               gran_offset=preskip;

               /*Setup the memory for the dithered output*/
               if(!shapemem.a_buf)
               {
                  shapemem.a_buf=calloc(channels,sizeof(float)*4);
                  shapemem.b_buf=calloc(channels,sizeof(float)*4);
                  shapemem.fs=rate;
               }
               if(!output)output=malloc(sizeof(float)*MAX_FRAME_SIZE*channels);

               /*Normal players should just play at 48000 or their maximum rate,
                 as described in the OggOpus spec.  But for commandline tools
                 like opusdec it can be desirable to exactly preserve the original
                 sampling rate and duration, so we have a resampler here.*/
               if (rate != 48000)
               {
                  int err;
                  resampler = speex_resampler_init(channels, 48000, rate, 5, &err);
                  if (err!=0)
                     fprintf(stderr, "resampler error: %s\n", speex_resampler_strerror(err));
                  speex_resampler_skip_zeros(resampler);
               }
               if(!fout)fout=out_file_open(outFile, &wav_format, rate, mapping_family, &channels);
            } else if (packet_count==1)
            {
               if (!quiet)
                  print_comments((char*)op.packet, op.bytes);
            } else {
               int ret;
               opus_int64 maxout;
               opus_int64 outsamp;
               int lost=0;
               if (loss_percent>0 && 100*((float)rand())/RAND_MAX<loss_percent)
                  lost=1;

               /*End of stream condition*/
               if (op.e_o_s && os.serialno == opus_serialno)eos=1; /* don't care for anything except opus eos */

               /*Are we simulating loss for this packet?*/
               if (!lost){
                  /*Decode Opus packet*/
                  ret = opus_multistream_decode_float(st, (unsigned char*)op.packet, op.bytes, output, MAX_FRAME_SIZE, 0);
               } else {
                  /*Extract the original duration.
                    Normally you wouldn't have it for a lost packet, but normally the
                    transports used on lossy channels will effectively tell you.
                    This avoids opusdec squaking when the decoded samples and
                    granpos mismatches.*/
                  opus_int32 lost_size;
                  lost_size = MAX_FRAME_SIZE;
                  if(op.bytes>0){
                    opus_int32 spp;
                    spp=opus_packet_get_nb_frames(op.packet,op.bytes);
                    if(spp>0){
                      spp*=opus_packet_get_samples_per_frame(op.packet,48000/*decoding_rate*/);
                      if(spp>0)lost_size=spp;
                    }
                  }
                  /*Invoke packet loss concealment.*/
                  ret = opus_multistream_decode_float(st, NULL, 0, output, lost_size, 0);
               }

               if(!quiet){
                  /*Display a progress spinner while decoding.*/
                  static const char spinner[]="|/-\\";
                  double coded_seconds = (double)audio_size/(channels*rate*sizeof(short));
                  if(coded_seconds>=last_coded_seconds+1){
                     fprintf(stderr,"\r[%c] %02d:%02d:%02d", spinner[last_spin&3],
                             (int)(coded_seconds/3600),(int)(coded_seconds/60)%60,
                             (int)(coded_seconds)%60);
                     fflush(stderr);
                     last_spin++;
                     last_coded_seconds=coded_seconds;
                  }
               }

               /*If the decoder returned less than zero, we have an error.*/
               if (ret<0)
               {
                  fprintf (stderr, "Decoding error: %s\n", opus_strerror(ret));
                  break;
               }
               frame_size = ret;

               /*If we're collecting --save-range debugging data, collect it now.*/
               if(frange!=NULL){
                 OpusDecoder *od;
                 opus_uint32 rngs[256];
                 for(i=0;i<streams;i++){
                   ret=opus_multistream_decoder_ctl(st,OPUS_MULTISTREAM_GET_DECODER_STATE(i,&od));
                   ret=opus_decoder_ctl(od,OPUS_GET_FINAL_RANGE(&rngs[i]));
                 }
                 save_range(frange,frame_size*(48000/48000/*decoding_rate*/),op.packet,op.bytes,
                            rngs,streams);
               }

               /*Apply header gain, if we're not using an opus library new
                 enough to do this internally.*/
               if (gain!=0){
                 for (i=0;i<frame_size*channels;i++)
                    output[i] *= gain;
               }

               /*This handles making sure that our output duration respects
                 the final end-trim by not letting the output sample count
                 get ahead of the granpos indicated value.*/
               maxout=((page_granule-gran_offset)*rate/48000)-link_out;
               outsamp=audio_write(output, channels, frame_size, fout, resampler, &preskip, dither?&shapemem:0, strlen(outFile)!=0,0>maxout?0:maxout);
               link_out+=outsamp;
               audio_size+=sizeof(short)*outsamp*channels;
            }
            packet_count++;
         }
         /*We're done, drain the resampler if we were using it.*/
         if(eos && resampler)
         {
            float *zeros;
            int drain;

            zeros=(float *)calloc(100*channels,sizeof(float));
            drain = speex_resampler_get_input_latency(resampler);
            do {
               opus_int64 outsamp;
               int tmp = drain;
               if (tmp > 100)
                  tmp = 100;
               outsamp=audio_write(zeros, channels, tmp, fout, resampler, NULL, &shapemem, strlen(outFile)!=0, ((page_granule-gran_offset)*rate/48000)-link_out);
               link_out+=outsamp;
               audio_size+=sizeof(short)*outsamp*channels;
               drain -= tmp;
            } while (drain>0);
            free(zeros);
            speex_resampler_destroy(resampler);
            resampler=NULL;
         }
         if(eos)
         {
            has_opus_stream=0;
            if(st)opus_multistream_decoder_destroy(st);
            st=NULL;
         }
      }
      if (feof(fin)) {
         if(!quiet) {
           fprintf(stderr, "\rDecoding complete.        \n");
           fflush(stderr);
         }
         break;
      }
   }

   /*If we were writing wav, go set the duration.*/
   if (strlen(outFile)!=0 && fout && wav_format>=0 && audio_size<0x7FFFFFFF)
   {
      if (fseek(fout,4,SEEK_SET)==0)
      {
         int tmp;
         tmp = le_int(audio_size+20+wav_format);
         if(fwrite(&tmp,4,1,fout)!=1)fprintf(stderr,"Error writing end length.\n");
         if (fseek(fout,16+wav_format,SEEK_CUR)==0)
         {
            tmp = le_int(audio_size);
            if(fwrite(&tmp,4,1,fout)!=1)fprintf(stderr,"Error writing header length.\n");
         } else
         {
            fprintf (stderr, "First seek worked, second didn't\n");
         }
      } else {
         fprintf (stderr, "Cannot seek on wave file, size will be incorrect\n");
      }
   }

   /*Did we make it to the end without recovering ANY opus logical streams?*/
   if(!total_links)fprintf (stderr, "This doesn't look like a Opus file\n");

   if (stream_init)
      ogg_stream_clear(&os);
   ogg_sync_clear(&oy);

#if defined WIN32 || defined _WIN32
   if (strlen(outFile)==0)
      WIN_Audio_close ();
#endif

   if(shapemem.a_buf)free(shapemem.a_buf);
   if(shapemem.b_buf)free(shapemem.b_buf);

   if(output)free(output);

   if(frange)fclose(frange);

   if (close_in)
      fclose(fin);
   if (fout != NULL)
      fclose(fout);

#ifdef WIN_UNICODE
   free_commandline_arguments_utf8(&argc_utf8, &argv_utf8);
   uninit_console_utf8();
#endif

   return 0;
}
  // Resamples input data to an output buffer, according to |mBufferSampleRate| and
  // the playbackRate/detune.
  // The number of frames consumed/produced depends on the amount of space
  // remaining in both the input and output buffer, and the playback rate (that
  // is, the ratio between the output samplerate and the input samplerate).
  void CopyFromInputBufferWithResampling(AudioBlock* aOutput,
                                         uint32_t aChannels,
                                         uint32_t* aOffsetWithinBlock,
                                         uint32_t aAvailableInOutput,
                                         StreamTime* aCurrentPosition,
                                         uint32_t aBufferMax)
  {
    if (*aOffsetWithinBlock == 0) {
      aOutput->AllocateChannels(aChannels);
    }
    SpeexResamplerState* resampler = mResampler;
    MOZ_ASSERT(aChannels > 0);

    if (mBufferPosition < aBufferMax) {
      uint32_t availableInInputBuffer = aBufferMax - mBufferPosition;
      uint32_t ratioNum, ratioDen;
      speex_resampler_get_ratio(resampler, &ratioNum, &ratioDen);
      // Limit the number of input samples copied and possibly
      // format-converted for resampling by estimating how many will be used.
      // This may be a little small if still filling the resampler with
      // initial data, but we'll get called again and it will work out.
      uint32_t inputLimit = aAvailableInOutput * ratioNum / ratioDen + 10;
      if (!BegunResampling()) {
        // First time the resampler is used.
        uint32_t inputLatency = speex_resampler_get_input_latency(resampler);
        inputLimit += inputLatency;
        // If starting after mStart, then play from the beginning of the
        // buffer, but correct for input latency.  If starting before mStart,
        // then align the resampler so that the time corresponding to the
        // first input sample is mStart.
        int64_t skipFracNum = static_cast<int64_t>(inputLatency) * ratioDen;
        double leadTicks = mStart - *aCurrentPosition;
        if (leadTicks > 0.0) {
          // Round to nearest output subsample supported by the resampler at
          // these rates.
          int64_t leadSubsamples = leadTicks * ratioNum + 0.5;
          MOZ_ASSERT(leadSubsamples <= skipFracNum,
                     "mBeginProcessing is wrong?");
          skipFracNum -= leadSubsamples;
        }
        speex_resampler_set_skip_frac_num(resampler,
                                  std::min<int64_t>(skipFracNum, UINT32_MAX));

        mBeginProcessing = -STREAM_TIME_MAX;
      }
      inputLimit = std::min(inputLimit, availableInInputBuffer);

      MOZ_ASSERT(mBuffer.mVolume == 1.0f);
      for (uint32_t i = 0; true; ) {
        uint32_t inSamples = inputLimit;

        uint32_t outSamples = aAvailableInOutput;
        float* outputData =
          aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock;

        if (mBuffer.mBufferFormat == AUDIO_FORMAT_FLOAT32) {
          const float* inputData =
            mBuffer.ChannelData<float>()[i] + mBufferPosition;
          WebAudioUtils::SpeexResamplerProcess(resampler, i,
                                               inputData, &inSamples,
                                               outputData, &outSamples);
        } else {
          MOZ_ASSERT(mBuffer.mBufferFormat == AUDIO_FORMAT_S16);
          const int16_t* inputData =
            mBuffer.ChannelData<int16_t>()[i] + mBufferPosition;
          WebAudioUtils::SpeexResamplerProcess(resampler, i,
                                               inputData, &inSamples,
                                               outputData, &outSamples);
        }
        if (++i == aChannels) {
          mBufferPosition += inSamples;
          MOZ_ASSERT(mBufferPosition <= mBufferEnd || mLoop);
          *aOffsetWithinBlock += outSamples;
          *aCurrentPosition += outSamples;
          if (inSamples == availableInInputBuffer && !mLoop) {
            // We'll feed in enough zeros to empty out the resampler's memory.
            // This handles the output latency as well as capturing the low
            // pass effects of the resample filter.
            mRemainingResamplerTail =
              2 * speex_resampler_get_input_latency(resampler) - 1;
          }
          return;
        }
      }
    } else {
      for (uint32_t i = 0; true; ) {
        uint32_t inSamples = mRemainingResamplerTail;
        uint32_t outSamples = aAvailableInOutput;
        float* outputData =
          aOutput->ChannelFloatsForWrite(i) + *aOffsetWithinBlock;

        // AudioDataValue* for aIn selects the function that does not try to
        // copy and format-convert input data.
        WebAudioUtils::SpeexResamplerProcess(resampler, i,
                         static_cast<AudioDataValue*>(nullptr), &inSamples,
                         outputData, &outSamples);
        if (++i == aChannels) {
          MOZ_ASSERT(inSamples <= mRemainingResamplerTail);
          mRemainingResamplerTail -= inSamples;
          *aOffsetWithinBlock += outSamples;
          *aCurrentPosition += outSamples;
          break;
        }
      }
    }
  }