Exemplo n.º 1
0
void identify_psrdatatype(struct spectra_info *s, int output)
{
    char *root, *suffix, ctmp[40];
    
    /* Split the filename into a rootname and a suffix */
    if (split_root_suffix(s->filenames[0], &root, &suffix) == 0) {
        fprintf(stderr, "Error!:  The input filename (%s) must have a suffix!\n\n", 
               s->filenames[0]);
        exit(1);
    } else {
        if (strcmp(suffix, "dat") == 0) s->datatype = DAT;
        else if (strcmp(suffix, "sdat") == 0) s->datatype = SDAT;
        else if (strncmp(suffix, "sub0", 4) == 0) s->datatype = SUBBAND;
        else if (strcmp(suffix, "events") == 0) s->datatype = EVENTS;
        else if (strcmp(suffix, "bcpm1") == 0 || 
                 strcmp(suffix, "bcpm2") == 0) s->datatype = BPP;
        else if (strcmp(suffix, "fil") == 0 || 
                 strcmp(suffix, "fb") == 0) s->datatype = SIGPROCFB;
        else if ((strcmp(suffix, "fits") == 0) ||
                 (strcmp(suffix, "sf") == 0)) {
            if (strstr(root, "spigot_5") != NULL) s->datatype = SPIGOT;
//            else if (is_PSRFITS(s->filenames[0])) s->datatype = PSRFITS;
            else s->datatype = PSRFITS;
        }
        else if (strcmp(suffix, "pkmb") == 0) s->datatype = SCAMP;
        else if (isdigit(suffix[0]) && 
                 isdigit(suffix[1]) &&
                 isdigit(suffix[2])) s->datatype = WAPP;
        else s->datatype = UNSET;
    }
    psrdatatype_description(ctmp, s->datatype);        
    if (output) printf("Assuming the data are %s format...\n", ctmp);
    free(root);
    free(suffix);
}
Exemplo n.º 2
0
int determine_padvals(char *maskfilenm, mask * obsmask, float *padvals[])
/* Determine reasonable padding values from the rfifind produced  */
/* *.stats file if it is available.  Return the allocated vector  */
/* (of length numchan) in padvals.  Return a '1' if the routine   */
/* used the stats file, return 0 if the padding was set to aeros. */
{
   FILE *statsfile;
   int ii, numchan, numint, ptsperint, lobin, numbetween;
   float **dataavg, tmp1, tmp2;
   char *statsfilenm, *root, *suffix;

   if (split_root_suffix(maskfilenm, &root, &suffix) == 0) {
      printf("\nThe mask filename (%s) must have a suffix!\n\n", maskfilenm);
      exit(1);
   } else {
      /* Determine the stats file name */
      statsfilenm = calloc(strlen(maskfilenm) + 2, sizeof(char));
      sprintf(statsfilenm, "%s.stats", root);
      free(root);
      free(suffix);
      *padvals = gen_fvect(obsmask->numchan);
      /* Check to see if the file exists */
      printf("Attempting to read the data statistics from '%s'...\n", statsfilenm);
      statsfile = chkfopen(statsfilenm, "rb");
      free(statsfilenm);
      if (statsfile) {          /* Read the stats */
         chkfread(&numchan, sizeof(int), 1, statsfile);
         chkfread(&numint, sizeof(int), 1, statsfile);
         chkfread(&ptsperint, sizeof(int), 1, statsfile);
         chkfread(&lobin, sizeof(int), 1, statsfile);
         chkfread(&numbetween, sizeof(int), 1, statsfile);
         dataavg = gen_fmatrix(numint, numchan);
         /* These are the powers */
         chkfread(dataavg[0], sizeof(float), numchan * numint, statsfile);
         /* These are the averages */
         chkfread(dataavg[0], sizeof(float), numchan * numint, statsfile);
         /* Set the padding values equal to the mid-80% channel averages */
         for (ii = 0; ii < numchan; ii++)
            calc_avgmedstd(dataavg[0] + ii, numint, 0.8, numchan,
                           *padvals + ii, &tmp1, &tmp2);
         printf
             ("...succeded.  Set the padding values equal to the mid-80%% channel averages.\n");
         vect_free(dataavg[0]);
         vect_free(dataavg);
         fclose(statsfile);
         return 1;
      } else {
         /* This is a temporary solution */
         for (ii = 0; ii < obsmask->numchan; ii++)
            (*padvals)[ii] = 0.0;
         printf("...failed.\n  Set the padding values to 0.\n");
         return 0;
      }
   }
}
Exemplo n.º 3
0
int main(int argc, char *argv[])
{
   FILE *infile, *outfile;
   int ii, numread;
   long long N = 0;
   float offset = 0.0, fbuffer[sizeof(float) * BUFFLEN];
   short sbuffer[sizeof(short) * BUFFLEN];
   char *outname;

   if (argc != 2 && argc != 3) {
      printf("\nUsage:  sdat2dat sdatfilename [offset to add]\n\n");
      exit(1);
   }
   printf("\n   Shorts to Floats Data Conversion Program\n\n");

   /* Get the root of the input filename and */
   /* generate the output filenames from it. */
   {
      char *rootnm, *suffix;

      split_root_suffix(argv[1], &rootnm, &suffix);
      outname = (char *) calloc(strlen(rootnm) + 5, sizeof(char));
      sprintf(outname, "%s.dat", rootnm);
      free(rootnm);
      free(suffix);
   }

   if (argc == 3) {
      offset = strtod(argv[2], NULL);
      printf(" Converting, adding %g, and writing to '%s'...", offset, outname);
   } else {
      printf(" Converting the data and writing to '%s'...", outname);
   }
   fflush(NULL);

   infile = chkfopen(argv[1], "rb");
   outfile = chkfopen(outname, "wb");
   while ((numread = chkfread(sbuffer, sizeof(short), BUFFLEN, infile))) {
      N += numread;
      for (ii = 0; ii < numread; ii++)
         fbuffer[ii] = (float) (sbuffer[ii]) + offset;
      fwrite(fbuffer, sizeof(float), numread, outfile);
   }
   printf("done.\n Wrote %lld points.\n\n", N);
   fclose(infile);
   fclose(outfile);
   free(outname);
   exit(0);
}
Exemplo n.º 4
0
int main(int argc, char *argv[])
{
   float minval = SMALLNUM, maxval = LARGENUM, inx = 0, iny = 0;
   int centern, offsetn;
   int zoomlevel, maxzoom = 0, minzoom, xid, psid;
   char *rootfilenm, inchar;
   datapart *lodp;
   dataview *dv;
   basicstats *statvals;

   if (argc == 1) {
      printf("\nusage:  exploredat datafilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive Data Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            November, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "dat") != 0) {
            printf
                ("\nInput file ('%s') must be a single PRESTO data file ('.dat')!\n\n",
                 argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a PRESTO data file ('.dat')!\n\n",
                argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
#ifdef USEMMAP
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in exploredat.c");
         printf("\n");
         exit(-1);
      }
      Ndat = buf.st_size / sizeof(float);
   }
   lodp = get_datapart(0, Ndat);
#else
   {
      int numsamp;

      datfile = chkfopen(argv[1], "rb");
      Ndat = chkfilelen(datfile, sizeof(float));
      numsamp = (Ndat > MAXPTS) ? (int) MAXPTS : (int) Ndat;
      lodp = get_datapart(0, numsamp);
   }
#endif

   /* Plot the initial data */

   centern = 0.5 * INITIALNUMPTS;
   if (centern > lodp->nn)
      centern = lodp->nn / 2;
   zoomlevel = LOGMAXDISPNUM - LOGINITIALNUMPTS;
   minzoom = LOGMAXDISPNUM - LOGMAXPTS;
   maxzoom = LOGMAXDISPNUM - LOGMINDISPNUM;
   dv = get_dataview(centern, zoomlevel, lodp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free_datapart(lodp);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(datfile);
#endif
      free(dv);
      exit(EXIT_FAILURE);
   }
   cpgask(0);
   cpgpage();
   offsetn = plot_dataview(dv, minval, maxval, 1.0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case ' ':                /* Toggle stats and sample plotting on/off */
         /* 0 = both, 1 = stats only, 2 = data only */
         plotstats++;
         plotstats = plotstats % 3;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'M':                /* Toggle between median and average */
      case 'm':
         usemedian = (usemedian) ? 0 : 1;
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'A':                /* Zoom in */
      case 'a':
         centern = inx + offsetn;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centern -= dv->numsamps + dv->numsamps / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centern -= dv->numsamps / 8;
         {                      /* Should probably get the previous chunk from the datfile... */
            double lowestr;

            lowestr = 0.5 * dv->numsamps;
            if (centern < lowestr)
               centern = lowestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '>':                /* Shift right 1 full screen */
         centern += dv->numsamps - dv->numsamps / 8;
      case '.':                /* Shift right 1/8 screen */
         centern += dv->numsamps / 8;
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         {                      /* Should probably get the next chunk from the datfile... */
            double highestr;

            highestr = lodp->nlo + lodp->nn - 0.5 * dv->numsamps;
            if (centern > highestr)
               centern = highestr;
         }
         free(dv);
         dv = get_dataview(centern, zoomlevel, lodp);
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case '+':                /* Increase height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval + 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '_':                /* Decrease height of top edge */
         {
            float dy;

            if (maxval > 0.5 * LARGENUM) {
               printf("  Auto-scaling of top edge is off.\n");
               if (minval < 0.5 * SMALLNUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = dv->maxval - minval;
               maxval = dv->maxval - 0.1 * dy;
            } else {
               if (minval < 0.5 * SMALLNUM)
                  dy = maxval - dv->minval;
               else
                  dy = maxval - minval;
               maxval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '=':                /* Increase height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval + 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval += 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case '-':                /* Decrease height of bottom edge */
         {
            float dy;

            if (minval < 0.5 * SMALLNUM) {
               printf("  Auto-scaling of bottom edge is off.\n");
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - dv->minval;
               else
                  dy = maxval - dv->minval;
               minval = dv->minval - 0.1 * dy;
            } else {
               if (maxval > 0.5 * LARGENUM)
                  dy = dv->maxval - minval;
               else
                  dy = maxval - minval;
               minval -= 0.1 * dy;
            }
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            break;
         }
      case 'S':                /* Auto-scale */
      case 's':
         printf("  Auto-scaling is on.\n");
         minval = SMALLNUM;
         maxval = LARGENUM;
         cpgpage();
         offsetn = plot_dataview(dv, minval, maxval, 1.0);
         break;
      case 'G':                /* Goto a time */
      case 'g':
         {
            char timestr[50];
            double time = -1.0;

            while (time < 0.0) {
               printf
                   ("  Enter the time (s) from the beginning of the file to go to:\n");
               fgets(timestr, 50, stdin);
               timestr[strlen(timestr) - 1] = '\0';
               time = atof(timestr);
            }
            offsetn = 0.0;
            centern = (int) (time / idata.dt + 0.5);
            printf("  Moving to time %.15g (data point %d).\n", time, centern);
            free(dv);
            dv = get_dataview(centern, zoomlevel, lodp);
            cpgpage();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 195, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'C';
            filename[len + 2] = 'P';
            filename[len + 3] = 'S';
            filename[len + 4] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            offsetn = plot_dataview(dv, minval, maxval, 1.0);
            cpgclos();
            cpgslct(xid);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'V':                /* Show the basic statistics for the current dataview */
      case 'v':
         statvals = calc_stats(dv, lodp);
         printf("\n  Statistics:\n"
                "    Low sample               %d\n"
                "    Number of samples        %d\n"
                "    Low time (s)             %.7g\n"
                "    Duration of samples (s)  %.7g\n"
                "    Maximum value            %.7g\n"
                "    Minimum value            %.7g\n"
                "    Average value            %.7g\n"
                "    Median value             %.7g\n"
                "    Standard Deviation       %.7g\n"
                "    Skewness                 %.7g\n"
                "    Kurtosis                 %.7g\n\n",
                dv->lon, dv->numsamps, dv->lon * idata.dt, dv->numsamps * idata.dt,
                statvals->max, statvals->min, statvals->average,
                statvals->median, statvals->stdev,
                statvals->skewness, statvals->kurtosis);
         free(statvals);
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(dv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_datapart(lodp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(datfile);
#endif
   printf("Done\n\n");
   return 0;
}
Exemplo n.º 5
0
void create_accelobs(accelobs * obs, infodata * idata, Cmdline * cmd, int usemmap)
{
   int ii, rootlen, input_shorts = 0;

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &(obs->rootfilenm), &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0 &&
             strcmp(suffix, "dat") != 0 && strcmp(suffix, "sdat") != 0) {
            printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         /* If the input file is a time series */
         if (strcmp(suffix, "dat") == 0 || strcmp(suffix, "sdat") == 0) {
            obs->dat_input = 1;
            obs->mmap_file = 0;
            if (strcmp(suffix, "sdat") == 0)
               input_shorts = 1;
         } else {
            obs->dat_input = 0;
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be an '.fft' or '.[s]dat' file!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   if (cmd->noharmpolishP)
       obs->use_harmonic_polishing = 0;
   else
       obs->use_harmonic_polishing = 1;  // now default

   /* Read the info file */

   readinf(idata, obs->rootfilenm);
   if (idata->object) {
      printf("Analyzing %s data from '%s'.\n\n",
             remove_whitespace(idata->object), cmd->argv[0]);
   } else {
      printf("Analyzing data from '%s'.\n\n", cmd->argv[0]);
   }

   /* Prepare the input time series if required */

   if (obs->dat_input) {
      FILE *datfile;
      long long filelen;
      float *ftmp;

      printf("Reading and FFTing the time series...");
      fflush(NULL);
      datfile = chkfopen(cmd->argv[0], "rb");

      /* Check the length of the file to see if we can handle it */
      filelen = chkfilelen(datfile, sizeof(float));
      if (input_shorts)
         filelen *= 2;
      if (filelen > 67108864) { /* Small since we need memory for the templates */
         printf("\nThe input time series is too large.  Use 'realfft' first.\n\n");
         exit(0);
      }

      /* Read the time series into a temporary buffer */
      /* Note:  The padding allows us to search very short time series */
      /*        using correlations without having to worry about       */
      /*        accessing data before or after the valid FFT freqs.    */
      if (input_shorts) {
         short *stmp = gen_svect(filelen);
         ftmp = gen_fvect(filelen+2*ACCEL_PADDING);
         for (ii = 0; ii < ACCEL_PADDING; ii++) {
             ftmp[ii] = 0.0;
             ftmp[ii+filelen+ACCEL_PADDING] = 0.0;
         }
         chkfread(stmp, sizeof(short), filelen, datfile);
         for (ii = 0; ii < filelen; ii++)
            ftmp[ii+ACCEL_PADDING] = (float) stmp[ii];
         free(stmp);
      } else {
         ftmp = read_float_file(datfile, -ACCEL_PADDING, filelen+2*ACCEL_PADDING);
      }
      /* Now, offset the pointer so that we are pointing at the first */
      /* bits of valid data.                                          */
      ftmp += ACCEL_PADDING;
      fclose(datfile);

      /* FFT it */
      realfft(ftmp, filelen, -1);
      obs->fftfile = NULL;
      obs->fft = (fcomplex *) ftmp;
      obs->numbins = filelen / 2;
      printf("done.\n");

      /* De-redden it */
      printf("Removing red-noise...");
      deredden(obs->fft, obs->numbins);
      printf("done.\n\n");
   }

   /* Determine the output filenames */

   rootlen = strlen(obs->rootfilenm) + 25;
   obs->candnm = (char *) calloc(rootlen, 1);
   obs->accelnm = (char *) calloc(rootlen, 1);
   obs->workfilenm = (char *) calloc(rootlen, 1);
   sprintf(obs->candnm, "%s_ACCEL_%d.cand", obs->rootfilenm, cmd->zmax);
   sprintf(obs->accelnm, "%s_ACCEL_%d", obs->rootfilenm, cmd->zmax);
   sprintf(obs->workfilenm, "%s_ACCEL_%d.txtcand", obs->rootfilenm, cmd->zmax);

   /* Open the FFT file if it exists appropriately */
   if (!obs->dat_input) {
      obs->fftfile = chkfopen(cmd->argv[0], "rb");
      obs->numbins = chkfilelen(obs->fftfile, sizeof(fcomplex));
      if (usemmap) {
         fclose(obs->fftfile);
         obs->fftfile = NULL;
         printf("Memory mapping the input FFT.  This may take a while...\n");
         obs->mmap_file = open(cmd->argv[0], O_RDONLY);
         if (obs->mmap_file == -1) {
            perror("\nError in open() in accel_utils.c");
            printf("\n");
            exit(-1);
         }
         obs->fft = (fcomplex *) mmap(0, sizeof(fcomplex) * obs->numbins, PROT_READ,
                                      MAP_SHARED, obs->mmap_file, 0);
         if (obs->fft == MAP_FAILED) {
            perror("\nError in mmap() in accel_utils.c");
            printf("Falling back to a non-mmaped approach\n");
            obs->fftfile = chkfopen(cmd->argv[0], "rb");
            obs->mmap_file = 0;
         }
      } else {
         obs->mmap_file = 0;
      }
   }

   /* Determine the other parameters */

   if (cmd->zmax % ACCEL_DZ)
      cmd->zmax = (cmd->zmax / ACCEL_DZ + 1) * ACCEL_DZ;
   if (!obs->dat_input)
      obs->workfile = chkfopen(obs->workfilenm, "w");
   obs->N = (long long) idata->N;
   if (cmd->photonP) {
      if (obs->mmap_file || obs->dat_input) {
         obs->nph = obs->fft[0].r;
      } else {
         obs->nph = get_numphotons(obs->fftfile);
      }
      printf("Normalizing powers using %.0f photons.\n\n", obs->nph);
   } else {
      obs->nph = 0.0;
      /* For short FFTs insure that we don't pick up the DC */
      /* or Nyquist component as part of the interpolation  */
      /* for higher frequencies.                            */
      if (cmd->locpowP) {
          obs->norm_type = 1;
          printf("Normalizing powers using local-power determination.\n\n");
      } else if (cmd->medianP) {
          obs->norm_type = 0;
          printf("Normalizing powers using median-blocks.\n\n");
      } else {
          obs->norm_type = 0;
          printf("Normalizing powers using median-blocks (default).\n\n");
      }
      if (obs->dat_input) {
         obs->fft[0].r = 1.0;
         obs->fft[0].i = 1.0;
      }
   }
   obs->lobin = cmd->lobin;
   if (obs->lobin > 0) {
      obs->nph = 0.0;
      if (cmd->lobin > obs->numbins - 1) {
         printf("\n'lobin' is greater than the total number of\n");
         printf("   frequencies in the data set.  Exiting.\n\n");
         exit(1);
      }
   }
   if (cmd->numharm != 1 &&
       cmd->numharm != 2 &&
       cmd->numharm != 4 && cmd->numharm != 8 && cmd->numharm != 16) {
      printf("\n'numharm' = %d must be a power-of-two!  Exiting\n\n", cmd->numharm);
      exit(1);
   }
   obs->numharmstages = twon_to_index(cmd->numharm) + 1;
   obs->dz = ACCEL_DZ;
   obs->numz = cmd->zmax * 2 + 1;
   obs->numbetween = ACCEL_NUMBETWEEN;
   obs->dt = idata->dt;
   obs->T = idata->dt * idata->N;
   if (cmd->floP) {
      obs->rlo = floor(cmd->flo * obs->T);
      if (obs->rlo < obs->lobin)
         obs->rlo = obs->lobin;
      if (obs->rlo > obs->numbins - 1) {
         printf("\nLow frequency to search 'flo' is greater than\n");
         printf("   the highest available frequency.  Exiting.\n\n");
         exit(1);
      }
   } else {
      if (cmd->rloP)
         obs->rlo = cmd->rlo;
      else
         obs->rlo = 1.0;
      if (obs->rlo < obs->lobin)
         obs->rlo = obs->lobin;
      if (obs->rlo > obs->numbins - 1) {
         printf("\nLow frequency to search 'rlo' is greater than\n");
         printf("   the available number of points.  Exiting.\n\n");
         exit(1);
      }
   }
   obs->highestbin = obs->numbins - 1;
   if (cmd->fhiP) {
      obs->highestbin = ceil(cmd->fhi * obs->T);
      if (obs->highestbin > obs->numbins - 1)
         obs->highestbin = obs->numbins - 1;
      obs->rhi = obs->highestbin;
      if (obs->highestbin < obs->rlo) {
         printf("\nHigh frequency to search 'fhi' is less than\n");
         printf("   the lowest frequency to search 'flo'.  Exiting.\n\n");
         exit(1);
      }
   } else if (cmd->rhiP) {
      obs->highestbin = cmd->rhi;
      if (obs->highestbin > obs->numbins - 1)
         obs->highestbin = obs->numbins - 1;
      obs->rhi = obs->highestbin;
      if (obs->highestbin < obs->rlo) {
         printf("\nHigh frequency to search 'rhi' is less than\n");
         printf("   the lowest frequency to search 'rlo'.  Exiting.\n\n");
         exit(1);
      }
   }
   obs->dr = ACCEL_DR;
   obs->zhi = cmd->zmax;
   obs->zlo = -cmd->zmax;
   obs->sigma = cmd->sigma;
   obs->powcut = (float *) malloc(obs->numharmstages * sizeof(float));
   obs->numindep = (long long *) malloc(obs->numharmstages * sizeof(long long));
   for (ii = 0; ii < obs->numharmstages; ii++) {
      if (obs->numz == 1)
         obs->numindep[ii] = (obs->rhi - obs->rlo) / index_to_twon(ii);
      else
         /* The numz+1 takes care of the small amount of  */
         /* search we get above zmax and below zmin.      */
         obs->numindep[ii] = (obs->rhi - obs->rlo) * (obs->numz + 1) *
             (obs->dz / 6.95) / index_to_twon(ii);
      obs->powcut[ii] = power_for_sigma(obs->sigma,
                                        index_to_twon(ii), obs->numindep[ii]);
   }
   obs->numzap = 0;
   /*
      if (zapfile!=NULL)
      obs->numzap = get_birdies(cmd->zapfile, obs->T, obs->baryv, 
      &(obs->lobins), &(obs->hibins));
      else
      obs->numzap = 0;
    */
}
Exemplo n.º 6
0
int main(int argc, char *argv[])
{
   FILE *bytemaskfile;
   float **dataavg = NULL, **datastd = NULL, **datapow = NULL;
   float *chandata = NULL, powavg, powstd, powmax;
   float inttime, norm, fracterror = RFI_FRACTERROR;
   float *rawdata = NULL;
   unsigned char **bytemask = NULL;
   short *srawdata = NULL;
   char *outfilenm, *statsfilenm, *maskfilenm;
   char *bytemaskfilenm, *rfifilenm;
   int numchan = 0, numint = 0, newper = 0, oldper = 0, good_padvals = 0;
   int blocksperint, ptsperint = 0, ptsperblock = 0, padding = 0;
   int numcands, candnum, numrfi = 0, numrfivect = NUM_RFI_VECT;
   int ii, jj, kk, slen, numread = 0, insubs = 0;
   int harmsum = RFI_NUMHARMSUM, lobin = RFI_LOBIN, numbetween = RFI_NUMBETWEEN;
   double davg, dvar, freq;
   struct spectra_info s;
   presto_interptype interptype;
   rfi *rfivect = NULL;
   mask oldmask, newmask;
   fftcand *cands;
   infodata idata;
   Cmdline *cmd;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(0);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);
   spectra_info_set_defaults(&s);
   s.filenames = cmd->argv;
   s.num_files = cmd->argc;
   s.clip_sigma = cmd->clip;
   // -1 causes the data to determine if we use weights, scales, & 
   // offsets for PSRFITS or flip the band for any data type where
   // we can figure that out with the data
   s.apply_flipband = (cmd->invertP) ? 1 : -1;
   s.apply_weight = (cmd->noweightsP) ? 0 : -1;
   s.apply_scale  = (cmd->noscalesP) ? 0 : -1;
   s.apply_offset = (cmd->nooffsetsP) ? 0 : -1;
   s.remove_zerodm = (cmd->zerodmP) ? 1 : 0;
   if (cmd->noclipP) {
       cmd->clip = 0.0;
       s.clip_sigma = 0.0;
   }
   if (cmd->ifsP) {
       // 0 = default or summed, 1-4 are possible also
       s.use_poln = cmd->ifs;
   }
   slen = strlen(cmd->outfile) + 20;

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("               Pulsar Data RFI Finder\n");
   printf("                 by Scott M. Ransom\n\n");

   /* The following is the root of all the output files */

   outfilenm = (char *) calloc(slen, sizeof(char));
   sprintf(outfilenm, "%s_rfifind", cmd->outfile);

   /* And here are the output file names */

   maskfilenm = (char *) calloc(slen, sizeof(char));
   sprintf(maskfilenm, "%s.mask", outfilenm);
   bytemaskfilenm = (char *) calloc(slen, sizeof(char));
   sprintf(bytemaskfilenm, "%s.bytemask", outfilenm);
   rfifilenm = (char *) calloc(slen, sizeof(char));
   sprintf(rfifilenm, "%s.rfi", outfilenm);
   statsfilenm = (char *) calloc(slen, sizeof(char));
   sprintf(statsfilenm, "%s.stats", outfilenm);
   sprintf(idata.name, "%s", outfilenm);

   if (RAWDATA) {
       if (cmd->filterbankP) s.datatype = SIGPROCFB;
       else if (cmd->psrfitsP) s.datatype = PSRFITS;
       else if (cmd->pkmbP) s.datatype = SCAMP;
       else if (cmd->bcpmP) s.datatype = BPP;
       else if (cmd->wappP) s.datatype = WAPP;
       else if (cmd->spigotP) s.datatype = SPIGOT;
   } else {  // Attempt to auto-identify the data
       identify_psrdatatype(&s, 1);
       if (s.datatype==SIGPROCFB) cmd->filterbankP = 1;
       else if (s.datatype==PSRFITS) cmd->psrfitsP = 1;
       else if (s.datatype==SCAMP) cmd->pkmbP = 1;
       else if (s.datatype==BPP) cmd->bcpmP = 1;
       else if (s.datatype==WAPP) cmd->wappP = 1;
       else if (s.datatype==SPIGOT) cmd->spigotP = 1;
       else if (s.datatype==SUBBAND) insubs = 1;
       else {
           printf("Error:  Unable to identify input data files.  Please specify type.\n\n");
           exit(1);
       }
   }

   if (!cmd->nocomputeP) {

       if (RAWDATA || insubs) {
           char description[40];
           psrdatatype_description(description, s.datatype);
           if (s.num_files > 1)
               printf("Reading %s data from %d files:\n", description, s.num_files);
           else
               printf("Reading %s data from 1 file:\n", description);
           if (insubs) s.files = (FILE **)malloc(sizeof(FILE *) * s.num_files);
           for (ii = 0; ii < s.num_files; ii++) {
               printf("  '%s'\n", cmd->argv[ii]);
               if (insubs) s.files[ii] = chkfopen(cmd->argv[ii], "rb");
           }
           printf("\n");
       }           

       if (RAWDATA) {
           read_rawdata_files(&s);
           print_spectra_info_summary(&s);
           spectra_info_to_inf(&s, &idata);
           ptsperblock = s.spectra_per_subint;
           numchan = s.num_channels;
           idata.dm = 0.0;
       }
       
       if (insubs) {
           /* Set-up values if we are using subbands */
           char *tmpname, *root, *suffix;
           if (split_root_suffix(s.filenames[0], &root, &suffix) == 0) {
               printf("Error:  The input filename (%s) must have a suffix!\n\n", s.filenames[0]);
               exit(1);
           }
           if (strncmp(suffix, "sub", 3) == 0) {
               tmpname = calloc(strlen(root) + 6, 1);
               sprintf(tmpname, "%s.sub", root);
               readinf(&idata, tmpname);
               free(tmpname);
           } else {
               printf("\nThe input files (%s) must be subbands!  (i.e. *.sub##)\n\n",
                      s.filenames[0]);
               exit(1);
           }
           free(root);
           free(suffix);
           ptsperblock = 1;
           /* Compensate for the fact that we have subbands and not channels */
           idata.freq = idata.freq - 0.5 * idata.chan_wid +
               0.5 * idata.chan_wid * (idata.num_chan / s.num_files);
           idata.chan_wid = idata.num_chan / s.num_files * idata.chan_wid;
           idata.num_chan = numchan = s.num_files;
           idata.dm = 0.0;
           sprintf(idata.name, "%s", outfilenm);
           writeinf(&idata);
           s.padvals = gen_fvect(s.num_files);
           for (ii = 0 ; ii < s.num_files ; ii++)
               s.padvals[ii] = 0.0;
       }

       /* Read an input mask if wanted */
       if (cmd->maskfileP) {
           read_mask(cmd->maskfile, &oldmask);
           printf("Read old mask information from '%s'\n\n", cmd->maskfile);
           good_padvals = determine_padvals(cmd->maskfile, &oldmask, s.padvals);
       } else {
           oldmask.numchan = oldmask.numint = 0;
       }

      /* The number of data points and blocks to work with at a time */

      if (cmd->blocksP) {
         blocksperint = cmd->blocks;
         cmd->time = blocksperint * ptsperblock * idata.dt;
      } else {
         blocksperint = (int) (cmd->time / (ptsperblock * idata.dt) + 0.5);
      }
      ptsperint = blocksperint * ptsperblock;
      numint = (long long) idata.N / ptsperint;
      if ((long long) idata.N % ptsperint)
         numint++;
      inttime = ptsperint * idata.dt;
      printf("Analyzing data sections of length %d points (%.6g sec).\n",
             ptsperint, inttime);
      {
         int *factors, numfactors;

         factors = get_prime_factors(ptsperint, &numfactors);
         printf("  Prime factors are:  ");
         for (ii = 0; ii < numfactors; ii++)
            printf("%d ", factors[ii]);
         printf("\n");
         if (factors[numfactors - 1] > 13) {
            printf("  WARNING:  The largest prime factor is pretty big!  This will\n"
                   "            cause the FFTs to take a long time to compute.  I\n"
                   "            recommend choosing a different -time value.\n");
         }
         printf("\n");
         free(factors);
      }

      /* Allocate our workarrays */

      if (RAWDATA)
          rawdata = gen_fvect(idata.num_chan * ptsperblock * blocksperint);
      else if (insubs)
          srawdata = gen_svect(idata.num_chan * ptsperblock * blocksperint);
      dataavg = gen_fmatrix(numint, numchan);
      datastd = gen_fmatrix(numint, numchan);
      datapow = gen_fmatrix(numint, numchan);
      chandata = gen_fvect(ptsperint);
      bytemask = gen_bmatrix(numint, numchan);
      for (ii = 0; ii < numint; ii++)
         for (jj = 0; jj < numchan; jj++)
            bytemask[ii][jj] = GOODDATA;
      rfivect = rfi_vector(rfivect, numchan, numint, 0, numrfivect);
      if (numbetween == 2)
         interptype = INTERBIN;
      else
         interptype = INTERPOLATE;

      /* Main loop */

      printf("Writing mask data  to '%s'.\n", maskfilenm);
      printf("Writing  RFI data  to '%s'.\n", rfifilenm);
      printf("Writing statistics to '%s'.\n\n", statsfilenm);
      printf("Massaging the data ...\n\n");
      printf("Amount Complete = %3d%%", oldper);
      fflush(stdout);

      for (ii = 0; ii < numint; ii++) { /* Loop over the intervals */
         newper = (int) ((float) ii / numint * 100.0 + 0.5);
         if (newper > oldper) {
            printf("\rAmount Complete = %3d%%", newper);
            fflush(stdout);
            oldper = newper;
         }

         /* Read a chunk of data */

         if (RAWDATA)
             numread = read_rawblocks(rawdata, blocksperint, &s, &padding);
         else if (insubs)
             numread = read_subband_rawblocks(s.files, s.num_files,
                                              srawdata, blocksperint, &padding);

         if (padding)
            for (jj = 0; jj < numchan; jj++)
               bytemask[ii][jj] |= PADDING;

         for (jj = 0; jj < numchan; jj++) {     /* Loop over the channels */

             if (RAWDATA)
                 get_channel(chandata, jj, blocksperint, rawdata, &s);
             else if (insubs)
                 get_subband(jj, chandata, srawdata, blocksperint);

            /* Calculate the averages and standard deviations */
            /* for each point in time.                        */

            if (padding) {
                dataavg[ii][jj] = 0.0;
                datastd[ii][jj] = 0.0;
                datapow[ii][jj] = 1.0;
            } else {
               avg_var(chandata, ptsperint, &davg, &dvar);
               dataavg[ii][jj] = davg;
               datastd[ii][jj] = sqrt(dvar);
               realfft(chandata, ptsperint, -1);
               numcands = 0;
               norm = datastd[ii][jj] * datastd[ii][jj] * ptsperint;
               if (norm == 0.0)
                  norm = (chandata[0] == 0.0) ? 1.0 : chandata[0];
               cands = search_fft((fcomplex *) chandata, ptsperint / 2,
                                  lobin, ptsperint / 2, harmsum,
                                  numbetween, interptype, norm, cmd->freqsigma,
                                  &numcands, &powavg, &powstd, &powmax);
               datapow[ii][jj] = powmax;

               /* Record the birdies */

               if (numcands) {
                  for (kk = 0; kk < numcands; kk++) {
                     freq = cands[kk].r / inttime;
                     candnum = find_rfi(rfivect, numrfi, freq, RFI_FRACTERROR);
                     if (candnum >= 0) {
                        update_rfi(rfivect + candnum, freq, cands[kk].sig, jj, ii);
                     } else {
                        update_rfi(rfivect + numrfi, freq, cands[kk].sig, jj, ii);
                        numrfi++;
                        if (numrfi == numrfivect) {
                           numrfivect *= 2;
                           rfivect = rfi_vector(rfivect, numchan, numint,
                                                numrfivect / 2, numrfivect);
                        }
                     }
                  }
                  free(cands);
               }
            }
         }
      }
      printf("\rAmount Complete = 100%%\n");

      /* Write the data to the output files */

      write_rfifile(rfifilenm, rfivect, numrfi, numchan, numint,
                    ptsperint, lobin, numbetween, harmsum,
                    fracterror, cmd->freqsigma);
      write_statsfile(statsfilenm, datapow[0], dataavg[0], datastd[0],
                      numchan, numint, ptsperint, lobin, numbetween);

   } else {                     /* If "-nocompute" */
      float freqsigma;

      /* Read the data from the output files */

      printf("Reading  RFI data  from '%s'.\n", rfifilenm);
      printf("Reading statistics from '%s'.\n", statsfilenm);
      readinf(&idata, outfilenm);
      read_rfifile(rfifilenm, &rfivect, &numrfi, &numchan, &numint,
                   &ptsperint, &lobin, &numbetween, &harmsum,
                   &fracterror, &freqsigma);
      numrfivect = numrfi;
      read_statsfile(statsfilenm, &datapow, &dataavg, &datastd,
                     &numchan, &numint, &ptsperint, &lobin, &numbetween);
      bytemask = gen_bmatrix(numint, numchan);
      printf("Reading  bytemask  from '%s'.\n\n", bytemaskfilenm);
      bytemaskfile = chkfopen(bytemaskfilenm, "rb");
      chkfread(bytemask[0], numint * numchan, 1, bytemaskfile);
      fclose(bytemaskfile);
      for (ii = 0; ii < numint; ii++)
         for (jj = 0; jj < numchan; jj++)
            bytemask[ii][jj] &= PADDING;        /* Clear all but the PADDING bits */
      inttime = ptsperint * idata.dt;
   }

   /* Make the plots and set the mask */

   {
      int *zapints, *zapchan;
      int numzapints = 0, numzapchan = 0;

      if (cmd->zapintsstrP) {
         zapints = ranges_to_ivect(cmd->zapintsstr, 0, numint - 1, &numzapints);
         zapints = (int *) realloc(zapints, (size_t) (sizeof(int) * numint));
      } else {
         zapints = gen_ivect(numint);
      }
      if (cmd->zapchanstrP) {
         zapchan = ranges_to_ivect(cmd->zapchanstr, 0, numchan - 1, &numzapchan);
         zapchan = (int *) realloc(zapchan, (size_t) (sizeof(int) * numchan));
      } else {
         zapchan = gen_ivect(numchan);
      }
      rfifind_plot(numchan, numint, ptsperint, cmd->timesigma, cmd->freqsigma,
                   cmd->inttrigfrac, cmd->chantrigfrac,
                   dataavg, datastd, datapow, zapchan, numzapchan,
                   zapints, numzapints, &idata, bytemask,
                   &oldmask, &newmask, rfivect, numrfi,
                   cmd->rfixwinP, cmd->rfipsP, cmd->xwinP);

      vect_free(zapints);
      vect_free(zapchan);
   }

   /* Write the new mask and bytemask to the file */

   write_mask(maskfilenm, &newmask);
   bytemaskfile = chkfopen(bytemaskfilenm, "wb");
   chkfwrite(bytemask[0], numint * numchan, 1, bytemaskfile);
   fclose(bytemaskfile);

   /* Determine the percent of good and bad data */

   {
      int numpad = 0, numbad = 0, numgood = 0;

      for (ii = 0; ii < numint; ii++) {
         for (jj = 0; jj < numchan; jj++) {
            if (bytemask[ii][jj] == GOODDATA) {
               numgood++;
            } else {
               if (bytemask[ii][jj] & PADDING)
                  numpad++;
               else
                  numbad++;
            }
         }
      }
      printf("\nTotal number of intervals in the data:  %d\n\n", numint * numchan);
      printf("  Number of padded intervals:  %7d  (%6.3f%%)\n",
             numpad, (float) numpad / (float) (numint * numchan) * 100.0);
      printf("  Number of  good  intervals:  %7d  (%6.3f%%)\n",
             numgood, (float) numgood / (float) (numint * numchan) * 100.0);
      printf("  Number of  bad   intervals:  %7d  (%6.3f%%)\n\n",
             numbad, (float) numbad / (float) (numint * numchan) * 100.0);
      qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_sigma);
      printf("  Ten most significant birdies:\n");
      printf("#  Sigma     Period(ms)      Freq(Hz)       Number \n");
      printf("----------------------------------------------------\n");
      for (ii = 0; ii < 10; ii++) {
         double pperr;
         char temp1[40], temp2[40];

         if (rfivect[ii].freq_var == 0.0) {
            pperr = 0.0;
            sprintf(temp1, " %-14g", rfivect[ii].freq_avg);
            sprintf(temp2, " %-14g", 1000.0 / rfivect[ii].freq_avg);
         } else {
            pperr = 1000.0 * sqrt(rfivect[ii].freq_var) /
                (rfivect[ii].freq_avg * rfivect[ii].freq_avg);
            nice_output_2(temp1, rfivect[ii].freq_avg, sqrt(rfivect[ii].freq_var),
                          -15);
            nice_output_2(temp2, 1000.0 / rfivect[ii].freq_avg, pperr, -15);
         }
         printf("%-2d %-8.2f %13s %13s %-8d\n", ii + 1, rfivect[ii].sigma_avg,
                temp2, temp1, rfivect[ii].numobs);
      }
      qsort(rfivect, numrfi, sizeof(rfi), compare_rfi_numobs);
      printf("\n  Ten most numerous birdies:\n");
      printf("#  Number    Period(ms)      Freq(Hz)       Sigma \n");
      printf("----------------------------------------------------\n");
      for (ii = 0; ii < 10; ii++) {
         double pperr;
         char temp1[40], temp2[40];

         if (rfivect[ii].freq_var == 0.0) {
            pperr = 0.0;
            sprintf(temp1, " %-14g", rfivect[ii].freq_avg);
            sprintf(temp2, " %-14g", 1000.0 / rfivect[ii].freq_avg);
         } else {
            pperr = 1000.0 * sqrt(rfivect[ii].freq_var) /
                (rfivect[ii].freq_avg * rfivect[ii].freq_avg);
            nice_output_2(temp1, rfivect[ii].freq_avg, sqrt(rfivect[ii].freq_var),
                          -15);
            nice_output_2(temp2, 1000.0 / rfivect[ii].freq_avg, pperr, -15);
         }
         printf("%-2d %-8d %13s %13s %-8.2f\n", ii + 1, rfivect[ii].numobs,
                temp2, temp1, rfivect[ii].sigma_avg);
      }
      printf("\nDone.\n\n");
   }

   /* Close the files and cleanup */

   free_rfi_vector(rfivect, numrfivect);
   free_mask(newmask);
   if (cmd->maskfileP)
      free_mask(oldmask);
   free(outfilenm);
   free(statsfilenm);
   free(bytemaskfilenm);
   free(maskfilenm);
   free(rfifilenm);
   vect_free(dataavg[0]);
   vect_free(dataavg);
   vect_free(datastd[0]);
   vect_free(datastd);
   vect_free(datapow[0]);
   vect_free(datapow);
   vect_free(bytemask[0]);
   vect_free(bytemask);
   if (!cmd->nocomputeP) {
       //  Close all the raw files and free their vectors
       close_rawfiles(&s);
       vect_free(chandata);
       if (insubs)
           vect_free(srawdata);
       else
           vect_free(rawdata);
   }
   return (0);
}
Exemplo n.º 7
0
int main(int argc, char *argv[])
{
   FILE *infile, *outfile;
   int ii, jj, bufflen = 10000, numread;
   long long N = 0;
   float *inbuffer = NULL, *outbuffer = NULL;
   short useshorts = 0, *sinbuffer = NULL, *soutbuffer = NULL;
   char *rootfilenm, *outname;
   infodata idata;
   Cmdline *cmd;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Time Series Downsampling Routine\n");
   printf("               Sept, 2002\n\n");

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "sdat") == 0)
            useshorts = 1;
         if (strcmp(suffix, "dat") != 0 && strcmp(suffix, "sdat") != 0) {
            printf
                ("\nInput file ('%s') must be a time series ('.dat' or '.sdat')!\n\n",
                 cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a time series ('.dat' or '.sdat')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
      if (cmd->outfileP) {
         outname = cmd->outfile;
      } else {
         outname = (char *) calloc(strlen(rootfilenm) + 11, sizeof(char));
         if (useshorts)
            sprintf(outname, "%s_D%d.sdat", rootfilenm, cmd->factor);
         else
            sprintf(outname, "%s_D%d.dat", rootfilenm, cmd->factor);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Downsampling %s data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Downsampling data from '%s'.\n\n", cmd->argv[0]);
   }

   /* Open files and create arrays */

   infile = chkfopen(argv[1], "rb");
   outfile = chkfopen(outname, "wb");

   /* Read and downsample */

   if (useshorts) {
      sinbuffer = gen_svect(bufflen * cmd->factor);
      soutbuffer = gen_svect(bufflen);
      while ((numread =
              chkfread(sinbuffer, sizeof(short), bufflen * cmd->factor, infile))) {
         for (ii = 0; ii < numread / cmd->factor; ii++) {
            soutbuffer[ii] = 0;
            for (jj = 0; jj < cmd->factor; jj++)
               soutbuffer[ii] += sinbuffer[cmd->factor * ii + jj];
         }
         chkfwrite(soutbuffer, sizeof(short), numread / cmd->factor, outfile);
         N += numread / cmd->factor;
      }
      vect_free(sinbuffer);
      vect_free(soutbuffer);
   } else {
      inbuffer = gen_fvect(bufflen * cmd->factor);
      outbuffer = gen_fvect(bufflen);
      while ((numread =
              chkfread(inbuffer, sizeof(float), bufflen * cmd->factor, infile))) {
         for (ii = 0; ii < numread / cmd->factor; ii++) {
            outbuffer[ii] = 0;
            for (jj = 0; jj < cmd->factor; jj++)
               outbuffer[ii] += inbuffer[cmd->factor * ii + jj];
         }
         chkfwrite(outbuffer, sizeof(float), numread / cmd->factor, outfile);
         N += numread / cmd->factor;
      }
      vect_free(inbuffer);
      vect_free(outbuffer);
   }
   printf("Done.  Wrote %lld points.\n\n", N);

   /* Write the new info file */

   idata.dt = idata.dt * cmd->factor;
   idata.numonoff = 0;
   idata.N = (double) N;
   strncpy(idata.name, outname, strlen(outname) - 4);
   if (useshorts)
      idata.name[strlen(outname) - 5] = '\0';
   else
      idata.name[strlen(outname) - 4] = '\0';
   writeinf(&idata);

   fclose(infile);
   fclose(outfile);
   free(rootfilenm);
   if (!cmd->outfileP)
      free(outname);
   exit(0);
}
Exemplo n.º 8
0
int main(int argc, char *argv[])
{
   /* Any variable that begins with 't' means topocentric */
   /* Any variable that begins with 'b' means barycentric */
   FILE **outfiles = NULL;
   float **outdata;
   double dtmp, *dms, avgdm = 0.0, dsdt = 0, maxdm;
   double *dispdt, tlotoa = 0.0, blotoa = 0.0, BW_ddelay = 0.0;
   double max = -9.9E30, min = 9.9E30, var = 0.0, avg = 0.0;
   double *btoa = NULL, *ttoa = NULL, avgvoverc = 0.0;
   char obs[3], ephem[10], rastring[50], decstring[50];
   long totnumtowrite, totwrote = 0, padwrote = 0, datawrote = 0;
   int *idispdt, **offsets;
   int ii, jj, numadded = 0, numremoved = 0, padding = 0, good_inputs = 1;
   int numbarypts = 0, numread = 0, numtowrite = 0;
   int padtowrite = 0, statnum = 0;
   int numdiffbins = 0, *diffbins = NULL, *diffbinptr = NULL, good_padvals = 0;
   double local_lodm;
   char *datafilenm, *outpath, *outfilenm, *hostname;
   struct spectra_info s;
   infodata idata;
   mask obsmask;

   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);
#ifdef _OPENMP
   omp_set_num_threads(1); // Explicitly turn off OpenMP
#endif
   set_using_MPI();
   {
      FILE *hostfile;
      char tmpname[100];
      int retval;

      hostfile = chkfopen("/etc/hostname", "r");
      retval = fscanf(hostfile, "%s\n", tmpname);
      if (retval==0) {
          printf("Warning:  error reading /etc/hostname on proc %d\n", myid);
      }
      hostname = (char *) calloc(strlen(tmpname) + 1, 1);
      memcpy(hostname, tmpname, strlen(tmpname));
      fclose(hostfile);
   }

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      if (myid == 0) {
         Program = argv[0];
         usage();
      }
      MPI_Finalize();
      exit(1);
   }

   make_maskbase_struct();
   make_spectra_info_struct();

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);
   spectra_info_set_defaults(&s);
   // If we are zeroDMing, make sure that clipping is off.
   if (cmd->zerodmP) cmd->noclipP = 1;
   s.clip_sigma = cmd->clip;
   if (cmd->noclipP) {
       cmd->clip = 0.0;
       s.clip_sigma = 0.0;
   }
   if (cmd->ifsP) {
       // 0 = default or summed, 1-4 are possible also
       s.use_poln = cmd->ifs + 1;
   }
   if (!cmd->numoutP)
      cmd->numout = LONG_MAX;

#ifdef DEBUG
   showOptionValues();
#endif

   if (myid == 0) {             /* Master node only */
      printf("\n\n");
      printf("      Parallel Pulsar Subband De-dispersion Routine\n");
      printf("                 by Scott M. Ransom\n\n");

      s.filenames = cmd->argv;
      s.num_files = cmd->argc;
      s.clip_sigma = cmd->clip;
      // -1 causes the data to determine if we use weights, scales, & 
      // offsets for PSRFITS or flip the band for any data type where
      // we can figure that out with the data
      s.apply_flipband = (cmd->invertP) ? 1 : -1;
      s.apply_weight = (cmd->noweightsP) ? 0 : -1;
      s.apply_scale  = (cmd->noscalesP) ? 0 : -1;
      s.apply_offset = (cmd->nooffsetsP) ? 0 : -1;
      s.remove_zerodm = (cmd->zerodmP) ? 1 : 0;

      if (RAWDATA) {
          if (cmd->filterbankP) s.datatype = SIGPROCFB;
          else if (cmd->psrfitsP) s.datatype = PSRFITS;
          else if (cmd->pkmbP) s.datatype = SCAMP;
          else if (cmd->bcpmP) s.datatype = BPP;
          else if (cmd->wappP) s.datatype = WAPP;
          else if (cmd->spigotP) s.datatype = SPIGOT;
      } else {  // Attempt to auto-identify the data
          identify_psrdatatype(&s, 1);
          if (s.datatype==SIGPROCFB) cmd->filterbankP = 1;
          else if (s.datatype==PSRFITS) cmd->psrfitsP = 1;
          else if (s.datatype==SCAMP) cmd->pkmbP = 1;
          else if (s.datatype==BPP) cmd->bcpmP = 1;
          else if (s.datatype==WAPP) cmd->wappP = 1;
          else if (s.datatype==SPIGOT) cmd->spigotP = 1;
          else if (s.datatype==SUBBAND) insubs = 1;
          else {
              printf("\nError:  Unable to identify input data files.  Please specify type.\n\n");
              good_inputs = 0;
          }
      }
      // So far we can only handle PSRFITS, filterbank, and subbands
      if (s.datatype!=PSRFITS && 
          s.datatype!=SIGPROCFB && 
          s.datatype!=SUBBAND) good_inputs = 0;

      // For subbanded data
      if (!RAWDATA) s.files = (FILE **)malloc(sizeof(FILE *) * s.num_files);

      if (good_inputs && (RAWDATA || insubs)) {
          char description[40];
          psrdatatype_description(description, s.datatype);
          if (s.num_files > 1)
              printf("Reading %s data from %d files:\n", description, s.num_files);
          else
              printf("Reading %s data from 1 file:\n", description);
          for (ii = 0; ii < s.num_files; ii++) {
              printf("  '%s'\n", cmd->argv[ii]);
              if (insubs) s.files[ii] = chkfopen(s.filenames[ii], "rb");
          }
          printf("\n");
          if (RAWDATA) {
              read_rawdata_files(&s);
              print_spectra_info_summary(&s);
              spectra_info_to_inf(&s, &idata);
          } else { // insubs
              char *root, *suffix;
              cmd->nsub = s.num_files;
              s.N = chkfilelen(s.files[0], sizeof(short));
              s.start_subint = gen_ivect(1);
              s.num_subint = gen_ivect(1);
              s.start_MJD = (long double *)malloc(sizeof(long double));
              s.start_spec = (long long *)malloc(sizeof(long long));
              s.num_spec = (long long *)malloc(sizeof(long long));
              s.num_pad = (long long *)malloc(sizeof(long long));
              s.start_spec[0] = 0L;
              s.start_subint[0] = 0;
              s.num_spec[0] = s.N;
              s.num_subint[0] = s.N / SUBSBLOCKLEN;
              s.num_pad[0] = 0L;
              s.padvals = gen_fvect(s.num_files);
              for (ii = 0 ; ii < ii ; ii++)
                  s.padvals[ii] = 0.0;
              if (split_root_suffix(s.filenames[0], &root, &suffix) == 0) {
                  printf("\nError:  The input filename (%s) must have a suffix!\n\n", s.filenames[0]);
                  exit(1);
              }
              if (strncmp(suffix, "sub", 3) == 0) {
                  char *tmpname;
                  tmpname = calloc(strlen(root) + 10, 1);
                  sprintf(tmpname, "%s.sub", root);
                  readinf(&idata, tmpname);
                  free(tmpname);
                  strncpy(s.telescope, idata.telescope, 40);
                  strncpy(s.backend, idata.instrument, 40);
                  strncpy(s.observer, idata.observer, 40);
                  strncpy(s.source, idata.object, 40);
                  s.ra2000 = hms2rad(idata.ra_h, idata.ra_m,
                                     idata.ra_s) * RADTODEG;
                  s.dec2000 = dms2rad(idata.dec_d, idata.dec_m,
                                      idata.dec_s) * RADTODEG;
                  ra_dec_to_string(s.ra_str,
                                   idata.ra_h, idata.ra_m, idata.ra_s);
                  ra_dec_to_string(s.dec_str,
                                   idata.dec_d, idata.dec_m, idata.dec_s);
                  s.num_channels = idata.num_chan;
                  s.start_MJD[0] = idata.mjd_i + idata.mjd_f;
                  s.dt = idata.dt;
                  s.T = s.N * s.dt;
                  s.lo_freq = idata.freq;
                  s.df = idata.chan_wid;
                  s.hi_freq = s.lo_freq + (s.num_channels - 1.0) * s.df;
                  s.BW = s.num_channels * s.df;
                  s.fctr = s.lo_freq - 0.5 * s.df + 0.5 * s.BW;
                  s.beam_FWHM = idata.fov / 3600.0;
                  s.spectra_per_subint = SUBSBLOCKLEN;
                  print_spectra_info_summary(&s);
              } else {
                  printf("\nThe input files (%s) must be subbands!  (i.e. *.sub##)\n\n",
                         cmd->argv[0]);
                  MPI_Finalize();
                  exit(1);
              }
              free(root);
              free(suffix);
          }
      }
   }

   //  If we don't have good input data, exit
   MPI_Bcast(&good_inputs, 1, MPI_INT, 0, MPI_COMM_WORLD);
   if (!good_inputs) {
       MPI_Finalize();
       exit(1);
   }
   
   MPI_Bcast(&insubs, 1, MPI_INT, 0, MPI_COMM_WORLD);
   if (insubs)
       cmd->nsub = cmd->argc;

   /* Determine the output file names and open them */

   local_numdms = cmd->numdms / (numprocs - 1);
   dms = gen_dvect(local_numdms);
   if (cmd->numdms % (numprocs - 1)) {
       if (myid == 0)
           printf
               ("\nThe number of DMs must be divisible by (the number of processors - 1).\n\n");
       MPI_Finalize();
       exit(1);
   }
   local_lodm = cmd->lodm + (myid - 1) * local_numdms * cmd->dmstep;
   
   split_path_file(cmd->outfile, &outpath, &outfilenm);
   datafilenm = (char *) calloc(strlen(outfilenm) + 20, 1);
   if (myid > 0) {
       if (chdir(outpath) == -1) {
           printf("\nProcess %d on %s cannot chdir() to '%s'.  Exiting.\n\n", 
                  myid, hostname, outpath);
           MPI_Finalize();
           exit(1);
       }
       outfiles = (FILE **) malloc(local_numdms * sizeof(FILE *));
       for (ii = 0; ii < local_numdms; ii++) {
           dms[ii] = local_lodm + ii * cmd->dmstep;
           avgdm += dms[ii];
           sprintf(datafilenm, "%s_DM%.2f.dat", outfilenm, dms[ii]);
           outfiles[ii] = chkfopen(datafilenm, "wb");
       }
       avgdm /= local_numdms;
   }
   
   // Broadcast the raw data information

   broadcast_spectra_info(&s, myid);
   if (myid > 0) {
       spectra_info_to_inf(&s, &idata);
       if (s.datatype==SIGPROCFB) cmd->filterbankP = 1;
       else if (s.datatype==PSRFITS) cmd->psrfitsP = 1;
       else if (s.datatype==SCAMP) cmd->pkmbP = 1;
       else if (s.datatype==BPP) cmd->bcpmP = 1;
       else if (s.datatype==WAPP) cmd->wappP = 1;
       else if (s.datatype==SPIGOT) cmd->spigotP = 1;
       else if (s.datatype==SUBBAND) insubs = 1;
   }
   s.filenames = cmd->argv;

   /* Read an input mask if wanted */
   
   if (myid > 0) {
       int numpad = s.num_channels;
       if (insubs)
           numpad = s.num_files;
       s.padvals = gen_fvect(numpad);
       for (ii = 0 ; ii < numpad ; ii++)
           s.padvals[ii] = 0.0;
   }
   if (cmd->maskfileP) {
       if (myid == 0) {
           read_mask(cmd->maskfile, &obsmask);
           printf("Read mask information from '%s'\n\n", cmd->maskfile);
           good_padvals = determine_padvals(cmd->maskfile, &obsmask, s.padvals);
       }
       broadcast_mask(&obsmask, myid);
       MPI_Bcast(&good_padvals, 1, MPI_INT, 0, MPI_COMM_WORLD);
       MPI_Bcast(s.padvals, obsmask.numchan, MPI_FLOAT, 0, MPI_COMM_WORLD);
   } else {
       obsmask.numchan = obsmask.numint = 0;
       MPI_Bcast(&good_padvals, 1, MPI_INT, 0, MPI_COMM_WORLD);
   }

   // The number of topo to bary time points to generate with TEMPO
   numbarypts = (int) (s.T * 1.1 / TDT + 5.5) + 1;

   // Identify the TEMPO observatory code
   {
       char *outscope = (char *) calloc(40, sizeof(char));
       telescope_to_tempocode(idata.telescope, outscope, obs);
       free(outscope);
   }

   // Broadcast or calculate a few extra important values
   if (insubs) avgdm = idata.dm;
   idata.dm = avgdm;
   dsdt = cmd->downsamp * idata.dt;
   maxdm = cmd->lodm + cmd->numdms * cmd->dmstep;
   BW_ddelay = delay_from_dm(maxdm, idata.freq) - 
       delay_from_dm(maxdm, idata.freq + (idata.num_chan-1) * idata.chan_wid);
   blocksperread = ((int) (BW_ddelay / idata.dt) / s.spectra_per_subint + 1);
   worklen = s.spectra_per_subint * blocksperread;
   
   if (cmd->nsub > s.num_channels) {
      printf
          ("Warning:  The number of requested subbands (%d) is larger than the number of channels (%d).\n",
           cmd->nsub, s.num_channels);
      printf("          Re-setting the number of subbands to %d.\n\n", s.num_channels);
      cmd->nsub = s.num_channels;
   }

   if (s.spectra_per_subint % cmd->downsamp) {
       if (myid == 0) {
           printf
               ("\nError:  The downsample factor (%d) must be a factor of the\n",
                cmd->downsamp);
           printf("        blocklength (%d).  Exiting.\n\n", s.spectra_per_subint);
       }
       MPI_Finalize();
       exit(1);
   }

   tlotoa = idata.mjd_i + idata.mjd_f;  /* Topocentric epoch */

   if (cmd->numoutP)
      totnumtowrite = cmd->numout;
   else
      totnumtowrite = (long) idata.N / cmd->downsamp;

   if (cmd->nobaryP) {          /* Main loop if we are not barycentering... */

      /* Dispersion delays (in bins).  The high freq gets no delay   */
      /* All other delays are positive fractions of bin length (dt)  */

      dispdt = subband_search_delays(s.num_channels, cmd->nsub, avgdm,
                                     idata.freq, idata.chan_wid, 0.0);
      idispdt = gen_ivect(s.num_channels);
      for (ii = 0; ii < s.num_channels; ii++)
          idispdt[ii] = NEAREST_LONG(dispdt[ii] / idata.dt);
      vect_free(dispdt);

      /* The subband dispersion delays (see note above) */

      offsets = gen_imatrix(local_numdms, cmd->nsub);
      for (ii = 0; ii < local_numdms; ii++) {
         double *subdispdt;

         subdispdt = subband_delays(s.num_channels, cmd->nsub, dms[ii],
                                    idata.freq, idata.chan_wid, 0.0);
         dtmp = subdispdt[cmd->nsub - 1];
         for (jj = 0; jj < cmd->nsub; jj++)
            offsets[ii][jj] = NEAREST_LONG((subdispdt[jj] - dtmp) / dsdt);
         vect_free(subdispdt);
      }

      /* Allocate our data array and start getting data */

      if (myid == 0) {
         printf("De-dispersing using %d subbands.\n", cmd->nsub);
         if (cmd->downsamp > 1)
            printf("Downsampling by a factor of %d (new dt = %.10g)\n",
                   cmd->downsamp, dsdt);
         printf("\n");
      }
      
      /* Print the nodes and the DMs they are handling */
      print_dms(hostname, myid, numprocs, local_numdms, dms);

      outdata = gen_fmatrix(local_numdms, worklen / cmd->downsamp);
      numread = get_data(outdata, blocksperread, &s,
                         &obsmask, idispdt, offsets, &padding);

      while (numread == worklen) {

         numread /= cmd->downsamp;
         if (myid == 0)
            print_percent_complete(totwrote, totnumtowrite);

         /* Write the latest chunk of data, but don't   */
         /* write more than cmd->numout points.         */

         numtowrite = numread;
         if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout)
            numtowrite = cmd->numout - totwrote;
         if (myid > 0) {
            write_data(outfiles, local_numdms, outdata, 0, numtowrite);
            /* Update the statistics */
            if (!padding) {
               for (ii = 0; ii < numtowrite; ii++)
                  update_stats(statnum + ii, outdata[0][ii], &min, &max, &avg, &var);
               statnum += numtowrite;
            }
         }
         totwrote += numtowrite;

         /* Stop if we have written out all the data we need to */

         if (cmd->numoutP && (totwrote == cmd->numout))
            break;

         numread = get_data(outdata, blocksperread, &s,
                            &obsmask, idispdt, offsets, &padding);
      }
      datawrote = totwrote;

   } else {                     /* Main loop if we are barycentering... */

      /* What ephemeris will we use?  (Default is DE405) */
      strcpy(ephem, "DE405");

      /* Define the RA and DEC of the observation */

      ra_dec_to_string(rastring, idata.ra_h, idata.ra_m, idata.ra_s);
      ra_dec_to_string(decstring, idata.dec_d, idata.dec_m, idata.dec_s);

      /* Allocate some arrays */

      btoa = gen_dvect(numbarypts);
      ttoa = gen_dvect(numbarypts);
      for (ii = 0; ii < numbarypts; ii++)
         ttoa[ii] = tlotoa + TDT * ii / SECPERDAY;

      /* Call TEMPO for the barycentering */

      if (myid == 0) {
         double maxvoverc = -1.0, minvoverc = 1.0, *voverc = NULL;

         printf("\nGenerating barycentric corrections...\n");
         voverc = gen_dvect(numbarypts);
         barycenter(ttoa, btoa, voverc, numbarypts, rastring, decstring, obs, ephem);
         for (ii = 0; ii < numbarypts; ii++) {
            if (voverc[ii] > maxvoverc)
               maxvoverc = voverc[ii];
            if (voverc[ii] < minvoverc)
               minvoverc = voverc[ii];
            avgvoverc += voverc[ii];
         }
         avgvoverc /= numbarypts;
         vect_free(voverc);

         printf("   Average topocentric velocity (c) = %.7g\n", avgvoverc);
         printf("   Maximum topocentric velocity (c) = %.7g\n", maxvoverc);
         printf("   Minimum topocentric velocity (c) = %.7g\n\n", minvoverc);
         printf("De-dispersing using %d subbands.\n", cmd->nsub);
         if (cmd->downsamp > 1) {
             printf("     Downsample = %d\n", cmd->downsamp);
             printf("  New sample dt = %.10g\n", dsdt);
         }
         printf("\n");
      }

      /* Print the nodes and the DMs they are handling */
      print_dms(hostname, myid, numprocs, local_numdms, dms);

      MPI_Bcast(btoa, numbarypts, MPI_DOUBLE, 0, MPI_COMM_WORLD);
      MPI_Bcast(&avgvoverc, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
      blotoa = btoa[0];

      /* Dispersion delays (in bins).  The high freq gets no delay   */
      /* All other delays are positive fractions of bin length (dt)  */

      dispdt = subband_search_delays(s.num_channels, cmd->nsub, avgdm,
                                     idata.freq, idata.chan_wid, avgvoverc);
      idispdt = gen_ivect(s.num_channels);
      for (ii = 0; ii < s.num_channels; ii++)
          idispdt[ii] = NEAREST_LONG(dispdt[ii] / idata.dt);
      vect_free(dispdt);

      /* The subband dispersion delays (see note above) */

      offsets = gen_imatrix(local_numdms, cmd->nsub);
      for (ii = 0; ii < local_numdms; ii++) {
         double *subdispdt;

         subdispdt = subband_delays(s.num_channels, cmd->nsub, dms[ii],
                                    idata.freq, idata.chan_wid, avgvoverc);
         dtmp = subdispdt[cmd->nsub - 1];
         for (jj = 0; jj < cmd->nsub; jj++)
            offsets[ii][jj] = NEAREST_LONG((subdispdt[jj] - dtmp) / dsdt);
         vect_free(subdispdt);
      }

      /* Convert the bary TOAs to differences from the topo TOAs in */
      /* units of bin length (dt) rounded to the nearest integer.   */

      dtmp = (btoa[0] - ttoa[0]);
      for (ii = 0; ii < numbarypts; ii++)
         btoa[ii] = ((btoa[ii] - ttoa[ii]) - dtmp) * SECPERDAY / dsdt;

      /* Find the points where we need to add or remove bins */
      {
         int oldbin = 0, currentbin;
         double lobin, hibin, calcpt;

         numdiffbins = abs(NEAREST_LONG(btoa[numbarypts - 1])) + 1;
         diffbins = gen_ivect(numdiffbins);
         diffbinptr = diffbins;
         for (ii = 1; ii < numbarypts; ii++) {
            currentbin = NEAREST_LONG(btoa[ii]);
            if (currentbin != oldbin) {
               if (currentbin > 0) {
                  calcpt = oldbin + 0.5;
                  lobin = (ii - 1) * TDT / dsdt;
                  hibin = ii * TDT / dsdt;
               } else {
                  calcpt = oldbin - 0.5;
                  lobin = -((ii - 1) * TDT / dsdt);
                  hibin = -(ii * TDT / dsdt);
               }
               while (fabs(calcpt) < fabs(btoa[ii])) {
                  /* Negative bin number means remove that bin */
                  /* Positive bin number means add a bin there */
                  *diffbinptr =
                      NEAREST_LONG(LININTERP
                                  (calcpt, btoa[ii - 1], btoa[ii], lobin, hibin));
                  diffbinptr++;
                  calcpt = (currentbin > 0) ? calcpt + 1.0 : calcpt - 1.0;
               }
               oldbin = currentbin;
            }
         }
         *diffbinptr = cmd->numout; /* Used as a marker */
      }
      diffbinptr = diffbins;

      /* Now perform the barycentering */

      outdata = gen_fmatrix(local_numdms, worklen / cmd->downsamp);
      numread = get_data(outdata, blocksperread, &s, 
                         &obsmask, idispdt, offsets, &padding);

      while (numread == worklen) {      /* Loop to read and write the data */
         int numwritten = 0;
         double block_avg, block_var;

         numread /= cmd->downsamp;
         /* Determine the approximate local average */
         avg_var(outdata[0], numread, &block_avg, &block_var);
         if (myid == 0)
            print_percent_complete(totwrote, totnumtowrite);

         /* Simply write the data if we don't have to add or */
         /* remove any bins from this batch.                 */
         /* OR write the amount of data up to cmd->numout or */
         /* the next bin that will be added or removed.      */

         numtowrite = abs(*diffbinptr) - datawrote;
         if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout)
            numtowrite = cmd->numout - totwrote;
         if (numtowrite > numread)
            numtowrite = numread;
         if (myid > 0) {
            write_data(outfiles, local_numdms, outdata, 0, numtowrite);
            /* Update the statistics */
            if (!padding) {
               for (ii = 0; ii < numtowrite; ii++)
                  update_stats(statnum + ii, outdata[0][ii], &min, &max, &avg, &var);
               statnum += numtowrite;
            }
         }
         datawrote += numtowrite;
         totwrote += numtowrite;
         numwritten += numtowrite;

         if ((datawrote == abs(*diffbinptr)) && 
             (numwritten != numread) && 
             (totwrote < cmd->numout)) {  /* Add/remove a bin */
            int skip, nextdiffbin;

            skip = numtowrite;

            /* Write the rest of the data after adding/removing a bin  */
            do {

               if (*diffbinptr > 0) {
                  /* Add a bin */
                  if (myid > 0)
                     write_padding(outfiles, local_numdms, block_avg, 1);
                  numadded++;
                  totwrote++;
               } else {
                  /* Remove a bin */
                  numremoved++;
                  datawrote++;
                  numwritten++;
                  skip++;
               }
               diffbinptr++;

               /* Write the part after the diffbin */

               numtowrite = numread - numwritten;
               if (cmd->numoutP && (totwrote + numtowrite) > cmd->numout)
                  numtowrite = cmd->numout - totwrote;
               nextdiffbin = abs(*diffbinptr) - datawrote;
               if (numtowrite > nextdiffbin)
                  numtowrite = nextdiffbin;
               if (myid > 0) {
                  write_data(outfiles, local_numdms, outdata, skip, numtowrite);
                  /* Update the statistics and counters */
                  if (!padding) {
                     for (ii = 0; ii < numtowrite; ii++)
                        update_stats(statnum + ii,
                                     outdata[0][skip + ii], &min, &max, &avg, &var);
                     statnum += numtowrite;
                  }
               }
               numwritten += numtowrite;
               datawrote += numtowrite;
               totwrote += numtowrite;
               skip += numtowrite;

               /* Stop if we have written out all the data we need to */

               if (cmd->numoutP && (totwrote == cmd->numout))
                  break;
            } while (numwritten < numread);
         }
         /* Stop if we have written out all the data we need to */

         if (cmd->numoutP && (totwrote == cmd->numout))
            break;

         numread = get_data(outdata, blocksperread, &s,
                            &obsmask, idispdt, offsets, &padding);
      }
   }

   if (myid > 0) {

      /* Calculate the amount of padding we need  */

      if (cmd->numoutP && (cmd->numout > totwrote))
         padwrote = padtowrite = cmd->numout - totwrote;

      /* Write the new info file for the output data */

      idata.dt = dsdt;
      update_infodata(&idata, totwrote, padtowrite, diffbins,
                      numdiffbins, cmd->downsamp);
      for (ii = 0; ii < local_numdms; ii++) {
         idata.dm = dms[ii];
         if (!cmd->nobaryP) {
            double baryepoch, barydispdt, baryhifreq;

            baryhifreq = idata.freq + (s.num_channels - 1) * idata.chan_wid;
            barydispdt = delay_from_dm(dms[ii], doppler(baryhifreq, avgvoverc));
            baryepoch = blotoa - (barydispdt / SECPERDAY);
            idata.bary = 1;
            idata.mjd_i = (int) floor(baryepoch);
            idata.mjd_f = baryepoch - idata.mjd_i;
         }
         sprintf(idata.name, "%s_DM%.2f", outfilenm, dms[ii]);
         writeinf(&idata);
      }

      /* Set the padded points equal to the average data point */

      if (idata.numonoff >= 1) {
         int index, startpad, endpad;

         for (ii = 0; ii < local_numdms; ii++) {
            fclose(outfiles[ii]);
            sprintf(datafilenm, "%s_DM%.2f.dat", outfilenm, dms[ii]);
            outfiles[ii] = chkfopen(datafilenm, "rb+");
         }
         for (ii = 0; ii < idata.numonoff; ii++) {
            index = 2 * ii;
            startpad = idata.onoff[index + 1];
            if (ii == idata.numonoff - 1)
               endpad = idata.N - 1;
            else
               endpad = idata.onoff[index + 2];
            for (jj = 0; jj < local_numdms; jj++)
               chkfseek(outfiles[jj], (startpad + 1) * sizeof(float), SEEK_SET);
            padtowrite = endpad - startpad;
            write_padding(outfiles, local_numdms, avg, padtowrite);
         }
      }
   }

   /* Print simple stats and results */

   var /= (datawrote - 1);
   if (myid == 0)
      print_percent_complete(1, 1);
   if (myid == 1) {
      printf("\n\nDone.\n\nSimple statistics of the output data:\n");
      printf("             Data points written:  %ld\n", totwrote);
      if (padwrote)
         printf("          Padding points written:  %ld\n", padwrote);
      if (!cmd->nobaryP) {
         if (numadded)
            printf("    Bins added for barycentering:  %d\n", numadded);
         if (numremoved)
            printf("  Bins removed for barycentering:  %d\n", numremoved);
      }
      printf("           Maximum value of data:  %.2f\n", max);
      printf("           Minimum value of data:  %.2f\n", min);
      printf("              Data average value:  %.2f\n", avg);
      printf("         Data standard deviation:  %.2f\n", sqrt(var));
      printf("\n");
   }

   /* Close the files and cleanup */

   if (cmd->maskfileP)
      free_mask(obsmask);
   if (myid > 0) {
      for (ii = 0; ii < local_numdms; ii++)
         fclose(outfiles[ii]);
      free(outfiles);
   }
   vect_free(outdata[0]);
   vect_free(outdata);
   vect_free(dms);
   free(hostname);
   vect_free(idispdt);
   vect_free(offsets[0]);
   vect_free(offsets);
   free(datafilenm);
   free(outfilenm);
   free(outpath);
   if (!cmd->nobaryP) {
      vect_free(btoa);
      vect_free(ttoa);
      vect_free(diffbins);
   }
   MPI_Finalize();
   return (0);
}
Exemplo n.º 9
0
int main(int argc, char **argv)
{
   int index = -1, need_type = 0;
   int objs_read, objs_to_read, has_suffix;
   long i, j, ct;
   char *cptr, *data, *short_filenm, *extension, key = '\n';
   FILE *infile;
   Cmdline *cmd;
   infodata inf;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      usage();
      exit(0);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   //fprintf(stdout, "\n\n  PRESTO Binary File Reader\n");
   //fprintf(stdout, "     by Scott M. Ransom\n\n");

   /* Set our index value */

   if (cmd->bytP || cmd->sbytP)
      index = BYTE;
   else if (cmd->fltP || cmd->sfltP)
      index = FLOAT;
   else if (cmd->dblP || cmd->sdblP)
      index = DOUBLE;
   else if (cmd->fcxP || cmd->sfcxP)
      index = FCPLEX;
   else if (cmd->dcxP || cmd->sdcxP)
      index = DCPLEX;
   else if (cmd->shtP || cmd->sshtP)
      index = SHORT;
   else if (cmd->igrP || cmd->sigrP)
      index = INT;
   else if (cmd->lngP || cmd->slngP)
      index = LONG;
   else if (cmd->rzwP || cmd->srzwP)
      index = RZWCAND;
   else if (cmd->binP || cmd->sbinP)
      index = BINCAND;
   else if (cmd->posP || cmd->sposP)
      index = POSITION;
   else if (cmd->pkmbP)
      index = PKMBHDR;
   else if (cmd->bcpmP)
      index = BCPMHDR;
   else if (cmd->wappP)
      index = WAPPHDR;
   else if (cmd->spigotP)
      index = SPIGOTHDR;
   else if (cmd->filterbankP)
      index = SPECTRAINFO;
#ifdef USELOFAR   
   else if (cmd->lofarhdf5P)
      index = SPECTRAINFO;
#endif
   else if (cmd->psrfitsP)
      index = SPECTRAINFO;
   
   /* Try to determine the data type from the file name */

   if (index == -1) {
      has_suffix = split_root_suffix(cmd->argv[0], &short_filenm, &extension);
      if (!has_suffix) {
         need_type = 1;
      } else {
         if (strlen(extension) < 2) {
            need_type = 1;
         } else {
            if (0 == strcmp(extension, "dat")) {
               index = FLOAT;
               fprintf(stdout, "Assuming the data is floating point.\n\n");
            } else if (0 == strcmp(extension, "sdat")) {
               index = SHORT;
               fprintf(stdout, "Assuming the data is short integers.\n\n");
            } else if (0 == strcmp(extension, "fft")) {
               index = FCPLEX;
               fprintf(stdout, "Assuming the data is single precision complex.\n\n");
            } else if ((0 == strcmp(extension, "fits")) ||
                       (0 == strcmp(extension, "sf"))) {
                if (strstr(short_filenm, "spigot_5") != NULL) {
                    cmd->spigotP = 1;
                    index = SPIGOTHDR;
                    fprintf(stdout,
                            "Assuming the data is from the Caltech/NRAO Spigot.\n\n");
                } else if (is_PSRFITS(cmd->argv[0])) {
                    cmd->psrfitsP = 1;
                    index = SPECTRAINFO;
                    fprintf(stdout,
                            "Assuming the data is in PSRFITS format.\n\n");
                }
            } else if (0 == strcmp(extension, "bcpm1") ||
                       0 == strcmp(extension, "bcpm2")) {
               cmd->bcpmP = 1;
               index = BCPMHDR;
               fprintf(stdout, "Assuming the data is from a BCPM machine.\n\n");
            } else if (0 == strcmp(extension, "pkmb")) {
               cmd->pkmbP = 1;
               index = PKMBHDR;
               fprintf(stdout,
                       "Assuming the data is from the Parkes Multibeam machine.\n\n");
            } else if (0 == strcmp(extension, "fil") || 0 == strcmp(extension, "fb")) {
               cmd->filterbankP = 1;
               index = SPECTRAINFO;
               fprintf(stdout,
                       "Assuming the data is a SIGPROC filterbank file.\n\n");
            } else if (0 == strcmp(extension, "h5")) {
               cmd->lofarhdf5P = 1;
               index = SPECTRAINFO;
               fprintf(stdout,
                       "Assuming the data is a LOFAR HDF5 file.\n\n");
            } else if (isdigit(extension[0]) &&
                       isdigit(extension[1]) && isdigit(extension[2])) {
               cmd->wappP = 1;
               index = WAPPHDR;
               fprintf(stdout, "Assuming the data is from a WAPP machine.\n\n");
            } else if (0 == strcmp(extension, "pos")) {
               index = POSITION;
               fprintf(stdout,
                       "Assuming the data contains 'position' structures.\n\n");
            } else if (0 == strcmp(extension, "cand")) {
               /* A binary or RZW search file? */
               if (NULL != (cptr = strstr(cmd->argv[0], "_bin"))) {
                  index = BINCAND;
                  fprintf(stdout,
                          "Assuming the file contains binary candidates.\n\n");
               } else if (NULL != (cptr = strstr(cmd->argv[0], "_rzw"))) {
                  index = RZWCAND;
                  ct = (long) (cptr - cmd->argv[0]);
                  fprintf(stdout, "Assuming the file contains 'RZW' candidates.\n");
                  free(short_filenm);
                  short_filenm = (char *) malloc(ct + 1);
                  short_filenm[ct] = '\0';
                  strncpy(short_filenm, cmd->argv[0], ct);
                  fprintf(stdout, "\nAttempting to read '%s.inf'.  ", short_filenm);
                  readinf(&inf, short_filenm);
                  fprintf(stdout, "Successful.\n");
                  N = (long) (inf.N + DBLCORRECT);
                  dt = inf.dt;
                  if (cmd->nphP)
                     nph = cmd->nph;
                  else
                     nph = 1.0;
                  fprintf(stdout,
                          "\nUsing N = %ld, dt = %g, and DC Power = %f\n\n",
                          N, dt, nph);
               } else if (NULL != (cptr = strstr(cmd->argv[0], "_ACCEL"))) {
                  index = RZWCAND;
                  ct = (long) (cptr - cmd->argv[0]);
                  fprintf(stdout, "Assuming the file contains 'RZW' candidates.\n");
                  free(short_filenm);
                  short_filenm = (char *) malloc(ct + 1);
                  short_filenm[ct] = '\0';
                  strncpy(short_filenm, cmd->argv[0], ct);
                  fprintf(stdout, "\nAttempting to read '%s.inf'.  ", short_filenm);
                  readinf(&inf, short_filenm);
                  fprintf(stdout, "Successful.\n");
                  N = (long) (inf.N + DBLCORRECT);
                  dt = inf.dt;
                  if (cmd->nphP)
                     nph = cmd->nph;
                  else
                     nph = 1.0;
                  fprintf(stdout,
                          "\nUsing N = %ld, dt = %g, and DC Power = %f\n\n",
                          N, dt, nph);
               } else
                  need_type = 1;
            } else
               need_type = 1;
         }
      }

      /* If no file extension or if we don't understand the extension, exit */

      if (need_type) {
         fprintf(stdout, "You must specify a data type for this file.\n\n");
         free(short_filenm);
         exit(-1);
      }
      free(short_filenm);
      if (has_suffix)
         free(extension);
   }

   if (cmd->index[1] == -1 || cmd->index[1] == 0)
      cmd->index[1] = INT_MAX;
   if (cmd->index[1] < cmd->index[0]) {
      fprintf(stdout, "\nThe high index must be >= the low index.");
      fprintf(stdout, "  Exiting.\n\n");
      exit(-1);
   }

   // Use new-style backend reading stuff
   if (cmd->psrfitsP || cmd->filterbankP || cmd->lofarhdf5P) {
       struct spectra_info s;

       // Eventually we should use this...
       // identify_psrdatatype(struct spectra_info *s, int output);
       spectra_info_set_defaults(&s);
       if (cmd->psrfitsP) s.datatype=PSRFITS;
       if (cmd->filterbankP) s.datatype=SIGPROCFB;
       if (cmd->lofarhdf5P) s.datatype=LOFARHDF5;
       s.filenames = cmd->argv;
       s.num_files = cmd->argc;
       s.clip_sigma = 0.0;
       s.apply_flipband = s.apply_weight = s.apply_scale = s.apply_offset = -1;
       s.remove_zerodm = 0;
       read_rawdata_files(&s);
       SPECTRAINFO_print(0, (char *)(&s));
       printf("\n");
       exit(0);
   }

   if (cmd->spigotP) {
      SPIGOT_INFO spigot;

      if (read_SPIGOT_header(cmd->argv[0], &spigot)) {
         print_SPIGOT_header(&spigot);
         printf("\n");
      } else {
         printf("\n  Error reading spigot file!\n\n");
      }
      exit(0);
   }

   if (cmd->wappP) {
       struct HEADERP *hdr = NULL;
       
       infile = chkfopen(cmd->argv[0], "rb");
       hdr = head_parse(infile);
       set_WAPP_HEADER_version(hdr);
       if (hdr) {
           print_WAPP_hdr(hdr);
           printf("\n");
       } else {
           printf("\n  Error reading WAPP file!\n\n");
       }
       exit(0);
   }

   /* Open the file */

   infile = chkfopen(cmd->argv[0], "rb");

   if (cmd->fortranP) {
      chkfileseek(infile, 1, sizeof(long), SEEK_SET);
   }

   /* Skip to the correct first object */

   if (cmd->index[0] > 0) {
      chkfileseek(infile, (long) (cmd->index[0]), type_sizes[index], SEEK_CUR);
   }

   /* Read the file */

   objs_to_read = objs_at_a_time[index];
   data = (char *) malloc(type_sizes[index] * objs_at_a_time[index]);

   i = cmd->index[0];
   do {
      if (objs_to_read > cmd->index[1] - i)
         objs_to_read = cmd->index[1] - i;
      objs_read = chkfread(data, type_sizes[index], objs_to_read, infile);
      for (j = 0; j < objs_read; j++)
         print_funct_ptrs[index] (i + j, data + j * type_sizes[index]);
      /* Just print 1 header for BCPM and WAPP files */
      if (index == BCPMHDR || index == WAPPHDR || index == SPIGOTHDR)
         break;
      i += objs_read;
      if (cmd->pageP) {
         fflush(NULL);
         fprintf(stdout, "\nPress ENTER for next page, or any other key and ");
         fprintf(stdout, "then ENTER to exit.\n\n");
         key = getchar();
      }
   } while (!feof(infile) && i < cmd->index[1] && key == '\n');

   fflush(NULL);
   if (feof(infile)) {
      fprintf(stdout, "\nEnd of file.\n\n");
   }

   free(data);
   fclose(infile);
   exit(0);
}
Exemplo n.º 10
0
int main(int argc, char *argv[])
{
   int ii, jj, numbirds;
   double lofreq, hifreq;
   char *rootfilenm;
   birdie *newbird;
   GSList *zapped = NULL;
   infodata idata;
   Cmdline *cmd;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Interactive/Automatic Birdie Zapping Program\n");
   printf("              by Scott M. Ransom\n");
   printf("                 January, 2001\n\n");

   if (!cmd->zapP && !cmd->inzapfileP && !cmd->outzapfileP) {
      printf("You must specify '-in' and '-out' if you are not\n");
      printf("automatically zapping a file (with '-zap').\n\n");
      exit(0);
   }

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (idata.object) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Examining data from '%s'.\n\n", cmd->argv[0]);
   }
   T = idata.dt * idata.N;
   dr = 1.0 / NUMBETWEEN;

   if (cmd->zapP) {             /* Automatic  */
      double *bird_lobins, *bird_hibins, hibin;

      if (!cmd->zapfileP) {
         printf("You must specify a 'zapfile' containing freqs\n");
         printf("and widths if you want to write to the FFT file.\n\n");
         free(rootfilenm);
         exit(0);
      }
      hibin = idata.N / 2;

      /* Read the Standard bird list */

      numbirds = get_birdies(cmd->zapfile, T, cmd->baryv,
                             &bird_lobins, &bird_hibins);

      /* Zap the birdies */

      fftfile = chkfopen(cmd->argv[0], "rb+");
      for (ii = 0; ii < numbirds; ii++) {
         if (bird_lobins[ii] >= hibin)
            break;
         if (bird_hibins[ii] >= hibin)
            bird_hibins[ii] = hibin - 1;
         zapbirds(bird_lobins[ii], bird_hibins[ii], fftfile, NULL);
      }

      vect_free(bird_lobins);
      vect_free(bird_hibins);

   } else {                     /* Interactive */

      int *bird_numharms;
      double *bird_basebins;

      /* Read the Standard bird list */

      numbirds = get_std_birds(cmd->inzapfile, T, cmd->baryv,
                               &bird_basebins, &bird_numharms);

      /* Create our correlation kernel */

      {
         int numkern;
         fcomplex *resp;

         khw = r_resp_halfwidth(LOWACC);
         numkern = 2 * NUMBETWEEN * khw;
         resp = gen_r_response(0.0, NUMBETWEEN, numkern);
         kernel = gen_cvect(FFTLEN);
         place_complex_kernel(resp, numkern, kernel, FFTLEN);
         COMPLEXFFT(kernel, FFTLEN, -1);
         vect_free(resp);
      }

      /* Loop over the birdies */

      fftfile = chkfopen(cmd->argv[0], "rb");
      cpgstart_x("landscape");
      cpgask(0);
      for (ii = 0; ii < numbirds; ii++) {
         for (jj = 0; jj < bird_numharms[ii]; jj++) {
            process_bird(bird_basebins[ii], jj + 1, &lofreq, &hifreq);
            if (lofreq && hifreq) {
               newbird = birdie_create(lofreq, hifreq, cmd->baryv);
               zapped = g_slist_insert_sorted(zapped, newbird, birdie_compare);
            }
         }
      }
      cpgclos();

      /* Output the birdies */

      {
         FILE *outfile;

         outfile = chkfopen(cmd->outzapfile, "w");
         fprintf(outfile, "#\n");
         fprintf(outfile,
                 "# Topocentric birdies found using 'zapbirds' for '%s'\n",
                 cmd->argv[0]);
         fprintf(outfile, "#\n");
         fprintf(outfile, "# Frequency (Hz)       Width (Hz)\n");
         fprintf(outfile, "#\n");
         g_slist_foreach(zapped, birdie_print, outfile);
         fclose(outfile);
      }

      printf("\nOutput birdie file is '%s'.\n\n", cmd->outzapfile);

      /* Free the memory */

      g_slist_foreach(zapped, birdie_free, NULL);
      g_slist_free(zapped);
      vect_free(kernel);
      vect_free(bird_numharms);
      vect_free(bird_basebins);
   }
   fclose(fftfile);
   free(rootfilenm);
   printf("Done\n\n");
   return 0;
}
Exemplo n.º 11
0
int main(int argc, char *argv[])
{
   float maxpow = 0.0, inx = 0.0, iny = 0.0;
   double centerr, offsetf;
   int zoomlevel, maxzoom, minzoom, xid, psid;
   char *rootfilenm, inchar;
   fftpart *lofp;
   fftview *fv;

   if (argc == 1) {
      printf("\nusage:  explorefft fftfilename\n\n");
      exit(0);
   }

   printf("\n\n");
   printf("      Interactive FFT Explorer\n");
   printf("         by Scott M. Ransom\n");
   printf("            October, 2001\n");
   print_help();

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(argv[1], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n", argv[1]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Examining %s data from '%s'.\n\n",
             remove_whitespace(idata.object), argv[1]);
   } else {
      printf("Examining data from '%s'.\n\n", argv[1]);
   }
   N = idata.N;
   T = idata.dt * idata.N;
#ifdef USEMMAP
   printf("Memory mapping the input FFT.  This may take a while...\n");
   mmap_file = open(argv[1], O_RDONLY);
   {
      int rt;
      struct stat buf;

      rt = fstat(mmap_file, &buf);
      if (rt == -1) {
         perror("\nError in fstat() in explorefft.c");
         printf("\n");
         exit(-1);
      }
      Nfft = buf.st_size / sizeof(fcomplex);
   }
   lofp = get_fftpart(0, Nfft);
#else
   {
      int numamps;

      fftfile = chkfopen(argv[1], "rb");
      Nfft = chkfilelen(fftfile, sizeof(fcomplex));
      numamps = (Nfft > MAXBINS) ? (int) MAXBINS : (int) Nfft;
      lofp = get_fftpart(0, numamps);
   }
#endif

   /* Plot the initial data */

   {
      int initnumbins = INITIALNUMBINS;

      if (initnumbins > Nfft) {
         initnumbins = next2_to_n(Nfft) / 2;
         zoomlevel = LOGDISPLAYNUM - (int) (log(initnumbins) / log(2.0));
         minzoom = zoomlevel;
      } else {
         zoomlevel = LOGDISPLAYNUM - LOGINITIALNUMBINS;
         minzoom = LOGDISPLAYNUM - LOGMAXBINS;
      }
      maxzoom = LOGDISPLAYNUM - LOGMINBINS;
      centerr = initnumbins / 2;
   }
   fv = get_fftview(centerr, zoomlevel, lofp);

   /* Prep the XWIN device for PGPLOT */

   xid = cpgopen("/XWIN");
   if (xid <= 0) {
      free(fv);
#ifdef USEMMAP
      close(mmap_file);
#else
      fclose(fftfile);
#endif
      free_fftpart(lofp);
      exit(EXIT_FAILURE);
   }
   cpgscr(15, 0.4, 0.4, 0.4);
   cpgask(0);
   cpgpage();
   offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);

   do {
      cpgcurs(&inx, &iny, &inchar);
      if (DEBUGOUT)
         printf("You pressed '%c'\n", inchar);

      switch (inchar) {
      case 'A':                /* Zoom in */
      case 'a':
         centerr = (inx + offsetf) * T;
      case 'I':
      case 'i':
         if (DEBUGOUT)
            printf("  Zooming in  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel < maxzoom) {
            zoomlevel++;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at maximum zoom level (%d).\n", zoomlevel);
         break;
      case 'X':                /* Zoom out */
      case 'x':
      case 'O':
      case 'o':
         if (DEBUGOUT)
            printf("  Zooming out  (zoomlevel = %d)...\n", zoomlevel);
         if (zoomlevel > minzoom) {
            zoomlevel--;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         } else
            printf("  Already at minimum zoom level (%d).\n", zoomlevel);
         break;
      case '<':                /* Shift left 1 full screen */
         centerr -= fv->numbins + fv->numbins / 8;
      case ',':                /* Shift left 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting left...\n");
         centerr -= fv->numbins / 8;
         {                      /* Should probably get the previous chunk from the fftfile... */
            double lowestr;

            lowestr = 0.5 * fv->numbins;
            if (centerr < lowestr)
               centerr = lowestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '>':                /* Shift right 1 full screen */
         centerr += fv->numbins - fv->numbins / 8;
      case '.':                /* Shift right 1/8 screen */
         if (DEBUGOUT)
            printf("  Shifting right...\n");
         centerr += fv->numbins / 8;
         {                      /* Should probably get the next chunk from the fftfile... */
            double highestr;

            highestr = lofp->rlo + lofp->numamps - 0.5 * fv->numbins;
            if (centerr > highestr)
               centerr = highestr;
         }
         free(fv);
         fv = get_fftview(centerr, zoomlevel, lofp);
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '+':                /* Increase height of powers */
      case '=':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 3.0 / 4.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case '-':                /* Decrease height of powers */
      case '_':
         if (maxpow == 0.0) {
            printf("  Auto-scaling is off.\n");
            maxpow = 1.1 * fv->maxpow;
         }
         maxpow = 4.0 / 3.0 * maxpow;
         cpgpage();
         offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         break;
      case 'S':                /* Auto-scale */
      case 's':
         if (maxpow == 0.0)
            break;
         else {
            printf("  Auto-scaling is on.\n");
            maxpow = 0.0;
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            break;
         }
      case 'G':                /* Goto a frequency */
      case 'g':
         {
            char freqstr[50];
            double freq = -1.0;

            while (freq < 0.0) {
               printf("  Enter the frequency (Hz) to go to:\n");
               fgets(freqstr, 50, stdin);
               freqstr[strlen(freqstr) - 1] = '\0';
               freq = atof(freqstr);
            }
            offsetf = 0.0;
            centerr = freq * T;
            printf("  Moving to frequency %.15g.\n", freq);
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'H':                /* Show harmonics */
      case 'h':
         {
            double retval;

            retval = harmonic_loop(xid, centerr, zoomlevel, lofp);
            if (retval > 0.0) {
               offsetf = 0.0;
               centerr = retval;
               free(fv);
               fv = get_fftview(centerr, zoomlevel, lofp);
               cpgpage();
               offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
            }
         }
         break;
      case '?':                /* Print help screen */
         print_help();
         break;
      case 'D':                /* Show details about a selected point  */
      case 'd':
         {
            double newr;

            printf("  Searching for peak near freq = %.7g Hz...\n", (inx + offsetf));
            newr = find_peak(inx + offsetf, fv, lofp);
            centerr = newr;
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, centerr, 2);
         }
         break;
      case 'L':                /* Load a zaplist */
      case 'l':
         {
            int ii, len;
            char filename[200];
            double *lobins, *hibins;

            printf("  Enter the filename containing the zaplist to load:\n");
            fgets(filename, 199, stdin);
            len = strlen(filename) - 1;
            filename[len] = '\0';
            numzaplist = get_birdies(filename, T, 0.0, &lobins, &hibins);
            lenzaplist = numzaplist + 20;       /* Allow some room to add more */
            if (lenzaplist)
               free(zaplist);
            zaplist = (bird *) malloc(sizeof(bird) * lenzaplist);
            for (ii = 0; ii < numzaplist; ii++) {
               zaplist[ii].lobin = lobins[ii];
               zaplist[ii].hibin = hibins[ii];
            }
            vect_free(lobins);
            vect_free(hibins);
            printf("\n");
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Z':                /* Add a birdie to a zaplist */
      case 'z':
         {
            int badchoice = 2;
            float lox, hix, loy, hiy;
            double rs[2];
            char choice;

            if (numzaplist + 1 > lenzaplist) {
               lenzaplist += 10;
               zaplist = (bird *) realloc(zaplist, sizeof(bird) * lenzaplist);
            }
            cpgqwin(&lox, &hix, &loy, &hiy);
            printf("  Click the left mouse button on the first frequency limit.\n");
            while (badchoice) {
               cpgcurs(&inx, &iny, &choice);
               if (choice == 'A' || choice == 'a') {
                  rs[2 - badchoice] = ((double) inx + offsetf) * T;
                  cpgsave();
                  cpgsci(7);
                  cpgmove(inx, 0.0);
                  cpgdraw(inx, hiy);
                  cpgunsa();
                  badchoice--;
                  if (badchoice == 1)
                     printf
                         ("  Click the left mouse button on the second frequency limit.\n");
               } else {
                  printf("  Option not recognized.\n");
               }
            };
            if (rs[1] > rs[0]) {
               zaplist[numzaplist].lobin = rs[0];
               zaplist[numzaplist].hibin = rs[1];
            } else {
               zaplist[numzaplist].lobin = rs[1];
               zaplist[numzaplist].hibin = rs[0];
            }
            printf("    The new birdie has:  f_avg = %.15g  f_width = %.15g\n\n",
                   0.5 * (zaplist[numzaplist].hibin + zaplist[numzaplist].lobin) / T,
                   (zaplist[numzaplist].hibin - zaplist[numzaplist].lobin) / T);
            numzaplist++;
            qsort(zaplist, numzaplist, sizeof(bird), compare_birds);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'P':                /* Print the current plot */
      case 'p':
         {
            int len;
            char filename[200];

            printf("  Enter the filename to save the plot as:\n");
            fgets(filename, 196, stdin);
            len = strlen(filename) - 1;
            filename[len + 0] = '/';
            filename[len + 1] = 'P';
            filename[len + 2] = 'S';
            filename[len + 3] = '\0';
            psid = cpgopen(filename);
            cpgslct(psid);
            cpgpap(10.25, 8.5 / 11.0);
            cpgiden();
            cpgscr(15, 0.8, 0.8, 0.8);
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
            cpgclos();
            cpgslct(xid);
            cpgscr(15, 0.4, 0.4, 0.4);
            filename[len] = '\0';
            printf("  Wrote the plot to the file '%s'.\n", filename);
         }
         break;
      case 'N':                /* Changing power normalization */
      case 'n':
         {
            float inx2 = 0.0, iny2 = 0.0;
            char choice;
            unsigned char badchoice = 1;

            printf("  Specify the type of power normalization:\n"
                   "       m,M  :  Median values determined locally\n"
                   "       d,D  :  DC frequency amplitude\n"
                   "       r,R  :  Raw powers (i.e. no normalization)\n"
                   "       u,U  :  User specified interval (the average powers)\n");
            while (badchoice) {
               cpgcurs(&inx2, &iny2, &choice);
               switch (choice) {
               case 'M':
               case 'm':
                  norm_const = 0.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using local median normalization.  Autoscaling is on.\n");
                  break;
               case 'D':
               case 'd':
                  norm_const = 1.0 / r0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using DC frequency (%f) normalization.  Autoscaling is on.\n",
                       r0);
                  break;
               case 'R':
               case 'r':
                  norm_const = 1.0;
                  maxpow = 0.0;
                  badchoice = 0;
                  printf
                      ("  Using raw powers (i.e. no normalization).  Autoscaling is on.\n");
                  break;
               case 'U':
               case 'u':
                  {
                     char choice2;
                     float xx = inx, yy = iny;
                     int lor, hir, numr;
                     double avg, var;

                     printf
                         ("  Use the left mouse button to select a left and right boundary\n"
                          "  of a region to calculate the average power.\n");
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     lor = (int) ((xx + offsetf) * T);
                     cpgsci(7);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     do {
                        cpgcurs(&xx, &yy, &choice2);
                     } while (choice2 != 'A' && choice2 != 'a');
                     hir = (int) ((xx + offsetf) * T);
                     cpgmove(xx, 0.0);
                     cpgdraw(xx, 10.0 * fv->maxpow);
                     cpgsci(1);
                     if (lor > hir) {
                        int tempr;
                        tempr = hir;
                        hir = lor;
                        lor = tempr;
                     }
                     numr = hir - lor + 1;
                     avg_var(lofp->rawpowers + lor - lofp->rlo, numr, &avg, &var);
                     printf("  Selection has:  average = %.5g\n"
                            "                  std dev = %.5g\n", avg, sqrt(var));
                     norm_const = 1.0 / avg;
                     maxpow = 0.0;
                     badchoice = 0;
                     printf
                         ("  Using %.5g as the normalization constant.  Autoscaling is on.\n",
                          avg);
                     break;
                  }
               default:
                  printf("  Unrecognized choice '%c'.\n", choice);
                  break;
               }
            }
            free(fv);
            fv = get_fftview(centerr, zoomlevel, lofp);
            cpgpage();
            offsetf = plot_fftview(fv, maxpow, 1.0, 0.0, 0);
         }
         break;
      case 'Q':                /* Quit */
      case 'q':
         printf("  Quitting...\n");
         free(fv);
         cpgclos();
         break;
      default:
         printf("  Unrecognized option '%c'.\n", inchar);
         break;
      }
   } while (inchar != 'Q' && inchar != 'q');

   free_fftpart(lofp);
#ifdef USEMMAP
   close(mmap_file);
#else
   fclose(fftfile);
#endif
   if (lenzaplist)
      free(zaplist);
   printf("Done\n\n");
   return 0;
}
Exemplo n.º 12
0
int main(int argc, char *argv[])
{
   FILE *fftfile, *candfile;
   float powargr, powargi, *powers = NULL, *minifft;
   float norm, numchunks, *powers_pos;
   int nbins, newncand, nfftsizes, fftlen, halffftlen, binsleft;
   int numtoread, filepos = 0, loopct = 0, powers_offset, ncand2;
   int ii, ct, newper = 0, oldper = 0, numsumpow = 1;
   double T, totnumsearched = 0.0, minsig = 0.0, min_orb_p, max_orb_p;
   char *rootfilenm, *notes;
   fcomplex *data = NULL;
   rawbincand tmplist[MININCANDS], *list;
   infodata idata;
   struct tms runtimes;
   double ttim, utim, stim, tott;
   Cmdline *cmd;
   fftwf_plan fftplan;

   /* Prep the timer */

   tott = times(&runtimes) / (double) CLK_TCK;

   /* Call usage() if we have no command line arguments */

   if (argc == 1) {
      Program = argv[0];
      printf("\n");
      usage();
      exit(1);
   }

   /* Parse the command line using the excellent program Clig */

   cmd = parseCmdline(argc, argv);

#ifdef DEBUG
   showOptionValues();
#endif

   printf("\n\n");
   printf("     Phase Modulation Pulsar Search Routine\n");
   printf("              by Scott M. Ransom\n\n");

   {
      int hassuffix = 0;
      char *suffix;

      hassuffix = split_root_suffix(cmd->argv[0], &rootfilenm, &suffix);
      if (hassuffix) {
         if (strcmp(suffix, "fft") != 0) {
            printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                   cmd->argv[0]);
            free(suffix);
            exit(0);
         }
         free(suffix);
      } else {
         printf("\nInput file ('%s') must be a FFT file ('.fft')!\n\n",
                cmd->argv[0]);
         exit(0);
      }
   }

   /* Read the info file */

   readinf(&idata, rootfilenm);
   T = idata.N * idata.dt;
   if (strlen(remove_whitespace(idata.object)) > 0) {
      printf("Analyzing '%s' data from '%s'.\n\n",
             remove_whitespace(idata.object), cmd->argv[0]);
   } else {
      printf("Analyzing data from '%s'.\n\n", cmd->argv[0]);
   }
   min_orb_p = MINORBP;
   if (cmd->noaliasP)
      max_orb_p = T / 2.0;
   else
      max_orb_p = T / 1.2;

   /* open the FFT file and get its length */

   fftfile = chkfopen(cmd->argv[0], "rb");
   nbins = chkfilelen(fftfile, sizeof(fcomplex));

   /* Check that cmd->maxfft is an acceptable power of 2 */

   ct = 4;
   ii = 1;
   while (ct < MAXREALFFT || ii) {
      if (ct == cmd->maxfft)
         ii = 0;
      ct <<= 1;
   }
   if (ii) {
      printf("\n'maxfft' is out of range or not a power-of-2.\n\n");
      exit(1);
   }

   /* Check that cmd->minfft is an acceptable power of 2 */

   ct = 4;
   ii = 1;
   while (ct < MAXREALFFT || ii) {
      if (ct == cmd->minfft)
         ii = 0;
      ct <<= 1;
   }
   if (ii) {
      printf("\n'minfft' is out of range or not a power-of-2.\n\n");
      exit(1);
   }

   /* Low and high Fourier freqs to check */

   if (cmd->floP) {
      cmd->rlo = floor(cmd->flo * T);
      if (cmd->rlo < cmd->lobin)
         cmd->rlo = cmd->lobin;
      if (cmd->rlo > cmd->lobin + nbins - 1) {
         printf("\nLow frequency to search 'flo' is greater than\n");
         printf("   the highest available frequency.  Exiting.\n\n");
         exit(1);
      }
   } else {
      cmd->rlo = 1.0;
      if (cmd->rlo < cmd->lobin)
         cmd->rlo = cmd->lobin;
      if (cmd->rlo > cmd->lobin + nbins - 1) {
         printf("\nLow frequency to search 'rlo' is greater than\n");
         printf("   the available number of points.  Exiting.\n\n");
         exit(1);
      }
   }
   if (cmd->fhiP) {
      cmd->rhi = ceil(cmd->fhi * T);
      if (cmd->rhi > cmd->lobin + nbins - 1)
         cmd->rhi = cmd->lobin + nbins - 1;
      if (cmd->rhi < cmd->rlo) {
         printf("\nHigh frequency to search 'fhi' is less than\n");
         printf("   the lowest frequency to search 'flo'.  Exiting.\n\n");
         exit(1);
      }
   } else if (cmd->rhiP) {
      if (cmd->rhi > cmd->lobin + nbins - 1)
         cmd->rhi = cmd->lobin + nbins - 1;
      if (cmd->rhi < cmd->rlo) {
         printf("\nHigh frequency to search 'rhi' is less than\n");
         printf("   the lowest frequency to search 'rlo'.  Exiting.\n\n");
         exit(1);
      }
   }

   /* Determine how many different mini-fft sizes we will use */

   nfftsizes = 1;
   ii = cmd->maxfft;
   while (ii > cmd->minfft) {
      ii >>= 1;
      nfftsizes++;
   }

   /* Allocate some memory and prep some variables.             */
   /* For numtoread, the 6 just lets us read extra data at once */

   numtoread = 6 * cmd->maxfft;
   if (cmd->stack == 0)
      powers = gen_fvect(numtoread);
   minifft = (float *) fftwf_malloc(sizeof(float) *
                                    (cmd->maxfft * cmd->numbetween + 2));
   ncand2 = 2 * cmd->ncand;
   list = (rawbincand *) malloc(sizeof(rawbincand) * ncand2);
   for (ii = 0; ii < ncand2; ii++)
      list[ii].mini_sigma = 0.0;
   for (ii = 0; ii < MININCANDS; ii++)
      tmplist[ii].mini_sigma = 0.0;
   filepos = cmd->rlo - cmd->lobin;
   numchunks = (float) (cmd->rhi - cmd->rlo) / numtoread;
   printf("Searching...\n");
   printf("   Amount complete = %3d%%", 0);
   fflush(stdout);

   /* Prep FFTW */
   read_wisdom();

   /* Loop through fftfile */

   while ((filepos + cmd->lobin) < cmd->rhi) {

      /* Calculate percentage complete */

      newper = (int) (loopct / numchunks * 100.0);

      if (newper > oldper) {
         newper = (newper > 99) ? 100 : newper;
         printf("\r   Amount complete = %3d%%", newper);
         oldper = newper;
         fflush(stdout);
      }

      /* Adjust our search parameters if close to end of zone to search */

      binsleft = cmd->rhi - (filepos + cmd->lobin);
      if (binsleft < cmd->minfft)
         break;
      if (binsleft < numtoread) {       /* Change numtoread */
         numtoread = cmd->maxfft;
         while (binsleft < numtoread) {
            cmd->maxfft /= 2;
            numtoread = cmd->maxfft;
         }
      }
      fftlen = cmd->maxfft;

      /* Read from fftfile */

      if (cmd->stack == 0) {
         data = read_fcomplex_file(fftfile, filepos, numtoread);
         for (ii = 0; ii < numtoread; ii++)
            powers[ii] = POWER(data[ii].r, data[ii].i);
         numsumpow = 1;
      } else {
         powers = read_float_file(fftfile, filepos, numtoread);
         numsumpow = cmd->stack;
      }
      if (filepos == 0)
         powers[0] = 1.0;

      /* Chop the powers that are way above the median level */

      prune_powers(powers, numtoread, numsumpow);

      /* Loop through the different small FFT sizes */

      while (fftlen >= cmd->minfft) {

         halffftlen = fftlen / 2;
         powers_pos = powers;
         powers_offset = 0;

         /* Create the appropriate FFT plan */

         fftplan = fftwf_plan_dft_r2c_1d(cmd->interbinP ? fftlen : 2 * fftlen,
                                         minifft, (fftwf_complex *) minifft,
                                         FFTW_PATIENT);

         /* Perform miniffts at each section of the powers array */

         while ((numtoread - powers_offset) >
                (int) ((1.0 - cmd->overlap) * cmd->maxfft + DBLCORRECT)) {

            /* Copy the proper amount and portion of powers into minifft */

            memcpy(minifft, powers_pos, fftlen * sizeof(float));
            /* For Fourier interpolation use a zeropadded FFT */
            if (cmd->numbetween > 1 && !cmd->interbinP) {
               for (ii = fftlen; ii < cmd->numbetween * fftlen; ii++)
                  minifft[ii] = 0.0;
            }

            /* Perform the minifft */

            fftwf_execute(fftplan);

            /* Normalize and search the miniFFT */

            norm = sqrt(fftlen * numsumpow) / minifft[0];
            for (ii = 0; ii < (cmd->interbinP ? fftlen + 1 : 2 * fftlen + 1); ii++)
               minifft[ii] *= norm;
            search_minifft((fcomplex *) minifft, halffftlen, min_orb_p,
                           max_orb_p, tmplist, MININCANDS, cmd->harmsum,
                           cmd->numbetween, idata.N, T,
                           (double) (powers_offset + filepos + cmd->lobin),
                           cmd->interbinP ? INTERBIN : INTERPOLATE,
                           cmd->noaliasP ? NO_CHECK_ALIASED : CHECK_ALIASED);

            /* Check if the new cands should go into the master cand list */

            for (ii = 0; ii < MININCANDS; ii++) {
               if (tmplist[ii].mini_sigma > minsig) {

                  /* Check to see if another candidate with these properties */
                  /* is already in the list.                                 */

                  if (not_already_there_rawbin(tmplist[ii], list, ncand2)) {
                     list[ncand2 - 1] = tmplist[ii];
                     minsig = percolate_rawbincands(list, ncand2);
                  }
               } else {
                  break;
               }
               /* Mini-fft search for loop */
            }

            totnumsearched += fftlen;
            powers_pos += (int) (cmd->overlap * fftlen);
            powers_offset = powers_pos - powers;

            /* Position of mini-fft in data set while loop */
         }

         fftwf_destroy_plan(fftplan);
         fftlen >>= 1;

         /* Size of mini-fft while loop */
      }

      if (cmd->stack == 0)
         vect_free(data);
      else
         vect_free(powers);
      filepos += (numtoread - (int) ((1.0 - cmd->overlap) * cmd->maxfft));
      loopct++;

      /* File position while loop */
   }

   /* Print the final percentage update */

   printf("\r   Amount complete = %3d%%\n\n", 100);

   /* Print the number of frequencies searched */

   printf("Searched %.0f pts (including interbins).\n\n", totnumsearched);

   printf("Timing summary:\n");
   tott = times(&runtimes) / (double) CLK_TCK - tott;
   utim = runtimes.tms_utime / (double) CLK_TCK;
   stim = runtimes.tms_stime / (double) CLK_TCK;
   ttim = utim + stim;
   printf("    CPU time: %.3f sec (User: %.3f sec, System: %.3f sec)\n",
          ttim, utim, stim);
   printf("  Total time: %.3f sec\n\n", tott);

   printf("Writing result files and cleaning up.\n");

   /* Count how many candidates we actually have */

   ii = 0;
   while (ii < ncand2 && list[ii].mini_sigma != 0)
      ii++;
   newncand = (ii > cmd->ncand) ? cmd->ncand : ii;

   /* Set our candidate notes to all spaces */

   notes = malloc(sizeof(char) * newncand * 18 + 1);
   for (ii = 0; ii < newncand; ii++)
      strncpy(notes + ii * 18, "                     ", 18);

   /* Check the database for possible known PSR detections */

   if (idata.ra_h && idata.dec_d) {
      for (ii = 0; ii < newncand; ii++) {
         comp_rawbin_to_cand(&list[ii], &idata, notes + ii * 18, 0);
      }
   }

   /* Compare the candidates with each other */

   compare_rawbin_cands(list, newncand, notes);

   /* Send the candidates to the text file */

   file_rawbin_candidates(list, notes, newncand, cmd->harmsum, rootfilenm);

   /* Write the binary candidate file */
   {
      char *candnm;

      candnm = (char *) calloc(strlen(rootfilenm) + 15, sizeof(char));
      sprintf(candnm, "%s_bin%d.cand", rootfilenm, cmd->harmsum);
      candfile = chkfopen(candnm, "wb");
      chkfwrite(list, sizeof(rawbincand), (unsigned long) newncand, candfile);
      fclose(candfile);
      free(candnm);
   }

   /* Free our arrays and close our files */

   if (cmd->stack == 0)
      vect_free(powers);
   free(list);
   fftwf_free(minifft);
   free(notes);
   free(rootfilenm);
   fclose(fftfile);
   printf("Done.\n\n");
   return (0);
}
Exemplo n.º 13
0
int main(int argc, char *argv[])
{
    /* Any variable that begins with 't' means topocentric */
    /* Any variable that begins with 'b' means barycentric */
    FILE *outfile;
    float *outdata = NULL;
    double tdf = 0.0, dtmp = 0.0, barydispdt = 0.0, dsdt = 0.0;
    double *dispdt, *tobsf = NULL, tlotoa = 0.0, blotoa = 0.0;
    double max = -9.9E30, min = 9.9E30, var = 0.0, avg = 0.0;
    char obs[3], ephem[10], *datafilenm, *outinfonm;
    char rastring[50], decstring[50];
    int numchan = 1, newper = 0, oldper = 0, nummasked = 0, useshorts = 0;
    int numadded = 0, numremoved = 0, padding = 0, *maskchans = NULL, offset = 0;
    long slen, ii, numbarypts = 0, worklen = 65536;
    long numread = 0, numtowrite = 0, totwrote = 0, datawrote = 0;
    long padwrote = 0, padtowrite = 0, statnum = 0;
    int numdiffbins = 0, *diffbins = NULL, *diffbinptr = NULL, good_padvals = 0;
    int *idispdt;
    struct spectra_info s;
    infodata idata;
    Cmdline *cmd;
    mask obsmask;

    /* Call usage() if we have no command line arguments */
    if (argc == 1) {
        Program = argv[0];
        printf("\n");
        usage();
        exit(0);
    }

    /* Parse the command line using the excellent program Clig */
    cmd = parseCmdline(argc, argv);
    spectra_info_set_defaults(&s);
    s.filenames = cmd->argv;
    s.num_files = cmd->argc;
    // If we are zeroDMing, make sure that clipping is off.
    if (cmd->zerodmP)
        cmd->noclipP = 1;
    s.clip_sigma = cmd->clip;
    // -1 causes the data to determine if we use weights, scales, &
    // offsets for PSRFITS or flip the band for any data type where
    // we can figure that out with the data
    s.apply_flipband = (cmd->invertP) ? 1 : -1;
    s.apply_weight = (cmd->noweightsP) ? 0 : -1;
    s.apply_scale = (cmd->noscalesP) ? 0 : -1;
    s.apply_offset = (cmd->nooffsetsP) ? 0 : -1;
    s.remove_zerodm = (cmd->zerodmP) ? 1 : 0;
    if (cmd->noclipP) {
        cmd->clip = 0.0;
        s.clip_sigma = 0.0;
    }
    if (cmd->ifsP) {
        // 0 = default or summed, 1-4 are possible also
        s.use_poln = cmd->ifs + 1;
    }

    if (cmd->ncpus > 1) {
#ifdef _OPENMP
        int maxcpus = omp_get_num_procs();
        int openmp_numthreads = (cmd->ncpus <= maxcpus) ? cmd->ncpus : maxcpus;
        // Make sure we are not dynamically setting the number of threads
        omp_set_dynamic(0);
        omp_set_num_threads(openmp_numthreads);
        printf("Using %d threads with OpenMP\n\n", openmp_numthreads);
#endif
    } else {
#ifdef _OPENMP
        omp_set_num_threads(1); // Explicitly turn off OpenMP
#endif
    }

#ifdef DEBUG
    showOptionValues();
#endif

    printf("\n\n");
    printf("           Pulsar Data Preparation Routine\n");
    printf("    Type conversion, de-dispersion, barycentering.\n");
    printf("                 by Scott M. Ransom\n\n");

    if (RAWDATA) {
        if (cmd->filterbankP)
            s.datatype = SIGPROCFB;
        else if (cmd->psrfitsP)
            s.datatype = PSRFITS;
    } else {                    // Attempt to auto-identify the data
        identify_psrdatatype(&s, 1);
        if (s.datatype == SIGPROCFB)
            cmd->filterbankP = 1;
        else if (s.datatype == PSRFITS)
            cmd->psrfitsP = 1;
        else if (s.datatype == SDAT)
            useshorts = 1;
        else if (s.datatype != DAT) {
            printf
                ("Error:  Unable to identify input data files.  Please specify type.\n\n");
            exit(1);
        }
    }

    if (!RAWDATA) {
        char *root, *suffix;
        /* Split the filename into a rootname and a suffix */
        if (split_root_suffix(s.filenames[0], &root, &suffix) == 0) {
            printf("\nThe input filename (%s) must have a suffix!\n\n",
                   s.filenames[0]);
            exit(1);
        }
        printf("Reading input data from '%s'.\n", s.filenames[0]);
        printf("Reading information from '%s.inf'.\n\n", root);
        /* Read the info file if available */
        readinf(&idata, root);
        free(root);
        free(suffix);
        s.files = (FILE **) malloc(sizeof(FILE *));
        s.files[0] = chkfopen(s.filenames[0], "rb");
    } else {
        char description[40];
        psrdatatype_description(description, s.datatype);
        if (s.num_files > 1)
            printf("Reading %s data from %d files:\n", description, s.num_files);
        else
            printf("Reading %s data from 1 file:\n", description);
        for (ii = 0; ii < s.num_files; ii++) {
            printf("  '%s'\n", cmd->argv[ii]);
        }
        printf("\n");
    }

    /* Determine the other file names and open the output data file */
    slen = strlen(cmd->outfile) + 8;
    datafilenm = (char *) calloc(slen, 1);
    sprintf(datafilenm, "%s.dat", cmd->outfile);
    outfile = chkfopen(datafilenm, "wb");
    sprintf(idata.name, "%s", cmd->outfile);
    outinfonm = (char *) calloc(slen, 1);
    sprintf(outinfonm, "%s.inf", cmd->outfile);

    if (RAWDATA) {
        read_rawdata_files(&s);
        if (cmd->ignorechanstrP) {
            s.ignorechans = get_ignorechans(cmd->ignorechanstr, 0, s.num_channels-1,
                                            &s.num_ignorechans, &s.ignorechans_str);
            if (s.ignorechans_str==NULL) {
                s.ignorechans_str = (char *)malloc(strlen(cmd->ignorechanstr)+1);
                strcpy(s.ignorechans_str, cmd->ignorechanstr);
            }
        }
        print_spectra_info_summary(&s);
        spectra_info_to_inf(&s, &idata);
        /* Finish setting up stuff common to all raw formats */
        idata.dm = cmd->dm;
        worklen = s.spectra_per_subint;

        /* If we are offsetting into the file, change inf file start time */
        if (cmd->start > 0.0 || cmd->offset > 0) {
            if (cmd->start > 0.0) /* Offset in units of worklen */
                cmd->offset = (long) (cmd->start *
                                      idata.N / worklen) * worklen;
            add_to_inf_epoch(&idata, cmd->offset * idata.dt);
            offset_to_spectra(cmd->offset, &s);
            printf("Offsetting into the input files by %ld spectra (%.6g sec)\n",
                   cmd->offset, cmd->offset * idata.dt);
        }
        if (cmd->maskfileP)
            maskchans = gen_ivect(idata.num_chan);

        /* Compare the size of the data to the size of output we request */
        if (cmd->numoutP) {
            dtmp = idata.N;
            idata.N = cmd->numout;
            writeinf(&idata);
            idata.N = dtmp;
        } else {
        /* Set the output length to a good number if it wasn't requested */
            cmd->numoutP = 1;
            cmd->numout = choose_good_N((long long)(idata.N/cmd->downsamp));
            writeinf(&idata);
            printf("Setting a 'good' output length of %ld samples\n", cmd->numout);
        }

        /* The number of topo to bary time points to generate with TEMPO */
        numbarypts = (long) (idata.dt * idata.N * 1.1 / TDT + 5.5) + 1;

        // Identify the TEMPO observatory code
        {
            char *outscope = (char *) calloc(40, sizeof(char));
            telescope_to_tempocode(idata.telescope, outscope, obs);
            free(outscope);
        }
    }

    /* Read an input mask if wanted */
    if (cmd->maskfileP) {
        read_mask(cmd->maskfile, &obsmask);
        printf("Read mask information from '%s'\n\n", cmd->maskfile);
        good_padvals = determine_padvals(cmd->maskfile, &obsmask, s.padvals);
    } else {
        obsmask.numchan = obsmask.numint = 0;
    }

    /* Determine our initialization data if we do _not_ have Parkes, */
    /* Green Bank BCPM, or Arecibo WAPP data sets.                   */
    if (!RAWDATA) {

        /* If we will be barycentering... */
        if (!cmd->nobaryP) {
            /* The number of topo to bary time points to generate with TEMPO */
            numbarypts = (long) (idata.dt * idata.N * 1.1 / TDT + 5.5) + 1;
            // Identify the TEMPO observatory code
            {
                char *outscope = (char *) calloc(40, sizeof(char));
                telescope_to_tempocode(idata.telescope, outscope, obs);
                free(outscope);
            }
        }

        /* The number of data points to work with at a time */
        if (worklen > idata.N)
            worklen = idata.N;
        worklen = (long) (worklen / 1024) * 1024;

        /* If we are offsetting into the file, change inf file start time */
        if (cmd->start > 0.0 || cmd->offset > 0) {
            if (cmd->start > 0.0) /* Offset in units of worklen */
                cmd->offset = (long) (cmd->start *
                                      idata.N / worklen) * worklen;
            add_to_inf_epoch(&idata, cmd->offset * idata.dt);
            printf("Offsetting into the input files by %ld samples (%.6g sec)\n",
                   cmd->offset, cmd->offset * idata.dt);
            if (useshorts) {
                chkfileseek(s.files[0], cmd->offset, sizeof(short), SEEK_SET);
            } else {
                chkfileseek(s.files[0], cmd->offset, sizeof(float), SEEK_SET);
            }
        }

        /* Set the output length to a good number if it wasn't requested */
        if (!cmd->numoutP) {
            cmd->numoutP = 1;
            cmd->numout = choose_good_N((long long)(idata.N/cmd->downsamp));
            printf("Setting a 'good' output length of %ld samples\n", cmd->numout);
        }
    }

    /* Check if we are downsampling */
    dsdt = idata.dt * cmd->downsamp;
    if (cmd->downsamp > 1) {
        printf("Downsampling by a factor of %d\n", cmd->downsamp);
        printf("New sample dt = %.10g\n\n", dsdt);
        if (worklen % cmd->downsamp) {
            printf("Error:  The downsample factor (%d) must be a factor of the\n",
                   cmd->downsamp);
            printf("        worklength (%ld).  Exiting.\n\n", worklen);
            exit(1);
        }
    }
    printf("Writing output data to '%s'.\n", datafilenm);
    printf("Writing information to '%s'.\n\n", outinfonm);

    /* The topocentric epoch of the start of the data */
    tlotoa = (double) idata.mjd_i + idata.mjd_f;

    if (!strcmp(idata.band, "Radio") && RAWDATA) {

        /* The topocentric spacing between channels */
        tdf = idata.chan_wid;
        numchan = idata.num_chan;

        /* The topocentric observation frequencies */
        tobsf = gen_dvect(numchan);
        tobsf[0] = idata.freq;
        for (ii = 0; ii < numchan; ii++)
            tobsf[ii] = tobsf[0] + ii * tdf;

        /* The dispersion delays (in time bins) */
        dispdt = gen_dvect(numchan);    // full float bins
        idispdt = gen_ivect(numchan);   // nearest integer bins

        if (cmd->nobaryP) {

            /* Determine our dispersion time delays for each channel */
            for (ii = 0; ii < numchan; ii++)
                dispdt[ii] = delay_from_dm(cmd->dm, tobsf[ii]);

            /* The highest frequency channel gets no delay                 */
            /* All other delays are positive fractions of bin length (dt)  */
            dtmp = dispdt[numchan - 1];
            for (ii = 0; ii < numchan; ii++) {
                dispdt[ii] = (dispdt[ii] - dtmp) / idata.dt;
                idispdt[ii] = (int) (dispdt[ii] + 0.5);
            }
            worklen *= ((int) (fabs(dispdt[0])) / worklen) + 1;
        }

    } else {                    /* For unknown radio raw data (Why is this here?) */
        tobsf = gen_dvect(numchan);
        dispdt = gen_dvect(numchan);
        idispdt = gen_ivect(numchan);
        dispdt[0] = 0.0;
        idispdt[0] = 0;
        if (!strcmp(idata.band, "Radio")) {
            tobsf[0] = idata.freq + (idata.num_chan - 1) * idata.chan_wid;
            cmd->dm = idata.dm;
        } else {
            tobsf[0] = 0.0;
            cmd->dm = 0.0;
        }
    }

    if (cmd->nobaryP) {         /* Main loop if we are not barycentering... */

        /* Allocate our data array */
        outdata = gen_fvect(worklen);

        printf("Massaging the data ...\n\n");
        printf("Amount Complete = 0%%");

        do {
            if (RAWDATA)
                numread = read_psrdata(outdata, worklen, &s, idispdt, &padding,
                                       maskchans, &nummasked, &obsmask);
            else if (useshorts)
                numread = read_shorts(s.files[0], outdata, worklen, numchan);
            else
                numread = read_floats(s.files[0], outdata, worklen, numchan);
            if (numread == 0)
                break;

            /* Downsample if requested */
            if (cmd->downsamp > 1)
                numread = downsample(outdata, numread, cmd->downsamp);

            /* Print percent complete */
            newper = (int) ((float) totwrote / cmd->numout * 100.0) + 1;
            if (newper > oldper) {
                printf("\rAmount Complete = %3d%%", newper);
                fflush(stdout);
                oldper = newper;
            }

            /* Write the latest chunk of data, but don't   */
            /* write more than cmd->numout points.         */
            numtowrite = numread;
            if ((totwrote + numtowrite) > cmd->numout)
                numtowrite = cmd->numout - totwrote;
            chkfwrite(outdata, sizeof(float), numtowrite, outfile);
            totwrote += numtowrite;

            /* Update the statistics */
            if (!padding) {
                for (ii = 0; ii < numtowrite; ii++)
                    update_stats(statnum + ii, outdata[ii], &min, &max, &avg, &var);
                statnum += numtowrite;
            }

            /* Stop if we have written out all the data we need to */
            if (totwrote == cmd->numout)
                break;

        } while (numread);

        datawrote = totwrote;

    } else {                    /* Main loop if we are barycentering... */

        double avgvoverc = 0.0, maxvoverc = -1.0, minvoverc = 1.0, *voverc = NULL;
        double *bobsf = NULL, *btoa = NULL, *ttoa = NULL;

        /* What ephemeris will we use?  (Default is DE405) */
        strcpy(ephem, "DE405");

        /* Define the RA and DEC of the observation */
        ra_dec_to_string(rastring, idata.ra_h, idata.ra_m, idata.ra_s);
        ra_dec_to_string(decstring, idata.dec_d, idata.dec_m, idata.dec_s);

        /* Allocate some arrays */
        bobsf = gen_dvect(numchan);
        btoa = gen_dvect(numbarypts);
        ttoa = gen_dvect(numbarypts);
        voverc = gen_dvect(numbarypts);
        for (ii = 0; ii < numbarypts; ii++)
            ttoa[ii] = tlotoa + TDT * ii / SECPERDAY;

        /* Call TEMPO for the barycentering */
        printf("Generating barycentric corrections...\n");
        barycenter(ttoa, btoa, voverc, numbarypts, rastring, decstring, obs, ephem);
        for (ii = 0; ii < numbarypts; ii++) {
            if (voverc[ii] > maxvoverc)
                maxvoverc = voverc[ii];
            if (voverc[ii] < minvoverc)
                minvoverc = voverc[ii];
            avgvoverc += voverc[ii];
        }
        avgvoverc /= numbarypts;
        vect_free(voverc);
        blotoa = btoa[0];

        printf("   Average topocentric velocity (c) = %.7g\n", avgvoverc);
        printf("   Maximum topocentric velocity (c) = %.7g\n", maxvoverc);
        printf("   Minimum topocentric velocity (c) = %.7g\n\n", minvoverc);
        printf("Collecting and barycentering %s...\n\n", cmd->argv[0]);

        /* Determine the initial dispersion time delays for each channel */
        for (ii = 0; ii < numchan; ii++) {
            bobsf[ii] = doppler(tobsf[ii], avgvoverc);
            dispdt[ii] = delay_from_dm(cmd->dm, bobsf[ii]);
        }

        /* The highest frequency channel gets no delay                   */
        /* All other delays are positive fractions of bin length (dt)    */
        barydispdt = dispdt[numchan - 1];
        for (ii = 0; ii < numchan; ii++) {
            dispdt[ii] = (dispdt[ii] - barydispdt) / idata.dt;
            idispdt[ii] = (int) (dispdt[ii] + 0.5);
        }
        if (RAWDATA)
            worklen *= ((int) (dispdt[0]) / worklen) + 1;

        /* If the data is de-dispersed radio data... */
        if (!strcmp(idata.band, "Radio")) {
            printf("The DM of %.2f at the barycentric observing freq of %.3f MHz\n",
                   idata.dm, bobsf[numchan - 1]);
            printf("   causes a delay of %f seconds compared to infinite freq.\n",
                   barydispdt);
            printf("   This delay is removed from the barycented times.\n\n");
        }
        printf("Topocentric epoch (at data start) is:\n");
        printf("   %17.11f\n\n", tlotoa);
        printf("Barycentric epoch (infinite obs freq at data start) is:\n");
        printf("   %17.11f\n\n", blotoa - (barydispdt / SECPERDAY));

        /* Convert the bary TOAs to differences from the topo TOAs in  */
        /* units of bin length (dsdt) rounded to the nearest integer.  */
        dtmp = (btoa[0] - ttoa[0]);
        for (ii = 0; ii < numbarypts; ii++)
            btoa[ii] = ((btoa[ii] - ttoa[ii]) - dtmp) * SECPERDAY / dsdt;

        {                       /* Find the points where we need to add or remove bins */

            int oldbin = 0, currentbin;
            double lobin, hibin, calcpt;

            numdiffbins = abs(NEAREST_LONG(btoa[numbarypts - 1])) + 1;
            diffbins = gen_ivect(numdiffbins);
            diffbinptr = diffbins;
            for (ii = 1; ii < numbarypts; ii++) {
                currentbin = NEAREST_LONG(btoa[ii]);
                if (currentbin != oldbin) {
                    if (currentbin > 0) {
                        calcpt = oldbin + 0.5;
                        lobin = (ii - 1) * TDT / dsdt;
                        hibin = ii * TDT / dsdt;
                    } else {
                        calcpt = oldbin - 0.5;
                        lobin = -((ii - 1) * TDT / dsdt);
                        hibin = -(ii * TDT / dsdt);
                    }
                    while (fabs(calcpt) < fabs(btoa[ii])) {
                        /* Negative bin number means remove that bin */
                        /* Positive bin number means add a bin there */
                        *diffbinptr = NEAREST_LONG(LININTERP(calcpt, btoa[ii - 1],
                                                             btoa[ii], lobin,
                                                             hibin));
                        diffbinptr++;
                        calcpt = (currentbin > 0) ? calcpt + 1.0 : calcpt - 1.0;
                    }
                    oldbin = currentbin;
                }
            }
            *diffbinptr = cmd->numout;  /* Used as a marker */
        }
        diffbinptr = diffbins;

        /* Now perform the barycentering */

        printf("Massaging the data...\n\n");
        printf("Amount Complete = 0%%");

        /* Allocate our data array */

        outdata = gen_fvect(worklen);

        do {                    /* Loop to read and write the data */
            int numwritten = 0;
            double block_avg, block_var;

            if (RAWDATA)
                numread = read_psrdata(outdata, worklen, &s, idispdt, &padding,
                                       maskchans, &nummasked, &obsmask);
            else if (useshorts)
                numread = read_shorts(s.files[0], outdata, worklen, numchan);
            else
                numread = read_floats(s.files[0], outdata, worklen, numchan);
            if (numread == 0)
                break;

            /* Downsample if requested */
            if (cmd->downsamp > 1)
                numread = downsample(outdata, numread, cmd->downsamp);

            /* Determine the approximate local average */
            avg_var(outdata, numread, &block_avg, &block_var);

            /* Print percent complete */

            newper = (int) ((float) totwrote / cmd->numout * 100.0) + 1;
            if (newper > oldper) {
                printf("\rAmount Complete = %3d%%", newper);
                fflush(stdout);
                oldper = newper;
            }

            /* Simply write the data if we don't have to add or */
            /* remove any bins from this batch.                 */
            /* OR write the amount of data up to cmd->numout or */
            /* the next bin that will be added or removed.      */

            numtowrite = abs(*diffbinptr) - datawrote;
            /* FIXME: numtowrite+totwrote can wrap! */
            if ((totwrote + numtowrite) > cmd->numout)
                numtowrite = cmd->numout - totwrote;
            if (numtowrite > numread)
                numtowrite = numread;
            chkfwrite(outdata, sizeof(float), numtowrite, outfile);
            datawrote += numtowrite;
            totwrote += numtowrite;
            numwritten += numtowrite;

            /* Update the statistics */

            if (!padding) {
                for (ii = 0; ii < numtowrite; ii++)
                    update_stats(statnum + ii, outdata[ii], &min, &max, &avg, &var);
                statnum += numtowrite;
            }

            if ((datawrote == abs(*diffbinptr)) && (numwritten != numread) && (totwrote < cmd->numout)) {       /* Add/remove a bin */
                float favg;
                int skip, nextdiffbin;

                skip = numtowrite;

                do {            /* Write the rest of the data after adding/removing a bin  */

                    if (*diffbinptr > 0) {

                        /* Add a bin */

                        favg = (float) block_avg;
                        chkfwrite(&favg, sizeof(float), 1, outfile);
                        numadded++;
                        totwrote++;
                    } else {

                        /* Remove a bin */

                        numremoved++;
                        datawrote++;
                        numwritten++;
                        skip++;
                    }
                    diffbinptr++;

                    /* Write the part after the diffbin */

                    numtowrite = numread - numwritten;
                    if ((totwrote + numtowrite) > cmd->numout)
                        numtowrite = cmd->numout - totwrote;
                    nextdiffbin = abs(*diffbinptr) - datawrote;
                    if (numtowrite > nextdiffbin)
                        numtowrite = nextdiffbin;
                    chkfwrite(outdata + skip, sizeof(float), numtowrite, outfile);
                    numwritten += numtowrite;
                    datawrote += numtowrite;
                    totwrote += numtowrite;

                    /* Update the statistics and counters */

                    if (!padding) {
                        for (ii = 0; ii < numtowrite; ii++)
                            update_stats(statnum + ii, outdata[skip + ii],
                                         &min, &max, &avg, &var);
                        statnum += numtowrite;
                    }
                    skip += numtowrite;

                    /* Stop if we have written out all the data we need to */

                    if (totwrote == cmd->numout)
                        break;
                } while (numwritten < numread);
            }
            /* Stop if we have written out all the data we need to */

            if (totwrote == cmd->numout)
                break;

        } while (numread);

        /* Free the arrays used in barycentering */

        vect_free(bobsf);
        vect_free(btoa);
        vect_free(ttoa);
    }

    /* Calculate what the amount of padding we need  */

    if (cmd->numout > totwrote)
        padwrote = padtowrite = cmd->numout - totwrote;


    /* Write the new info file for the output data */

    if (!cmd->nobaryP) {
        idata.bary = 1;
        idata.mjd_i = (int) floor(blotoa - (barydispdt / SECPERDAY));
        idata.mjd_f = blotoa - (barydispdt / SECPERDAY) - idata.mjd_i;
    }
    if (cmd->downsamp > 1)
        idata.dt = dsdt;
    update_infodata(&idata, totwrote, padtowrite, diffbins, numdiffbins);
    writeinf(&idata);

    /* Set the padded points equal to the average data point */

    if (idata.numonoff >= 1) {
        int jj, index, startpad, endpad;

        for (ii = 0; ii < worklen; ii++)
            outdata[ii] = avg;
        fclose(outfile);
        outfile = chkfopen(datafilenm, "rb+");
        for (ii = 0; ii < idata.numonoff; ii++) {
            index = 2 * ii;
            startpad = idata.onoff[index + 1];
            if (ii == idata.numonoff - 1)
                endpad = idata.N - 1;
            else
                endpad = idata.onoff[index + 2];
            chkfseek(outfile, (startpad + 1) * sizeof(float), SEEK_SET);
            padtowrite = endpad - startpad;
            for (jj = 0; jj < padtowrite / worklen; jj++)
                chkfwrite(outdata, sizeof(float), worklen, outfile);
            chkfwrite(outdata, sizeof(float), padtowrite % worklen, outfile);
        }
    }
    vect_free(outdata);

    //  Close all the raw files and free their vectors
    close_rawfiles(&s);

    /* Print simple stats and results */

    var /= (datawrote - 1);

    /* Conver the '.dat' file to '.sdat' if requested */

    if (cmd->shortsP) {
        FILE *infile;
        int safe_convert = 1, bufflen = 65536;
        char *sdatafilenm;
        float *fbuffer;
        short *sbuffer;

        offset = (int) (floor(avg));
        if ((max - min) > (SHRT_MAX - SHRT_MIN)) {
            if ((max - min) < 1.5 * (SHRT_MAX - SHRT_MIN)) {
                printf("Warning:  There is more dynamic range in the data\n"
                       "          than can be handled perfectly:\n"
                       "               max - min = %.2f - %.2f = %.2f\n"
                       "          Clipping the low values...\n\n", max, min,
                       max - min);
                offset = max - SHRT_MAX;
            } else {
                printf("Error:  There is way too much dynamic range in the data:\n"
                       "               max - min = %.2f - %.2f = %.2f\n"
                       "        Not converting to shorts.\n\n", max, min, max - min);
                safe_convert = 0;
            }
        }

        if (safe_convert) {
            fbuffer = gen_fvect(bufflen);
            sbuffer = gen_svect(bufflen);
            sdatafilenm = (char *) calloc(slen, 1);
            sprintf(sdatafilenm, "%s.sdat", cmd->outfile);
            printf("\n\nConverting floats in '%s' to shorts in '%s'.",
                   datafilenm, sdatafilenm);
            fflush(NULL);

            infile = chkfopen(datafilenm, "rb");
            outfile = chkfopen(sdatafilenm, "wb");
            while ((numread = chkfread(fbuffer, sizeof(float), bufflen, infile))) {
                for (ii = 0; ii < numread; ii++)
                    sbuffer[ii] = (short) (fbuffer[ii] + 1e-20 - offset);
                chkfwrite(sbuffer, sizeof(short), numread, outfile);
            }
            fclose(infile);
            fclose(outfile);
            remove(datafilenm);
            vect_free(fbuffer);
            vect_free(sbuffer);
        }
    }

    printf("\n\nDone.\n\nSimple statistics of the output data:\n");
    printf("             Data points written:  %ld\n", totwrote);
    if (padwrote)
        printf("          Padding points written:  %ld\n", padwrote);
    if (!cmd->nobaryP) {
        if (numadded)
            printf("    Bins added for barycentering:  %d\n", numadded);
        if (numremoved)
            printf("  Bins removed for barycentering:  %d\n", numremoved);
    }
    printf("           Maximum value of data:  %.2f\n", max);
    printf("           Minimum value of data:  %.2f\n", min);
    printf("              Data average value:  %.2f\n", avg);
    printf("         Data standard deviation:  %.2f\n", sqrt(var));
    if (cmd->shortsP && offset != 0)
        printf("          Offset applied to data:  %d\n", -offset);
    printf("\n");

    /* Cleanup */

    if (cmd->maskfileP) {
        free_mask(obsmask);
        vect_free(maskchans);
    }
    vect_free(tobsf);
    vect_free(dispdt);
    vect_free(idispdt);
    free(outinfonm);
    free(datafilenm);
    if (!cmd->nobaryP)
        vect_free(diffbins);
    return (0);
}