/* Subroutine */ int ssbgv_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, real *ab, integer *ldab, real *bb, integer *ldbb, real * w, real *z__, integer *ldz, real *work, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SSBGV computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO (input) CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N (input) INTEGER The order of the matrices A and B. N >= 0. KA (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. KB (input) INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. AB (input/output) REAL array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KA+1. BB (input/output) REAL array, dimension (LDBB, N) On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by SPBSTF. LDBB (input) INTEGER The leading dimension of the array BB. LDBB >= KB+1. W (output) REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z (output) REAL array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N. WORK (workspace) REAL array, dimension (3*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. ===================================================================== Test the input parameters. Parameter adjustments */ /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ static integer inde; static char vect[1]; extern logical lsame_(char *, char *); static integer iinfo; static logical upper, wantz; extern /* Subroutine */ int xerbla_(char *, integer *); static integer indwrk; extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *, integer *, integer *), ssbtrd_(char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *), ssbgst_(char *, char *, integer *, integer *, integer *, real *, integer *, real *, integer *, real *, integer *, real *, integer *), ssterf_(integer *, real *, real *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *); ab_dim1 = *ldab; ab_offset = 1 + ab_dim1 * 1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1 * 1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1 * 1; z__ -= z_offset; --work; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SSBGV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[indwrk], &iinfo) ; /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR. */ if (! wantz) { ssterf_(n, &w[1], &work[inde], info); } else { ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ indwrk], info); } return 0; /* End of SSBGV */ } /* ssbgv_ */
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real * w, real *z__, integer *ldz, real *work, integer *iwork, integer * ifail, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, jj; real eps, vll, vuu, tmp1; integer indd, inde; real anrm; integer imax; real rmin, rmax; logical test; integer itmp1, indee; real sigma; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); char order[1]; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); logical lower; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer * ); logical wantz, alleig, indeig; integer iscale, indibl; logical valeig; extern doublereal slamch_(char *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); real abstll, bignum; extern doublereal slansb_(char *, char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); integer indisp, indiwo; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); integer indwrk; extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *), sstein_(integer *, real *, real *, integer *, real *, integer *, integer *, real *, integer *, real * , integer *, integer *, integer *), ssterf_(integer *, real *, real *, integer *); integer nsplit; real smlnum; extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBEVX computes selected eigenvalues and, optionally, eigenvectors */ /* of a real symmetric band matrix A. Eigenvalues and eigenvectors can */ /* be selected by specifying either a range of values or a range of */ /* indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found; */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found; */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) REAL array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, AB is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the first */ /* superdiagonal and the diagonal of the tridiagonal matrix T */ /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ /* the diagonal and first subdiagonal of T are returned in the */ /* first two rows of AB. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD + 1. */ /* Q (output) REAL array, dimension (LDQ, N) */ /* If JOBZ = 'V', the N-by-N orthogonal matrix used in the */ /* reduction to tridiagonal form. */ /* If JOBZ = 'N', the array Q is not referenced. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. If JOBZ = 'V', then */ /* LDQ >= max(1,N). */ /* VL (input) REAL */ /* VU (input) REAL */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) REAL */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing AB to tridiagonal form. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*SLAMCH('S'). */ /* See "Computing Small Singular Values of Bidiagonal Matrices */ /* with Guaranteed High Relative Accuracy," by Demmel and */ /* Kahan, LAPACK Working Note #3. */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) REAL array, dimension (N) */ /* The first M elements contain the selected eigenvalues in */ /* ascending order. */ /* Z (output) REAL array, dimension (LDZ, max(1,M)) */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* If an eigenvector fails to converge, then that column of Z */ /* contains the latest approximation to the eigenvector, and the */ /* index of the eigenvector is returned in IFAIL. */ /* If JOBZ = 'N', then Z is not referenced. */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace) REAL array, dimension (7*N) */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, then i eigenvectors failed to converge. */ /* Their indices are stored in array IFAIL. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); lower = lsame_(uplo, "L"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || lsame_(uplo, "U"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*ldab < *kd + 1) { *info = -7; } else if (wantz && *ldq < max(1,*n)) { *info = -9; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -11; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -12; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -13; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("SSBEVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } if (*n == 1) { *m = 1; if (lower) { tmp1 = ab[ab_dim1 + 1]; } else { tmp1 = ab[*kd + 1 + ab_dim1]; } if (valeig) { if (! (*vl < tmp1 && *vu >= tmp1)) { *m = 0; } } if (*m == 1) { w[1] = tmp1; if (wantz) { z__[z_dim1 + 1] = 1.f; } } return 0; } /* Get machine constants. */ safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; bignum = 1.f / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); rmax = dmin(r__1,r__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; abstll = *abstol; if (valeig) { vll = *vl; vuu = *vu; } else { vll = 0.f; vuu = 0.f; } anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]); if (anrm > 0.f && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { slascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, info); } else { slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, info); } if (*abstol > 0.f) { abstll = *abstol * sigma; } if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indwrk = inde + *n; ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde], &q[q_offset], ldq, &work[indwrk], &iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal */ /* to zero, then call SSTERF or SSTEQR. If this fails for some */ /* eigenvalue, then try SSTEBZ. */ test = FALSE_; if (indeig) { if (*il == 1 && *iu == *n) { test = TRUE_; } } if ((alleig || test) && *abstol <= 0.f) { scopy_(n, &work[indd], &c__1, &w[1], &c__1); indee = indwrk + (*n << 1); if (! wantz) { i__1 = *n - 1; scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); ssterf_(n, &w[1], &work[indee], info); } else { slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz); i__1 = *n - 1; scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ indwrk], info); if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { ifail[i__] = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L30; } *info = 0; } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwo = indisp + *n; sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ indwrk], &iwork[indiwo], info); if (wantz) { sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & ifail[1], info); /* Apply orthogonal matrix used in reduction to tridiagonal */ /* form to eigenvectors returned by SSTEIN. */ i__1 = *m; for (j = 1; j <= i__1; ++j) { scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1); sgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, & c_b34, &z__[j * z_dim1 + 1], &c__1); /* L20: */ } } /* If matrix was scaled, then rescale eigenvalues appropriately. */ L30: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } r__1 = 1.f / sigma; sscal_(&imax, &r__1, &w[1], &c__1); } /* If eigenvalues are not in order, then sort them, along with */ /* eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= i__1; ++j) { i__ = 0; tmp1 = w[j]; i__2 = *m; for (jj = j + 1; jj <= i__2; ++jj) { if (w[jj] < tmp1) { i__ = jj; tmp1 = w[jj]; } /* L40: */ } if (i__ != 0) { itmp1 = iwork[indibl + i__ - 1]; w[i__] = w[j]; iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], &c__1); if (*info != 0) { itmp1 = ifail[i__]; ifail[i__] = ifail[j]; ifail[j] = itmp1; } } /* L50: */ } } return 0; /* End of SSBEVX */ } /* ssbevx_ */
int ssbgv_(char *jobz, char *uplo, int *n, int *ka, int *kb, float *ab, int *ldab, float *bb, int *ldbb, float * w, float *z__, int *ldz, float *work, int *info) { /* System generated locals */ int ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ int inde; char vect[1]; extern int lsame_(char *, char *); int iinfo; int upper, wantz; extern int xerbla_(char *, int *); int indwrk; extern int spbstf_(char *, int *, int *, float *, int *, int *), ssbtrd_(char *, char *, int *, int *, float *, int *, float *, float *, float *, int *, float *, int *), ssbgst_(char *, char *, int *, int *, int *, float *, int *, float *, int *, float *, int *, float *, int *), ssterf_(int *, float *, float *, int *), ssteqr_(char *, int *, float *, float *, float *, int *, float *, int *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBGV computes all the eigenvalues, and optionally, the eigenvectors */ /* of a float generalized symmetric-definite banded eigenproblem, of */ /* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */ /* and banded, and B is also positive definite. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) REAL array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for MAX(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=MIN(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) REAL array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for MAX(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=MIN(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**T*S, as returned by SPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) REAL array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so that Z**T*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= N. */ /* WORK (workspace) REAL array, dimension (3*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: the algorithm failed to converge: */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SSBGV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[indwrk], &iinfo) ; /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR. */ if (! wantz) { ssterf_(n, &w[1], &work[inde], info); } else { ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ indwrk], info); } return 0; /* End of SSBGV */ } /* ssbgv_ */
int ssbev_(char *jobz, char *uplo, int *n, int *kd, float *ab, int *ldab, float *w, float *z__, int *ldz, float *work, int *info) { /* System generated locals */ int ab_dim1, ab_offset, z_dim1, z_offset, i__1; float r__1; /* Builtin functions */ double sqrt(double); /* Local variables */ float eps; int inde; float anrm; int imax; float rmin, rmax, sigma; extern int lsame_(char *, char *); int iinfo; extern int sscal_(int *, float *, float *, int *); int lower, wantz; int iscale; extern double slamch_(char *); float safmin; extern int xerbla_(char *, int *); float bignum; extern double slansb_(char *, char *, int *, int *, float *, int *, float *); extern int slascl_(char *, int *, int *, float *, float *, int *, int *, float *, int *, int *); int indwrk; extern int ssbtrd_(char *, char *, int *, int *, float *, int *, float *, float *, float *, int *, float *, int *), ssterf_(int *, float *, float *, int *); float smlnum; extern int ssteqr_(char *, int *, float *, float *, float *, int *, float *, int *); /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBEV computes all the eigenvalues and, optionally, eigenvectors of */ /* a float symmetric band matrix A. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) REAL array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for MAX(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=MIN(n,j+kd). */ /* On exit, AB is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the first */ /* superdiagonal and the diagonal of the tridiagonal matrix T */ /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ /* the diagonal and first subdiagonal of T are returned in the */ /* first two rows of AB. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD + 1. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) REAL array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= MAX(1,N). */ /* WORK (workspace) REAL array, dimension (MAX(1,3*N-2)) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kd < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("SSBEV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (lower) { w[1] = ab[ab_dim1 + 1]; } else { w[1] = ab[*kd + 1 + ab_dim1]; } if (wantz) { z__[z_dim1 + 1] = 1.f; } return 0; } /* Get machine constants. */ safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; bignum = 1.f / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]); iscale = 0; if (anrm > 0.f && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { slascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } else { slascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } } /* Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */ inde = 1; indwrk = inde + *n; ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR. */ if (! wantz) { ssterf_(n, &w[1], &work[inde], info); } else { ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ indwrk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } r__1 = 1.f / sigma; sscal_(&imax, &r__1, &w[1], &c__1); } return 0; /* End of SSBEV */ } /* ssbev_ */
int main(void) { /* Local scalars */ char vect, vect_i; char uplo, uplo_i; lapack_int n, n_i; lapack_int kd, kd_i; lapack_int ldab, ldab_i; lapack_int ldab_r; lapack_int ldq, ldq_i; lapack_int ldq_r; lapack_int info, info_i; lapack_int i; int failed; /* Local arrays */ float *ab = NULL, *ab_i = NULL; float *d = NULL, *d_i = NULL; float *e = NULL, *e_i = NULL; float *q = NULL, *q_i = NULL; float *work = NULL, *work_i = NULL; float *ab_save = NULL; float *d_save = NULL; float *e_save = NULL; float *q_save = NULL; float *ab_r = NULL; float *q_r = NULL; /* Iniitialize the scalar parameters */ init_scalars_ssbtrd( &vect, &uplo, &n, &kd, &ldab, &ldq ); ldab_r = n+2; ldq_r = n+2; vect_i = vect; uplo_i = uplo; n_i = n; kd_i = kd; ldab_i = ldab; ldq_i = ldq; /* Allocate memory for the LAPACK routine arrays */ ab = (float *)LAPACKE_malloc( ldab*n * sizeof(float) ); d = (float *)LAPACKE_malloc( n * sizeof(float) ); e = (float *)LAPACKE_malloc( (n-1) * sizeof(float) ); q = (float *)LAPACKE_malloc( ldq*n * sizeof(float) ); work = (float *)LAPACKE_malloc( n * sizeof(float) ); /* Allocate memory for the C interface function arrays */ ab_i = (float *)LAPACKE_malloc( ldab*n * sizeof(float) ); d_i = (float *)LAPACKE_malloc( n * sizeof(float) ); e_i = (float *)LAPACKE_malloc( (n-1) * sizeof(float) ); q_i = (float *)LAPACKE_malloc( ldq*n * sizeof(float) ); work_i = (float *)LAPACKE_malloc( n * sizeof(float) ); /* Allocate memory for the backup arrays */ ab_save = (float *)LAPACKE_malloc( ldab*n * sizeof(float) ); d_save = (float *)LAPACKE_malloc( n * sizeof(float) ); e_save = (float *)LAPACKE_malloc( (n-1) * sizeof(float) ); q_save = (float *)LAPACKE_malloc( ldq*n * sizeof(float) ); /* Allocate memory for the row-major arrays */ ab_r = (float *)LAPACKE_malloc( (kd+1)*(n+2) * sizeof(float) ); q_r = (float *)LAPACKE_malloc( n*(n+2) * sizeof(float) ); /* Initialize input arrays */ init_ab( ldab*n, ab ); init_d( n, d ); init_e( (n-1), e ); init_q( ldq*n, q ); init_work( n, work ); /* Backup the ouptut arrays */ for( i = 0; i < ldab*n; i++ ) { ab_save[i] = ab[i]; } for( i = 0; i < n; i++ ) { d_save[i] = d[i]; } for( i = 0; i < (n-1); i++ ) { e_save[i] = e[i]; } for( i = 0; i < ldq*n; i++ ) { q_save[i] = q[i]; } /* Call the LAPACK routine */ ssbtrd_( &vect, &uplo, &n, &kd, ab, &ldab, d, e, q, &ldq, work, &info ); /* Initialize input data, call the column-major middle-level * interface to LAPACK routine and check the results */ for( i = 0; i < ldab*n; i++ ) { ab_i[i] = ab_save[i]; } for( i = 0; i < n; i++ ) { d_i[i] = d_save[i]; } for( i = 0; i < (n-1); i++ ) { e_i[i] = e_save[i]; } for( i = 0; i < ldq*n; i++ ) { q_i[i] = q_save[i]; } for( i = 0; i < n; i++ ) { work_i[i] = work[i]; } info_i = LAPACKE_ssbtrd_work( LAPACK_COL_MAJOR, vect_i, uplo_i, n_i, kd_i, ab_i, ldab_i, d_i, e_i, q_i, ldq_i, work_i ); failed = compare_ssbtrd( ab, ab_i, d, d_i, e, e_i, q, q_i, info, info_i, ldab, ldq, n, vect ); if( failed == 0 ) { printf( "PASSED: column-major middle-level interface to ssbtrd\n" ); } else { printf( "FAILED: column-major middle-level interface to ssbtrd\n" ); } /* Initialize input data, call the column-major high-level * interface to LAPACK routine and check the results */ for( i = 0; i < ldab*n; i++ ) { ab_i[i] = ab_save[i]; } for( i = 0; i < n; i++ ) { d_i[i] = d_save[i]; } for( i = 0; i < (n-1); i++ ) { e_i[i] = e_save[i]; } for( i = 0; i < ldq*n; i++ ) { q_i[i] = q_save[i]; } for( i = 0; i < n; i++ ) { work_i[i] = work[i]; } info_i = LAPACKE_ssbtrd( LAPACK_COL_MAJOR, vect_i, uplo_i, n_i, kd_i, ab_i, ldab_i, d_i, e_i, q_i, ldq_i ); failed = compare_ssbtrd( ab, ab_i, d, d_i, e, e_i, q, q_i, info, info_i, ldab, ldq, n, vect ); if( failed == 0 ) { printf( "PASSED: column-major high-level interface to ssbtrd\n" ); } else { printf( "FAILED: column-major high-level interface to ssbtrd\n" ); } /* Initialize input data, call the row-major middle-level * interface to LAPACK routine and check the results */ for( i = 0; i < ldab*n; i++ ) { ab_i[i] = ab_save[i]; } for( i = 0; i < n; i++ ) { d_i[i] = d_save[i]; } for( i = 0; i < (n-1); i++ ) { e_i[i] = e_save[i]; } for( i = 0; i < ldq*n; i++ ) { q_i[i] = q_save[i]; } for( i = 0; i < n; i++ ) { work_i[i] = work[i]; } LAPACKE_sge_trans( LAPACK_COL_MAJOR, kd+1, n, ab_i, ldab, ab_r, n+2 ); if( LAPACKE_lsame( vect, 'u' ) || LAPACKE_lsame( vect, 'v' ) ) { LAPACKE_sge_trans( LAPACK_COL_MAJOR, n, n, q_i, ldq, q_r, n+2 ); } info_i = LAPACKE_ssbtrd_work( LAPACK_ROW_MAJOR, vect_i, uplo_i, n_i, kd_i, ab_r, ldab_r, d_i, e_i, q_r, ldq_r, work_i ); LAPACKE_sge_trans( LAPACK_ROW_MAJOR, kd+1, n, ab_r, n+2, ab_i, ldab ); if( LAPACKE_lsame( vect, 'u' ) || LAPACKE_lsame( vect, 'v' ) ) { LAPACKE_sge_trans( LAPACK_ROW_MAJOR, n, n, q_r, n+2, q_i, ldq ); } failed = compare_ssbtrd( ab, ab_i, d, d_i, e, e_i, q, q_i, info, info_i, ldab, ldq, n, vect ); if( failed == 0 ) { printf( "PASSED: row-major middle-level interface to ssbtrd\n" ); } else { printf( "FAILED: row-major middle-level interface to ssbtrd\n" ); } /* Initialize input data, call the row-major high-level * interface to LAPACK routine and check the results */ for( i = 0; i < ldab*n; i++ ) { ab_i[i] = ab_save[i]; } for( i = 0; i < n; i++ ) { d_i[i] = d_save[i]; } for( i = 0; i < (n-1); i++ ) { e_i[i] = e_save[i]; } for( i = 0; i < ldq*n; i++ ) { q_i[i] = q_save[i]; } for( i = 0; i < n; i++ ) { work_i[i] = work[i]; } /* Init row_major arrays */ LAPACKE_sge_trans( LAPACK_COL_MAJOR, kd+1, n, ab_i, ldab, ab_r, n+2 ); if( LAPACKE_lsame( vect, 'u' ) || LAPACKE_lsame( vect, 'v' ) ) { LAPACKE_sge_trans( LAPACK_COL_MAJOR, n, n, q_i, ldq, q_r, n+2 ); } info_i = LAPACKE_ssbtrd( LAPACK_ROW_MAJOR, vect_i, uplo_i, n_i, kd_i, ab_r, ldab_r, d_i, e_i, q_r, ldq_r ); LAPACKE_sge_trans( LAPACK_ROW_MAJOR, kd+1, n, ab_r, n+2, ab_i, ldab ); if( LAPACKE_lsame( vect, 'u' ) || LAPACKE_lsame( vect, 'v' ) ) { LAPACKE_sge_trans( LAPACK_ROW_MAJOR, n, n, q_r, n+2, q_i, ldq ); } failed = compare_ssbtrd( ab, ab_i, d, d_i, e, e_i, q, q_i, info, info_i, ldab, ldq, n, vect ); if( failed == 0 ) { printf( "PASSED: row-major high-level interface to ssbtrd\n" ); } else { printf( "FAILED: row-major high-level interface to ssbtrd\n" ); } /* Release memory */ if( ab != NULL ) { LAPACKE_free( ab ); } if( ab_i != NULL ) { LAPACKE_free( ab_i ); } if( ab_r != NULL ) { LAPACKE_free( ab_r ); } if( ab_save != NULL ) { LAPACKE_free( ab_save ); } if( d != NULL ) { LAPACKE_free( d ); } if( d_i != NULL ) { LAPACKE_free( d_i ); } if( d_save != NULL ) { LAPACKE_free( d_save ); } if( e != NULL ) { LAPACKE_free( e ); } if( e_i != NULL ) { LAPACKE_free( e_i ); } if( e_save != NULL ) { LAPACKE_free( e_save ); } if( q != NULL ) { LAPACKE_free( q ); } if( q_i != NULL ) { LAPACKE_free( q_i ); } if( q_r != NULL ) { LAPACKE_free( q_r ); } if( q_save != NULL ) { LAPACKE_free( q_save ); } if( work != NULL ) { LAPACKE_free( work ); } if( work_i != NULL ) { LAPACKE_free( work_i ); } return 0; }
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *m, real * w, real *z, integer *ldz, real *work, integer *iwork, integer *ifail, integer *info) { /* -- LAPACK driver routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= SSBEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. RANGE (input) CHARACTER*1 = 'A': all eigenvalues will be found; = 'V': all eigenvalues in the half-open interval (VL,VU] will be found; = 'I': the IL-th through IU-th eigenvalues will be found. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. AB (input/output) REAL array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD + 1. Q (output) REAL array, dimension (LDQ, N) If JOBZ = 'V', the N-by-N orthogonal matrix used in the reduction to tridiagonal form. If JOBZ = 'N', the array Q is not referenced. LDQ (input) INTEGER The leading dimension of the array Q. If JOBZ = 'V', then LDQ >= max(1,N). VL (input) REAL VU (input) REAL If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. IL (input) INTEGER IU (input) INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. ABSTOL (input) REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AB to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S'). See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3. M (output) INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. W (output) REAL array, dimension (N) The first M elements contain the selected eigenvalues in ascending order. Z (output) REAL array, dimension (LDZ, max(1,M)) If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If an eigenvector fails to converge, then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. If JOBZ = 'N', then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace) REAL array, dimension (7*N) IWORK (workspace) INTEGER array, dimension (5*N) IFAIL (output) INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in array IFAIL. ===================================================================== Test the input parameters. Parameter adjustments Function Body */ /* Table of constant values */ static real c_b14 = 1.f; static integer c__1 = 1; static real c_b34 = 0.f; /* System generated locals */ integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer indd, inde; static real anrm; static integer imax; static real rmin, rmax; static integer itmp1, i, j, indee; static real sigma; extern logical lsame_(char *, char *); static integer iinfo; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); static char order[1]; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static logical lower; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer * ); static logical wantz; static integer jj; static logical alleig, indeig; static integer iscale, indibl; static logical valeig; extern doublereal slamch_(char *); static real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); static real abstll, bignum; extern doublereal slansb_(char *, char *, integer *, integer *, real *, integer *, real *); extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); static integer indisp, indiwo; extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); static integer indwrk; extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *), sstein_(integer *, real *, real *, integer *, real *, integer *, integer *, real *, integer *, real * , integer *, integer *, integer *), ssterf_(integer *, real *, real *, integer *); static integer nsplit; static real smlnum; extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, real *, integer *, integer *, real *, real *, real *, integer *, integer *, real *, integer *, integer *, real *, integer *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *); static real eps, vll, vuu, tmp1; #define W(I) w[(I)-1] #define WORK(I) work[(I)-1] #define IWORK(I) iwork[(I)-1] #define IFAIL(I) ifail[(I)-1] #define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)] #define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)] #define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)] wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); lower = lsame_(uplo, "L"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || lsame_(uplo, "U"))) { *info = -3; } else if (*n < 0) { *info = -4; } else if (*kd < 0) { *info = -5; } else if (*ldab < *kd + 1) { *info = -7; } else if (*ldq < *n) { *info = -9; } else if (valeig && *n > 0 && *vu <= *vl) { *info = -11; } else if (indeig && *il < 1) { *info = -12; } else if (indeig && (*iu < min(*n,*il) || *iu > *n)) { *info = -13; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -18; } if (*info != 0) { i__1 = -(*info); xerbla_("SSBEVX", &i__1); return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } if (*n == 1) { if (alleig || indeig) { *m = 1; W(1) = AB(1,1); } else { if (*vl < AB(1,1) && *vu >= AB(1,1)) { *m = 1; W(1) = AB(1,1); } } if (wantz) { Z(1,1) = 1.f; } return 0; } /* Get machine constants. */ safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; bignum = 1.f / smlnum; rmin = sqrt(smlnum); /* Computing MIN */ r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); rmax = dmin(r__1,r__2); /* Scale matrix to allowable range, if necessary. */ iscale = 0; abstll = *abstol; if (valeig) { vll = *vl; vuu = *vu; } anrm = slansb_("M", uplo, n, kd, &AB(1,1), ldab, &WORK(1)); if (anrm > 0.f && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { slascl_("B", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, info); } else { slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, info); } if (*abstol > 0.f) { abstll = *abstol * sigma; } if (valeig) { vll = *vl * sigma; vuu = *vu * sigma; } } /* Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */ indd = 1; inde = indd + *n; indwrk = inde + *n; ssbtrd_(jobz, uplo, n, kd, &AB(1,1), ldab, &WORK(indd), &WORK(inde), &Q(1,1), ldq, &WORK(indwrk), &iinfo); /* If all eigenvalues are desired and ABSTOL is less than or equal to zero, then call SSTERF or SSTEQR. If this fails for some eigenvalue, then try SSTEBZ. */ if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) { scopy_(n, &WORK(indd), &c__1, &W(1), &c__1); indee = indwrk + (*n << 1); if (! wantz) { i__1 = *n - 1; scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1); ssterf_(n, &W(1), &WORK(indee), info); } else { slacpy_("A", n, n, &Q(1,1), ldq, &Z(1,1), ldz); i__1 = *n - 1; scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1); ssteqr_(jobz, n, &W(1), &WORK(indee), &Z(1,1), ldz, &WORK( indwrk), info); if (*info == 0) { i__1 = *n; for (i = 1; i <= *n; ++i) { IFAIL(i) = 0; /* L10: */ } } } if (*info == 0) { *m = *n; goto L30; } *info = 0; } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */ if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + *n; indiwo = indisp + *n; sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &WORK(indd), &WORK( inde), m, &nsplit, &W(1), &IWORK(indibl), &IWORK(indisp), &WORK( indwrk), &IWORK(indiwo), info); if (wantz) { sstein_(n, &WORK(indd), &WORK(inde), m, &W(1), &IWORK(indibl), &IWORK( indisp), &Z(1,1), ldz, &WORK(indwrk), &IWORK(indiwo), & IFAIL(1), info); /* Apply orthogonal matrix used in reduction to tridiagonal form to eigenvectors returned by SSTEIN. */ i__1 = *m; for (j = 1; j <= *m; ++j) { scopy_(n, &Z(1,j), &c__1, &WORK(1), &c__1); sgemv_("N", n, n, &c_b14, &Q(1,1), ldq, &WORK(1), &c__1, & c_b34, &Z(1,j), &c__1); /* L20: */ } } /* If matrix was scaled, then rescale eigenvalues appropriately. */ L30: if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } r__1 = 1.f / sigma; sscal_(&imax, &r__1, &W(1), &c__1); } /* If eigenvalues are not in order, then sort them, along with eigenvectors. */ if (wantz) { i__1 = *m - 1; for (j = 1; j <= *m-1; ++j) { i = 0; tmp1 = W(j); i__2 = *m; for (jj = j + 1; jj <= *m; ++jj) { if (W(jj) < tmp1) { i = jj; tmp1 = W(jj); } /* L40: */ } if (i != 0) { itmp1 = IWORK(indibl + i - 1); W(i) = W(j); IWORK(indibl + i - 1) = IWORK(indibl + j - 1); W(j) = tmp1; IWORK(indibl + j - 1) = itmp1; sswap_(n, &Z(1,i), &c__1, &Z(1,j), & c__1); if (*info != 0) { itmp1 = IFAIL(i); IFAIL(i) = IFAIL(j); IFAIL(j) = itmp1; } } /* L50: */ } } return 0; /* End of SSBEVX */ } /* ssbevx_ */
int ssbgvd_(char *jobz, char *uplo, int *n, int *ka, int *kb, float *ab, int *ldab, float *bb, int *ldbb, float * w, float *z__, int *ldz, float *work, int *lwork, int * iwork, int *liwork, int *info) { /* System generated locals */ int ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ int inde; char vect[1]; extern int lsame_(char *, char *); int iinfo; extern int sgemm_(char *, char *, int *, int *, int *, float *, float *, int *, float *, int *, float *, float *, int *); int lwmin; int upper, wantz; int indwk2, llwrk2; extern int xerbla_(char *, int *), sstedc_( char *, int *, float *, float *, float *, int *, float *, int *, int *, int *, int *), slacpy_(char *, int *, int *, float *, int *, float *, int *); int indwrk, liwmin; extern int spbstf_(char *, int *, int *, float *, int *, int *), ssbtrd_(char *, char *, int *, int *, float *, int *, float *, float *, float *, int *, float *, int *), ssbgst_(char *, char *, int *, int *, int *, float *, int *, float *, int *, float *, int *, float *, int *), ssterf_(int *, float *, float *, int *); int lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SSBGVD computes all the eigenvalues, and optionally, the eigenvectors */ /* of a float generalized symmetric-definite banded eigenproblem, of the */ /* form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and */ /* banded, and B is also positive definite. If eigenvectors are */ /* desired, it uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) REAL array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for MAX(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=MIN(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) REAL array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for MAX(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=MIN(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**T*S, as returned by SPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) REAL array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so Z**T*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= MAX(1,N). */ /* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LWORK >= 3*N. */ /* If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK and IWORK */ /* arrays, returns these values as the first entries of the WORK */ /* and IWORK arrays, and no error message related to LWORK or */ /* LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */ /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK and IWORK arrays, and no error message related to */ /* LWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: the algorithm failed to converge: */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then SPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { liwmin = 1; lwmin = 1; } else if (wantz) { liwmin = *n * 5 + 3; /* Computing 2nd power */ i__1 = *n; lwmin = *n * 5 + 1 + (i__1 * i__1 << 1); } else { liwmin = 1; lwmin = *n << 1; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info == 0) { work[1] = (float) lwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -14; } else if (*liwork < liwmin && ! lquery) { *info = -16; } } if (*info != 0) { i__1 = -(*info); xerbla_("SSBGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; indwk2 = indwrk + *n * *n; llwrk2 = *lwork - indwk2 + 1; ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[indwrk], &iinfo) ; /* Reduce to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[ z_offset], ldz, &work[indwrk], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC. */ if (! wantz) { ssterf_(n, &w[1], &work[inde], info); } else { sstedc_("I", n, &w[1], &work[inde], &work[indwrk], n, &work[indwk2], & llwrk2, &iwork[1], liwork, info); sgemm_("N", "N", n, n, n, &c_b12, &z__[z_offset], ldz, &work[indwrk], n, &c_b13, &work[indwk2], n); slacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } work[1] = (float) lwmin; iwork[1] = liwmin; return 0; /* End of SSBGVD */ } /* ssbgvd_ */