Exemplo n.º 1
0
 int ssbev_(char *jobz, char *uplo, int *n, int *kd, 
	float *ab, int *ldab, float *w, float *z__, int *ldz, float *work, 
	 int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, z_dim1, z_offset, i__1;
    float r__1;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    float eps;
    int inde;
    float anrm;
    int imax;
    float rmin, rmax, sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    extern  int sscal_(int *, float *, float *, int *);
    int lower, wantz;
    int iscale;
    extern double slamch_(char *);
    float safmin;
    extern  int xerbla_(char *, int *);
    float bignum;
    extern double slansb_(char *, char *, int *, int *, float *, 
	    int *, float *);
    extern  int slascl_(char *, int *, int *, float *, 
	    float *, int *, int *, float *, int *, int *);
    int indwrk;
    extern  int ssbtrd_(char *, char *, int *, int *, 
	    float *, int *, float *, float *, float *, int *, float *, 
	    int *), ssterf_(int *, float *, float *, 
	    int *);
    float smlnum;
    extern  int ssteqr_(char *, int *, float *, float *, 
	    float *, int *, float *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBEV computes all the eigenvalues and, optionally, eigenvectors of */
/*  a float symmetric band matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for MAX(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=MIN(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace) REAL array, dimension (MAX(1,3*N-2)) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*kd < 0) {
	*info = -4;
    } else if (*ldab < *kd + 1) {
	*info = -6;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (lower) {
	    w[1] = ab[ab_dim1 + 1];
	} else {
	    w[1] = ab[*kd + 1 + ab_dim1];
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    inde = 1;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    return 0;

/*     End of SSBEV */

} /* ssbev_ */
Exemplo n.º 2
0
 int ssbgv_(char *jobz, char *uplo, int *n, int *ka, 
	int *kb, float *ab, int *ldab, float *bb, int *ldbb, float *
	w, float *z__, int *ldz, float *work, int *info)
{
    /* System generated locals */
    int ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;

    /* Local variables */
    int inde;
    char vect[1];
    extern int lsame_(char *, char *);
    int iinfo;
    int upper, wantz;
    extern  int xerbla_(char *, int *);
    int indwrk;
    extern  int spbstf_(char *, int *, int *, float *, 
	    int *, int *), ssbtrd_(char *, char *, int *, 
	    int *, float *, int *, float *, float *, float *, int *, 
	    float *, int *), ssbgst_(char *, char *, 
	    int *, int *, int *, float *, int *, float *, 
	    int *, float *, int *, float *, int *), 
	    ssterf_(int *, float *, float *, int *), ssteqr_(char *, 
	    int *, float *, float *, float *, int *, float *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBGV computes all the eigenvalues, and optionally, the eigenvectors */
/*  of a float generalized symmetric-definite banded eigenproblem, of */
/*  the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
/*  and banded, and B is also positive definite. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangles of A and B are stored; */
/*          = 'L':  Lower triangles of A and B are stored. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  KA      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KA >= 0. */

/*  KB      (input) INTEGER */
/*          The number of superdiagonals of the matrix B if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'. KB >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first ka+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for MAX(1,j-ka)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=MIN(n,j+ka). */

/*          On exit, the contents of AB are destroyed. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KA+1. */

/*  BB      (input/output) REAL array, dimension (LDBB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix B, stored in the first kb+1 rows of the array.  The */
/*          j-th column of B is stored in the j-th column of the array BB */
/*          as follows: */
/*          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for MAX(1,j-kb)<=i<=j; */
/*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=MIN(n,j+kb). */

/*          On exit, the factor S from the split Cholesky factorization */
/*          B = S**T*S, as returned by SPBSTF. */

/*  LDBB    (input) INTEGER */
/*          The leading dimension of the array BB.  LDBB >= KB+1. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/*          eigenvectors, with the i-th column of Z holding the */
/*          eigenvector associated with W(i). The eigenvectors are */
/*          normalized so that Z**T*B*Z = I. */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= N. */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is: */
/*             <= N:  the algorithm failed to converge: */
/*                    i off-diagonal elements of an intermediate */
/*                    tridiagonal form did not converge to zero; */
/*             > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF */
/*                    returned INFO = i: B is not positive definite. */
/*                    The factorization of B could not be completed and */
/*                    no eigenvalues or eigenvectors were computed. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ka < 0) {
	*info = -4;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -5;
    } else if (*ldab < *ka + 1) {
	*info = -7;
    } else if (*ldbb < *kb + 1) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    inde = 1;
    indwrk = inde + *n;
    ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, 
	     &z__[z_offset], ldz, &work[indwrk], &iinfo)
	    ;

/*     Reduce to tridiagonal form. */

    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }
    return 0;

/*     End of SSBGV */

} /* ssbgv_ */
Exemplo n.º 3
0
/* Subroutine */ int sstedc_(char *compz, integer *n, real *d__, real *e, 
	real *z__, integer *ldz, real *work, integer *lwork, integer *iwork, 
	integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, k, m;
    real p;
    integer ii, lgn;
    real eps, tiny;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    integer lwmin, start;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
	    integer *), slaed0_(integer *, integer *, integer *, real *, real 
	    *, real *, integer *, real *, integer *, real *, integer *, 
	    integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer finish;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, 
	    real *, integer *), slaset_(char *, integer *, integer *, 
	    real *, real *, real *, integer *);
    integer liwmin, icompz;
    real orgnrm;
    extern doublereal slanst_(char *, integer *, real *, real *);
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *),
	     slasrt_(char *, integer *, real *, integer *);
    logical lquery;
    integer smlsiz;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    integer storez, strtrw;


/*  -- LAPACK driver routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */
/*  The eigenvectors of a full or band real symmetric matrix can also be */
/*  found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this */
/*  matrix to tridiagonal form. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none.  See SLAED3 for details. */

/*  Arguments */
/*  ========= */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only. */
/*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
/*          = 'V':  Compute eigenvectors of original dense symmetric */
/*                  matrix also.  On entry, Z contains the orthogonal */
/*                  matrix used to reduce the original matrix to */
/*                  tridiagonal form. */

/*  N       (input) INTEGER */
/*          The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D       (input/output) REAL array, dimension (N) */
/*          On entry, the diagonal elements of the tridiagonal matrix. */
/*          On exit, if INFO = 0, the eigenvalues in ascending order. */

/*  E       (input/output) REAL array, dimension (N-1) */
/*          On entry, the subdiagonal elements of the tridiagonal matrix. */
/*          On exit, E has been destroyed. */

/*  Z       (input/output) REAL array, dimension (LDZ,N) */
/*          On entry, if COMPZ = 'V', then Z contains the orthogonal */
/*          matrix used in the reduction to tridiagonal form. */
/*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/*          orthonormal eigenvectors of the original symmetric matrix, */
/*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/*          of the symmetric tridiagonal matrix. */
/*          If  COMPZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1. */
/*          If eigenvectors are desired, then LDZ >= max(1,N). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LWORK must be at least */
/*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ), */
/*                         where lg( N ) = smallest integer k such */
/*                         that 2**k >= N. */
/*          If COMPZ = 'I' and N > 1 then LWORK must be at least */
/*                         ( 1 + 4*N + N**2 ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LWORK need */
/*          only be max(1,2*(N-1)). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LIWORK must be at least */
/*                         ( 6 + 6*N + 5*N*lg N ). */
/*          If COMPZ = 'I' and N > 1 then LIWORK must be at least */
/*                         ( 3 + 5*N ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LIWORK */
/*          need only be 1. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }

    if (*info == 0) {

/*        Compute the workspace requirements */

	smlsiz = ilaenv_(&c__9, "SSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
	if (*n <= 1 || icompz == 0) {
	    liwmin = 1;
	    lwmin = 1;
	} else if (*n <= smlsiz) {
	    liwmin = 1;
	    lwmin = *n - 1 << 1;
	} else {
	    lgn = (integer) (log((real) (*n)) / log(2.f));
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (icompz == 1) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
		liwmin = *n * 6 + 6 + *n * 5 * lgn;
	    } else if (icompz == 2) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = (*n << 2) + 1 + i__1 * i__1;
		liwmin = *n * 5 + 3;
	    }
	}
	work[1] = (real) lwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -8;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -10;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     If the following conditional clause is removed, then the routine */
/*     will use the Divide and Conquer routine to compute only the */
/*     eigenvalues, which requires (3N + 3N**2) real workspace and */
/*     (2 + 5N + 2N lg(N)) integer workspace. */
/*     Since on many architectures SSTERF is much faster than any other */
/*     algorithm for finding eigenvalues only, it is used here */
/*     as the default. If the conditional clause is removed, then */
/*     information on the size of workspace needs to be changed. */

/*     If COMPZ = 'N', use SSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	ssterf_(n, &d__[1], &e[1], info);
	goto L50;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then */
/*     solve the problem with another solver. */

    if (*n <= smlsiz) {

	ssteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);

    } else {

/*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
/*        use. */

	if (icompz == 1) {
	    storez = *n * *n + 1;
	} else {
	    storez = 1;
	}

	if (icompz == 2) {
	    slaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
	}

/*        Scale. */

	orgnrm = slanst_("M", n, &d__[1], &e[1]);
	if (orgnrm == 0.f) {
	    goto L50;
	}

	eps = slamch_("Epsilon");

	start = 1;

/*        while ( START <= N ) */

L10:
	if (start <= *n) {

/*           Let FINISH be the position of the next subdiagonal entry */
/*           such that E( FINISH ) <= TINY or FINISH = N if no such */
/*           subdiagonal exists.  The matrix identified by the elements */
/*           between START and FINISH constitutes an independent */
/*           sub-problem. */

	    finish = start;
L20:
	    if (finish < *n) {
		tiny = eps * sqrt((r__1 = d__[finish], dabs(r__1))) * sqrt((
			r__2 = d__[finish + 1], dabs(r__2)));
		if ((r__1 = e[finish], dabs(r__1)) > tiny) {
		    ++finish;
		    goto L20;
		}
	    }

/*           (Sub) Problem determined.  Compute its size and solve it. */

	    m = finish - start + 1;
	    if (m == 1) {
		start = finish + 1;
		goto L10;
	    }
	    if (m > smlsiz) {

/*              Scale. */

		orgnrm = slanst_("M", &m, &d__[start], &e[start]);
		slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
			start], &m, info);
		i__1 = m - 1;
		i__2 = m - 1;
		slascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
			start], &i__2, info);

		if (icompz == 1) {
		    strtrw = 1;
		} else {
		    strtrw = start;
		}
		slaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw + 
			start * z_dim1], ldz, &work[1], n, &work[storez], &
			iwork[1], info);
		if (*info != 0) {
		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
			     (m + 1) + start - 1;
		    goto L50;
		}

/*              Scale back. */

		slascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
			start], &m, info);

	    } else {
		if (icompz == 1) {

/*                 Since QR won't update a Z matrix which is larger than */
/*                 the length of D, we must solve the sub-problem in a */
/*                 workspace and then multiply back into Z. */

		    ssteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
			    work[m * m + 1], info);
		    slacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
			    storez], n);
		    sgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
			    work[1], &m, &c_b17, &z__[start * z_dim1 + 1], 
			    ldz);
		} else if (icompz == 2) {
		    ssteqr_("I", &m, &d__[start], &e[start], &z__[start + 
			    start * z_dim1], ldz, &work[1], info);
		} else {
		    ssterf_(&m, &d__[start], &e[start], info);
		}
		if (*info != 0) {
		    *info = start * (*n + 1) + finish;
		    goto L50;
		}
	    }

	    start = finish + 1;
	    goto L10;
	}

/*        endwhile */

/*        If the problem split any number of times, then the eigenvalues */
/*        will not be properly ordered.  Here we permute the eigenvalues */
/*        (and the associated eigenvectors) into ascending order. */

	if (m != *n) {
	    if (icompz == 0) {

/*              Use Quick Sort */

		slasrt_("I", n, &d__[1], info);

	    } else {

/*              Use Selection Sort to minimize swaps of eigenvectors */

		i__1 = *n;
		for (ii = 2; ii <= i__1; ++ii) {
		    i__ = ii - 1;
		    k = i__;
		    p = d__[i__];
		    i__2 = *n;
		    for (j = ii; j <= i__2; ++j) {
			if (d__[j] < p) {
			    k = j;
			    p = d__[j];
			}
/* L30: */
		    }
		    if (k != i__) {
			d__[k] = d__[i__];
			d__[i__] = p;
			sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * 
				z_dim1 + 1], &c__1);
		    }
/* L40: */
		}
	    }
	}
    }

L50:
    work[1] = (real) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of SSTEDC */

} /* sstedc_ */
Exemplo n.º 4
0
/* Subroutine */ int ssyevx_(char *jobz, char *range, char *uplo, integer *n, 
	real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu, 
	real *abstol, integer *m, real *w, real *z__, integer *ldz, real *
	work, integer *lwork, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;

    /* Local variables */
    integer i__, j, nb, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indee;
    real sigma;
    integer iinfo;
    char order[1];
    logical lower;
    logical wantz, alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    real safmin;
    real abstll, bignum;
    integer indtau, indisp, indiwo, indwkn;
    integer indwrk, lwkmin;
    integer llwrkn, llwork, nsplit;
    real smlnum;
    integer lwkopt;
    logical lquery;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  SSYEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric matrix A.  Eigenvalues and eigenvectors can be */
/*  selected by specifying either a range of values or a range of indices */
/*  for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found. */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found. */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, the lower triangle (if UPLO='L') or the upper */
/*          triangle (if UPLO='U') of A, including the diagonal, is */
/*          destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing A to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          On normal exit, the first M elements contain the selected */
/*          eigenvalues in ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= 1, when N <= 1; */
/*          otherwise 8*N. */
/*          For optimal efficiency, LWORK >= (NB+3)*N, */
/*          where NB is the max of the blocksize for SSYTRD and SORMTR */
/*          returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/* ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    lower = lsame_(uplo, "L");
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	}
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwkmin = 1;
	    work[1] = (real) lwkmin;
	} else {
	    lwkmin = *n << 3;
	    nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	    i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, 
		    &c_n1);
	    nb = max(i__1,i__2);
/* Computing MAX */
	    i__1 = lwkmin, i__2 = (nb + 3) * *n;
	    lwkopt = max(i__1,i__2);
	    work[1] = (real) lwkopt;
	}

	if (*lwork < lwkmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a[a_dim1 + 1];
	} else {
	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
		*m = 1;
		w[1] = a[a_dim1 + 1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
	    }
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSYTRD to reduce symmetric matrix to tridiagonal form. */

    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    llwork = *lwork - indwrk + 1;
    ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwrk], &llwork, &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal to */
/*     zero, then call SSTERF or SORGTR and SSTEQR.  If this fails for */
/*     some eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssterf_(n, &w[1], &work[indee], info);
	} else {
	    slacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
	    sorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
, &llwork, &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L40;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by SSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L40:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (real) lwkopt;

    return 0;

/*     End of SSYEVX */

} /* ssyevx_ */
Exemplo n.º 5
0
/* Subroutine */ int sstevx_(char *jobz, char *range, integer *n, real *d, 
	real *e, real *vl, real *vu, integer *il, integer *iu, real *abstol, 
	integer *m, real *w, real *z, integer *ldz, real *work, integer *
	iwork, integer *ifail, integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSTEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric tridiagonal matrix A.  Eigenvalues and   
    eigenvectors can be selected by specifying either a range of values   
    or a range of indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found.   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found.   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) REAL array, dimension (N)   
            On entry, the n diagonal elements of the tridiagonal matrix   
            A.   
            On exit, D may be multiplied by a constant factor chosen   
            to avoid over/underflow in computing the eigenvalues.   

    E       (input/output) REAL array, dimension (N)   
            On entry, the (n-1) subdiagonal elements of the tridiagonal   
            matrix A in elements 1 to N-1 of E; E(N) need not be set.   
            On exit, E may be multiplied by a constant factor chosen   
            to avoid over/underflow in computing the eigenvalues.   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less   
            than or equal to zero, then  EPS*|T|  will be used in   
            its place, where |T| is the 1-norm of the tridiagonal   
            matrix.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero. 
  
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            The first M elements contain the selected eigenvalues in   
            ascending order.   

    Z       (output) REAL array, dimension (LDZ, max(1,M) )   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge (INFO > 0), then that   
            column of Z contains the latest approximation to the   
            eigenvector, and the index of the eigenvector is returned   
            in IFAIL.  If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are 
  
            supplied in the array Z; if RANGE = 'V', the exact value of M 
  
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) REAL array, dimension (5*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer imax;
    static real rmin, rmax, tnrm;
    static integer itmp1, i, j;
    static real sigma;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
	    );
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    static logical valeig;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real bignum;
    static integer indisp, indiwo, indwrk;
    extern doublereal slanst_(char *, integer *, real *, real *);
    extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, real *, integer *, real *, integer *
	    , integer *, integer *), ssterf_(integer *, real *, real *, 
	    integer *);
    static integer nsplit;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    static real smlnum;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    static real eps, vll, vuu, tmp1;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]
#define IFAIL(I) ifail[(I)-1]

#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]

    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (valeig && *n > 0 && *vu <= *vl) {
	*info = -7;
    } else if (indeig && *il < 1) {
	*info = -8;
    } else if (indeig && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -14;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSTEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    W(1) = D(1);
	} else {
	    if (*vl < D(1) && *vu >= D(1)) {
		*m = 1;
		W(1) = D(1);
	    }
	}
	if (wantz) {
	    Z(1,1) = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    tnrm = slanst_("M", n, &D(1), &E(1));
    if (tnrm > 0.f && tnrm < rmin) {
	iscale = 1;
	sigma = rmin / tnrm;
    } else if (tnrm > rmax) {
	iscale = 1;
	sigma = rmax / tnrm;
    }
    if (iscale == 1) {
	sscal_(n, &sigma, &D(1), &c__1);
	i__1 = *n - 1;
	sscal_(&i__1, &sigma, &E(1), &c__1);
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     If all eigenvalues are desired and ABSTOL is less than zero, then 
  
       call SSTERF or SSTEQR.  If this fails for some eigenvalue, then   
       try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &D(1), &c__1, &W(1), &c__1);
	i__1 = *n - 1;
	scopy_(&i__1, &E(1), &c__1, &WORK(1), &c__1);
	indwrk = *n + 1;
	if (! wantz) {
	    ssterf_(n, &W(1), &WORK(1), info);
	} else {
	    ssteqr_("I", n, &W(1), &WORK(1), &Z(1,1), ldz, &WORK(indwrk),
		     info);
	    if (*info == 0) {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    IFAIL(i) = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indwrk = 1;
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, abstol, &D(1), &E(1), m, &
	    nsplit, &W(1), &IWORK(indibl), &IWORK(indisp), &WORK(indwrk), &
	    IWORK(indiwo), info);

    if (wantz) {
	sstein_(n, &D(1), &E(1), m, &W(1), &IWORK(indibl), &IWORK(indisp), &Z(1,1), ldz, &WORK(indwrk), &IWORK(indiwo), &IFAIL(1), 
		info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &W(1), &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= *m-1; ++j) {
	    i = 0;
	    tmp1 = W(j);
	    i__2 = *m;
	    for (jj = j + 1; jj <= *m; ++jj) {
		if (W(jj) < tmp1) {
		    i = jj;
		    tmp1 = W(jj);
		}
/* L30: */
	    }

	    if (i != 0) {
		itmp1 = IWORK(indibl + i - 1);
		W(i) = W(j);
		IWORK(indibl + i - 1) = IWORK(indibl + j - 1);
		W(j) = tmp1;
		IWORK(indibl + j - 1) = itmp1;
		sswap_(n, &Z(1,i), &c__1, &Z(1,j), &
			c__1);
		if (*info != 0) {
		    itmp1 = IFAIL(i);
		    IFAIL(i) = IFAIL(j);
		    IFAIL(j) = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of SSTEVX */

} /* sstevx_ */
Exemplo n.º 6
0
/* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d, real *e, 
	complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork,
	 integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    Using the divide and conquer method, CLAED0 computes all eigenvalues 
  
    of a symmetric tridiagonal matrix which is one diagonal block of   
    those from reducing a dense or band Hermitian matrix and   
    corresponding eigenvectors of the dense or band matrix.   

    Arguments   
    =========   

    QSIZ   (input) INTEGER   
           The dimension of the unitary matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. 
  

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) REAL array, dimension (N)   
           On entry, the diagonal elements of the tridiagonal matrix.   
           On exit, the eigenvalues in ascending order.   

    E      (input/output) REAL array, dimension (N-1)   
           On entry, the off-diagonal elements of the tridiagonal matrix. 
  
           On exit, E has been destroyed.   

    Q      (input/output) COMPLEX array, dimension (LDQ,N)   
           On entry, Q must contain an QSIZ x N matrix whose columns   
           unitarily orthonormal. It is a part of the unitary matrix   
           that reduces the full dense Hermitian matrix to a   
           (reducible) symmetric tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  LDQ >= max(1,N).   

    IWORK  (workspace) INTEGER array,   
           the dimension of IWORK must be at least   
                        6 + 6*N + 5*N*lg N   
                        ( lg( N ) = smallest integer k   
                                    such that 2^k >= N )   

    RWORK  (workspace) REAL array,   
                                 dimension (1 + 3*N + 2*N*lg N + 3*N**2) 
  
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   

    QSTORE (workspace) COMPLEX array, dimension (LDQS, N)   
           Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.   
           LDQS >= max(1,N).   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    ===================================================================== 
  

    Warning:      N could be as big as QSIZ!   


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__2 = 2;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    real r__1;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    /* Local variables */
    static real temp;
    static integer curr, i, j, k, iperm;
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *);
    static integer indxq, iwrem;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static integer iqptr;
    extern /* Subroutine */ int claed7_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, real *, complex *, integer *, 
	    real *, integer *, real *, integer *, integer *, integer *, 
	    integer *, integer *, real *, complex *, real *, integer *, 
	    integer *);
    static integer tlvls, ll, iq;
    extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, 
	    integer *, real *, integer *, complex *, integer *, real *);
    static integer igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, 
	    iprmpt;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    static integer lgn, msd2, smm1, spm1, spm2;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define RWORK(I) rwork[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define QSTORE(I,J) qstore[(I)-1 + ((J)-1)* ( *ldqs)]

    *info = 0;

/*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN   
          INFO = -1   
       ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) )   
      $        THEN */
    if (*qsiz < max(0,*n)) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldq < max(1,*n)) {
	*info = -6;
    } else if (*ldqs < max(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    IWORK(1) = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (IWORK(subpbs) > 25) {
	for (j = subpbs; j >= 1; --j) {
	    IWORK(j * 2) = (IWORK(j) + 1) / 2;
	    IWORK((j << 1) - 1) = IWORK(j) / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= subpbs; ++j) {
	IWORK(j) += IWORK(j - 1);
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 
  
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i = 1; i <= spm1; ++i) {
	submat = IWORK(i) + 1;
	smm1 = submat - 1;
	D(smm1) -= (r__1 = E(smm1), dabs(r__1));
	D(submat) -= (r__1 = E(smm1), dabs(r__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;

/*     Set up workspaces for eigenvalues only/accumulate new vectors   
       routine */

    temp = log((real) (*n)) / log(2.f);
    lgn = (integer) temp;
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    iprmpt = indxq + *n + 1;
    iperm = iprmpt + *n * lgn;
    iqptr = iperm + *n * lgn;
    igivpt = iqptr + *n + 2;
    igivcl = igivpt + *n * lgn;

    igivnm = 1;
    iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
    i__1 = *n;
    iwrem = iq + i__1 * i__1 + 1;
/*     Initialize pointers */
    i__1 = subpbs;
    for (i = 0; i <= subpbs; ++i) {
	IWORK(iprmpt + i) = 1;
	IWORK(igivpt + i) = 1;
/* L50: */
    }
    IWORK(iqptr) = 1;

/*     Solve each submatrix eigenproblem at the bottom of the divide and 
  
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i = 0; i <= spm1; ++i) {
	if (i == 0) {
	    submat = 1;
	    matsiz = IWORK(1);
	} else {
	    submat = IWORK(i) + 1;
	    matsiz = IWORK(i + 1) - IWORK(i);
	}
	ll = iq - 1 + IWORK(iqptr + curr);
	ssteqr_("I", &matsiz, &D(submat), &E(submat), &RWORK(ll), &matsiz, &
		RWORK(1), info);
	clacrm_(qsiz, &matsiz, &Q(1,submat), ldq, &RWORK(ll), &
		matsiz, &QSTORE(1,submat), ldqs, &RWORK(iwrem)
		);
/* Computing 2nd power */
	i__2 = matsiz;
	IWORK(iqptr + curr + 1) = IWORK(iqptr + curr) + i__2 * i__2;
	++curr;
	if (*info > 0) {
	    *info = submat * (*n + 1) + submat + matsiz - 1;
	    return 0;
	}
	k = 1;
	i__2 = IWORK(i + 1);
	for (j = submat; j <= IWORK(i+1); ++j) {
	    IWORK(indxq + j) = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i = 0; i <= spm2; i += 2) {
	    if (i == 0) {
		submat = 1;
		matsiz = IWORK(2);
		msd2 = IWORK(1);
		curprb = 0;
	    } else {
		submat = IWORK(i) + 1;
		matsiz = IWORK(i + 2) - IWORK(i);
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - M
SD2)   
       into an eigensystem of size MATSIZ.  CLAED7 handles the cas
e   
       when the eigenvectors of a full or band Hermitian matrix (w
hich   
       was reduced to tridiagonal form) are desired.   

       I am free to use Q as a valuable working space until Loop 1
50. */

	    claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &D(submat)
		    , &QSTORE(1,submat), ldqs, &E(submat + 
		    msd2 - 1), &IWORK(indxq + submat), &RWORK(iq), &IWORK(
		    iqptr), &IWORK(iprmpt), &IWORK(iperm), &IWORK(igivpt), &
		    IWORK(igivcl), &RWORK(igivnm), &Q(1,submat), &
		    RWORK(iwrem), &IWORK(subpbs + 1), info);
	    if (*info > 0) {
		*info = submat * (*n + 1) + submat + matsiz - 1;
		return 0;
	    }
	    IWORK(i / 2 + 1) = IWORK(i + 2);
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final 
  
       merge step. */

    i__1 = *n;
    for (i = 1; i <= *n; ++i) {
	j = IWORK(indxq + i);
	RWORK(i) = D(j);
	ccopy_(qsiz, &QSTORE(1,j), &c__1, &Q(1,i), 
		&c__1);
/* L100: */
    }
    scopy_(n, &RWORK(1), &c__1, &D(1), &c__1);

    return 0;

/*     End of CLAED0 */

} /* claed0_ */
Exemplo n.º 7
0
/* Subroutine */ int sspevx_(char *jobz, char *range, char *uplo, integer *n, 
	real *ap, real *vl, real *vu, integer *il, integer *iu, real *abstol, 
	integer *m, real *w, real *z__, integer *ldz, real *work, integer *
	iwork, integer *ifail, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    SSPEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric matrix A in packed storage.  Eigenvalues/vectors   
    can be selected by specifying either a range of values or a range of   
    indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found;   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found;   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) REAL array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, AP is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the diagonal   
            and first superdiagonal of the tridiagonal matrix T overwrite   
            the corresponding elements of A, and if UPLO = 'L', the   
            diagonal and first subdiagonal of T overwrite the   
            corresponding elements of A.   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing AP to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero.   
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the selected eigenvalues in ascending order.   

    Z       (output) REAL array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and the   
            index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) REAL array, dimension (8*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer itmp1, i__, j, indee;
    static real sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
	    );
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    static logical valeig;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real abstll, bignum;
    static integer indtau, indisp, indiwo, indwrk;
    extern doublereal slansp_(char *, char *, integer *, real *, real *);
    extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *, 
	    real *, integer *, integer *, real *, integer *, real *, integer *
	    , integer *, integer *), ssterf_(integer *, real *, real *, 
	    integer *);
    static integer nsplit;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *);
    static real smlnum;
    extern /* Subroutine */ int sopgtr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *), ssptrd_(char *, 
	    integer *, real *, real *, real *, real *, integer *), 
	    ssteqr_(char *, integer *, real *, real *, real *, integer *, 
	    real *, integer *), sopmtr_(char *, char *, char *, 
	    integer *, integer *, real *, real *, real *, integer *, real *, 
	    integer *);
    static real eps, vll, vuu, tmp1;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -8;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSPEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = ap[1];
	} else {
	    if (*vl < ap[1] && *vu >= ap[1]) {
		*m = 1;
		w[1] = ap[1];
	    }
	}
	if (wantz) {
	    z___ref(1, 1) = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	sscal_(&i__1, &sigma, &ap[1], &c__1);
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */

    indtau = 1;
    inde = indtau + *n;
    indd = inde + *n;
    indwrk = indd + *n;
    ssptrd_(uplo, n, &ap[1], &work[indd], &work[inde], &work[indtau], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal   
       to zero, then call SSTERF or SOPGTR and SSTEQR.  If this fails   
       for some eigenvalue, then try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssterf_(n, &w[1], &work[indee], info);
	} else {
	    sopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
		    work[indwrk], &iinfo);
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by SSTEIN. */

	sopmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		sswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, j), &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of SSPEVX */

} /* sspevx_ */
Exemplo n.º 8
0
 int claed0_(int *qsiz, int *n, float *d__, float *e, 
	complex *q, int *ldq, complex *qstore, int *ldqs, float *rwork, 
	 int *iwork, int *info)
{
    /* System generated locals */
    int q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    float r__1;

    /* Builtin functions */
    double log(double);
    int pow_ii(int *, int *);

    /* Local variables */
    int i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2;
    float temp;
    int curr, iperm;
    extern  int ccopy_(int *, complex *, int *, 
	    complex *, int *);
    int indxq, iwrem;
    extern  int scopy_(int *, float *, int *, float *, 
	    int *);
    int iqptr;
    extern  int claed7_(int *, int *, int *, 
	    int *, int *, int *, float *, complex *, int *, 
	    float *, int *, float *, int *, int *, int *, 
	    int *, int *, float *, complex *, float *, int *, 
	    int *);
    int tlvls;
    extern  int clacrm_(int *, int *, complex *, 
	    int *, float *, int *, complex *, int *, float *);
    int igivcl;
    extern  int xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    int igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, 
	    smlsiz;
    extern  int ssteqr_(char *, int *, float *, float *, 
	    float *, int *, float *, int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  Using the divide and conquer method, CLAED0 computes all eigenvalues */
/*  of a symmetric tridiagonal matrix which is one diagonal block of */
/*  those from reducing a dense or band Hermitian matrix and */
/*  corresponding eigenvectors of the dense or band matrix. */

/*  Arguments */
/*  ========= */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the unitary matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry, the diagonal elements of the tridiagonal matrix. */
/*         On exit, the eigenvalues in ascending order. */

/*  E      (input/output) REAL array, dimension (N-1) */
/*         On entry, the off-diagonal elements of the tridiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  Q      (input/output) COMPLEX array, dimension (LDQ,N) */
/*         On entry, Q must contain an QSIZ x N matrix whose columns */
/*         unitarily orthonormal. It is a part of the unitary matrix */
/*         that reduces the full dense Hermitian matrix to a */
/*         (reducible) symmetric tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  LDQ >= MAX(1,N). */

/*  IWORK  (workspace) INTEGER array, */
/*         the dimension of IWORK must be at least */
/*                      6 + 6*N + 5*N*lg N */
/*                      ( lg( N ) = smallest int k */
/*                                  such that 2^k >= N ) */

/*  RWORK  (workspace) REAL array, */
/*                               dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
/*                        ( lg( N ) = smallest int k */
/*                                    such that 2^k >= N ) */

/*  QSTORE (workspace) COMPLEX array, dimension (LDQS, N) */
/*         Used to store parts of */
/*         the eigenvector matrix when the updating matrix multiplies */
/*         take place. */

/*  LDQS   (input) INTEGER */
/*         The leading dimension of the array QSTORE. */
/*         LDQS >= MAX(1,N). */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  ===================================================================== */

/*  Warning:      N could be as big as QSIZ! */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;

/*     IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
/*        INFO = -1 */
/*     ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
/*    $        THEN */
    if (*qsiz < MAX(0,*n)) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldq < MAX(1,*n)) {
	*info = -6;
    } else if (*ldqs < MAX(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0);

/*     Determine the size and placement of the submatrices, and save in */
/*     the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/*     using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (r__1 = e[smm1], ABS(r__1));
	d__[submat] -= (r__1 = e[smm1], ABS(r__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;

/*     Set up workspaces for eigenvalues only/accumulate new vectors */
/*     routine */

    temp = log((float) (*n)) / log(2.f);
    lgn = (int) temp;
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    if (pow_ii(&c__2, &lgn) < *n) {
	++lgn;
    }
    iprmpt = indxq + *n + 1;
    iperm = iprmpt + *n * lgn;
    iqptr = iperm + *n * lgn;
    igivpt = iqptr + *n + 2;
    igivcl = igivpt + *n * lgn;

    igivnm = 1;
    iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
    i__1 = *n;
    iwrem = iq + i__1 * i__1 + 1;
/*     Initialize pointers */
    i__1 = subpbs;
    for (i__ = 0; i__ <= i__1; ++i__) {
	iwork[iprmpt + i__] = 1;
	iwork[igivpt + i__] = 1;
/* L50: */
    }
    iwork[iqptr] = 1;

/*     Solve each submatrix eigenproblem at the bottom of the divide and */
/*     conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	ll = iq - 1 + iwork[iqptr + curr];
	ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
		rwork[1], info);
	clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
		matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
);
/* Computing 2nd power */
	i__2 = matsiz;
	iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	++curr;
	if (*info > 0) {
	    *info = submat * (*n + 1) + submat + matsiz - 1;
	    return 0;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices */
/*     into eigensystem for the corresponding larger matrix. */

/*     while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/*     into an eigensystem of size MATSIZ.  CLAED7 handles the case */
/*     when the eigenvectors of a full or band Hermitian matrix (which */
/*     was reduced to tridiagonal form) are desired. */

/*     I am free to use Q as a valuable working space until Loop 150. */

	    claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
		    submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
		    submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
		    iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
		    igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat * 
		    q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
	    if (*info > 0) {
		*info = submat * (*n + 1) + submat + matsiz - 1;
		return 0;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while */

/*     Re-merge the eigenvalues/vectors which were deflated at the final */
/*     merge step. */

    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	j = iwork[indxq + i__];
	rwork[i__] = d__[j];
	ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
, &c__1);
/* L100: */
    }
    scopy_(n, &rwork[1], &c__1, &d__[1], &c__1);

    return 0;

/*     End of CLAED0 */

} /* claed0_ */
Exemplo n.º 9
0
/* Subroutine */ int sspev_(char *jobz, char *uplo, integer *n, real *ap, 
	real *w, real *z__, integer *ldz, real *work, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    logical wantz;
    integer iscale;
    extern doublereal slamch_(char *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real bignum;
    integer indtau, indwrk;
    extern doublereal slansp_(char *, char *, integer *, real *, real *);
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
    real smlnum;
    extern /* Subroutine */ int sopgtr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *), ssptrd_(char *, 
	    integer *, real *, real *, real *, real *, integer *), 
	    ssteqr_(char *, integer *, real *, real *, real *, integer *, 
	    real *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSPEV computes all the eigenvalues and, optionally, eigenvectors of a */
/*  real symmetric matrix A in packed storage. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) REAL array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the symmetric matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "U") || lsame_(uplo, 
	    "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSPEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1];
	if (wantz) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	sscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    ssptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     SOPGTR to generate the orthogonal matrix, then call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	indwrk = indtau + *n;
	sopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[
		indwrk], &iinfo);
	ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indtau], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

    return 0;

/*     End of SSPEV */

} /* sspev_ */
Exemplo n.º 10
0
/* Subroutine */ int sstedc_(char *compz, integer *n, real *d__, real *e, 
	real *z__, integer *ldz, real *work, integer *lwork, integer *iwork, 
	integer *liwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    SSTEDC computes all eigenvalues and, optionally, eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   
    The eigenvectors of a full or band real symmetric matrix can also be   
    found if SSYTRD or SSPTRD or SSBTRD has been used to reduce this   
    matrix to tridiagonal form.   

    This code makes very mild assumptions about floating point   
    arithmetic. It will work on machines with a guard digit in   
    add/subtract, or on those binary machines without guard digits   
    which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.   
    It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.  See SLAED3 for details.   

    Arguments   
    =========   

    COMPZ   (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only.   
            = 'I':  Compute eigenvectors of tridiagonal matrix also.   
            = 'V':  Compute eigenvectors of original dense symmetric   
                    matrix also.  On entry, Z contains the orthogonal   
                    matrix used to reduce the original matrix to   
                    tridiagonal form.   

    N       (input) INTEGER   
            The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D       (input/output) REAL array, dimension (N)   
            On entry, the diagonal elements of the tridiagonal matrix.   
            On exit, if INFO = 0, the eigenvalues in ascending order.   

    E       (input/output) REAL array, dimension (N-1)   
            On entry, the subdiagonal elements of the tridiagonal matrix.   
            On exit, E has been destroyed.   

    Z       (input/output) REAL array, dimension (LDZ,N)   
            On entry, if COMPZ = 'V', then Z contains the orthogonal   
            matrix used in the reduction to tridiagonal form.   
            On exit, if INFO = 0, then if COMPZ = 'V', Z contains the   
            orthonormal eigenvectors of the original symmetric matrix,   
            and if COMPZ = 'I', Z contains the orthonormal eigenvectors   
            of the symmetric tridiagonal matrix.   
            If  COMPZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1.   
            If eigenvectors are desired, then LDZ >= max(1,N).   

    WORK    (workspace/output) REAL array,   
                                           dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.   
            If COMPZ = 'V' and N > 1 then LWORK must be at least   
                           ( 1 + 3*N + 2*N*lg N + 3*N**2 ),   
                           where lg( N ) = smallest integer k such   
                           that 2**k >= N.   
            If COMPZ = 'I' and N > 1 then LWORK must be at least   
                           ( 1 + 4*N + N**2 ).   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace/output) INTEGER array, dimension (LIWORK)   
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK.   
            If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.   
            If COMPZ = 'V' and N > 1 then LIWORK must be at least   
                           ( 6 + 6*N + 5*N*lg N ).   
            If COMPZ = 'I' and N > 1 then LIWORK must be at least   
                           ( 3 + 5*N ).   

            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal size of the IWORK array,   
            returns this value as the first entry of the IWORK array, and   
            no error message related to LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   
    Modified by Francoise Tisseur, University of Tennessee.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__2 = 2;
    static integer c__9 = 9;
    static integer c__0 = 0;
    static real c_b18 = 0.f;
    static real c_b19 = 1.f;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    real r__1, r__2;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);
    /* Local variables */
    static real tiny;
    static integer i__, j, k, m;
    static real p;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static integer lwmin, start;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
	    integer *), slaed0_(integer *, integer *, integer *, real *, real 
	    *, real *, integer *, real *, integer *, real *, integer *, 
	    integer *);
    static integer ii;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, 
	    real *, integer *), slaset_(char *, integer *, integer *, 
	    real *, real *, real *, integer *);
    static integer liwmin, icompz;
    static real orgnrm;
    extern doublereal slanst_(char *, integer *, real *, real *);
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *),
	     slasrt_(char *, integer *, real *, integer *);
    static logical lquery;
    static integer smlsiz;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    static integer storez, strtrw, end, lgn;
    static real eps;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (*n <= 1 || icompz <= 0) {
	liwmin = 1;
	lwmin = 1;
    } else {
	lgn = (integer) (log((real) (*n)) / log(2.f));
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (icompz == 1) {
/* Computing 2nd power */
	    i__1 = *n;
	    lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
	    liwmin = *n * 6 + 6 + *n * 5 * lgn;
	} else if (icompz == 2) {
/* Computing 2nd power */
	    i__1 = *n;
	    lwmin = (*n << 2) + 1 + i__1 * i__1;
	    liwmin = *n * 5 + 3;
	}
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    } else if (*lwork < lwmin && ! lquery) {
	*info = -8;
    } else if (*liwork < liwmin && ! lquery) {
	*info = -10;
    }

    if (*info == 0) {
	work[1] = (real) lwmin;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    z___ref(1, 1) = 1.f;
	}
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "SSTEDC", " ", &c__0, &c__0, &c__0, &c__0, (
	    ftnlen)6, (ftnlen)1);

/*     If the following conditional clause is removed, then the routine   
       will use the Divide and Conquer routine to compute only the   
       eigenvalues, which requires (3N + 3N**2) real workspace and   
       (2 + 5N + 2N lg(N)) integer workspace.   
       Since on many architectures SSTERF is much faster than any other   
       algorithm for finding eigenvalues only, it is used here   
       as the default.   

       If COMPZ = 'N', use SSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	ssterf_(n, &d__[1], &e[1], info);
	return 0;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then   
       solve the problem with another solver. */

    if (*n <= smlsiz) {
	if (icompz == 0) {
	    ssterf_(n, &d__[1], &e[1], info);
	    return 0;
	} else if (icompz == 2) {
	    ssteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], 
		    info);
	    return 0;
	} else {
	    ssteqr_("V", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], 
		    info);
	    return 0;
	}
    }

/*     If COMPZ = 'V', the Z matrix must be stored elsewhere for later   
       use. */

    if (icompz == 1) {
	storez = *n * *n + 1;
    } else {
	storez = 1;
    }

    if (icompz == 2) {
	slaset_("Full", n, n, &c_b18, &c_b19, &z__[z_offset], ldz);
    }

/*     Scale. */

    orgnrm = slanst_("M", n, &d__[1], &e[1]);
    if (orgnrm == 0.f) {
	return 0;
    }

    eps = slamch_("Epsilon");

    start = 1;

/*     while ( START <= N ) */

L10:
    if (start <= *n) {

/*     Let END be the position of the next subdiagonal entry such that   
       E( END ) <= TINY or END = N if no such subdiagonal exists.  The   
       matrix identified by the elements between START and END   
       constitutes an independent sub-problem. */

	end = start;
L20:
	if (end < *n) {
	    tiny = eps * sqrt((r__1 = d__[end], dabs(r__1))) * sqrt((r__2 = 
		    d__[end + 1], dabs(r__2)));
	    if ((r__1 = e[end], dabs(r__1)) > tiny) {
		++end;
		goto L20;
	    }
	}

/*        (Sub) Problem determined.  Compute its size and solve it. */

	m = end - start + 1;
	if (m == 1) {
	    start = end + 1;
	    goto L10;
	}
	if (m > smlsiz) {
	    *info = smlsiz;

/*           Scale. */

	    orgnrm = slanst_("M", &m, &d__[start], &e[start]);
	    slascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &m, &c__1, &d__[start]
		    , &m, info);
	    i__1 = m - 1;
	    i__2 = m - 1;
	    slascl_("G", &c__0, &c__0, &orgnrm, &c_b19, &i__1, &c__1, &e[
		    start], &i__2, info);

	    if (icompz == 1) {
		strtrw = 1;
	    } else {
		strtrw = start;
	    }
	    slaed0_(&icompz, n, &m, &d__[start], &e[start], &z___ref(strtrw, 
		    start), ldz, &work[1], n, &work[storez], &iwork[1], info);
	    if (*info != 0) {
		*info = (*info / (m + 1) + start - 1) * (*n + 1) + *info % (m 
			+ 1) + start - 1;
		return 0;
	    }

/*           Scale back. */

	    slascl_("G", &c__0, &c__0, &c_b19, &orgnrm, &m, &c__1, &d__[start]
		    , &m, info);

	} else {
	    if (icompz == 1) {

/*     Since QR won't update a Z matrix which is larger than the   
       length of D, we must solve the sub-problem in a workspace and   
       then multiply back into Z. */

		ssteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &work[
			m * m + 1], info);
		slacpy_("A", n, &m, &z___ref(1, start), ldz, &work[storez], n);
		sgemm_("N", "N", n, &m, &m, &c_b19, &work[storez], ldz, &work[
			1], &m, &c_b18, &z___ref(1, start), ldz);
	    } else if (icompz == 2) {
		ssteqr_("I", &m, &d__[start], &e[start], &z___ref(start, 
			start), ldz, &work[1], info);
	    } else {
		ssterf_(&m, &d__[start], &e[start], info);
	    }
	    if (*info != 0) {
		*info = start * (*n + 1) + end;
		return 0;
	    }
	}

	start = end + 1;
	goto L10;
    }

/*     endwhile   

       If the problem split any number of times, then the eigenvalues   
       will not be properly ordered.  Here we permute the eigenvalues   
       (and the associated eigenvectors) into ascending order. */

    if (m != *n) {
	if (icompz == 0) {

/*        Use Quick Sort */

	    slasrt_("I", n, &d__[1], info);

	} else {

/*        Use Selection Sort to minimize swaps of eigenvectors */

	    i__1 = *n;
	    for (ii = 2; ii <= i__1; ++ii) {
		i__ = ii - 1;
		k = i__;
		p = d__[i__];
		i__2 = *n;
		for (j = ii; j <= i__2; ++j) {
		    if (d__[j] < p) {
			k = j;
			p = d__[j];
		    }
/* L30: */
		}
		if (k != i__) {
		    d__[k] = d__[i__];
		    d__[i__] = p;
		    sswap_(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1);
		}
/* L40: */
	    }
	}
    }

    work[1] = (real) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of SSTEDC */

} /* sstedc_ */
Exemplo n.º 11
0
/* Subroutine */
int sspev_(char *jobz, char *uplo, integer *n, real *ap, real *w, real *z__, integer *ldz, real *work, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    real r__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */
    int sscal_(integer *, real *, real *, integer *);
    logical wantz;
    integer iscale;
    extern real slamch_(char *);
    real safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    real bignum;
    integer indtau, indwrk;
    extern real slansp_(char *, char *, integer *, real *, real *);
    extern /* Subroutine */
    int ssterf_(integer *, real *, real *, integer *);
    real smlnum;
    extern /* Subroutine */
    int sopgtr_(char *, integer *, real *, real *, real *, integer *, real *, integer *), ssptrd_(char *, integer *, real *, real *, real *, real *, integer *), ssteqr_(char *, integer *, real *, real *, real *, integer *, real *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (lsame_(uplo, "U") || lsame_(uplo, "L")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -7;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("SSPEV ", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        w[1] = ap[1];
        if (wantz)
        {
            z__[z_dim1 + 1] = 1.f;
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);
    /* Scale matrix to allowable range, if necessary. */
    anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin)
    {
        iscale = 1;
        sigma = rmin / anrm;
    }
    else if (anrm > rmax)
    {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1)
    {
        i__1 = *n * (*n + 1) / 2;
        sscal_(&i__1, &sigma, &ap[1], &c__1);
    }
    /* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */
    inde = 1;
    indtau = inde + *n;
    ssptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
    /* For eigenvalues only, call SSTERF. For eigenvectors, first call */
    /* SOPGTR to generate the orthogonal matrix, then call SSTEQR. */
    if (! wantz)
    {
        ssterf_(n, &w[1], &work[inde], info);
    }
    else
    {
        indwrk = indtau + *n;
        sopgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo);
        ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[ indtau], info);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *n;
        }
        else
        {
            imax = *info - 1;
        }
        r__1 = 1.f / sigma;
        sscal_(&imax, &r__1, &w[1], &c__1);
    }
    return 0;
    /* End of SSPEV */
}
Exemplo n.º 12
0
/* Subroutine */ int slaed0_(integer *icompq, integer *qsiz, integer *n, real 
	*d__, real *e, real *q, integer *ldq, real *qstore, integer *ldqs, 
	real *work, integer *iwork, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    real r__1;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);

    /* Local variables */
    static real temp;
    static integer curr, i__, j, k;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static integer iperm, indxq, iwrem;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static integer iqptr, tlvls;
    extern /* Subroutine */ int slaed1_(integer *, real *, real *, integer *, 
	    integer *, real *, integer *, real *, integer *, integer *), 
	    slaed7_(integer *, integer *, integer *, integer *, integer *, 
	    integer *, real *, real *, integer *, integer *, real *, integer *
	    , real *, integer *, integer *, integer *, integer *, integer *, 
	    real *, real *, integer *, integer *);
    static integer iq, igivcl;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer igivnm, submat;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    static integer curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, smlsiz;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    static integer lgn, msd2, smm1, spm1, spm2;


#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define qstore_ref(a_1,a_2) qstore[(a_2)*qstore_dim1 + a_1]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   

       Common block to return operation count and iteration count   
       ITCNT is unchanged, OPS is only incremented   

    Purpose   
    =======   

    SLAED0 computes all eigenvalues and corresponding eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            = 0:  Compute eigenvalues only.   
            = 1:  Compute eigenvectors of original dense symmetric matrix   
                  also.  On entry, Q contains the orthogonal matrix used   
                  to reduce the original matrix to tridiagonal form.   
            = 2:  Compute eigenvalues and eigenvectors of tridiagonal   
                  matrix.   

    QSIZ   (input) INTEGER   
           The dimension of the orthogonal matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.   

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) REAL array, dimension (N)   
           On entry, the main diagonal of the tridiagonal matrix.   
           On exit, its eigenvalues.   

    E      (input) REAL array, dimension (N-1)   
           The off-diagonal elements of the tridiagonal matrix.   
           On exit, E has been destroyed.   

    Q      (input/output) REAL array, dimension (LDQ, N)   
           On entry, Q must contain an N-by-N orthogonal matrix.   
           If ICOMPQ = 0    Q is not referenced.   
           If ICOMPQ = 1    On entry, Q is a subset of the columns of the   
                            orthogonal matrix used to reduce the full   
                            matrix to tridiagonal form corresponding to   
                            the subset of the full matrix which is being   
                            decomposed at this time.   
           If ICOMPQ = 2    On entry, Q will be the identity matrix.   
                            On exit, Q contains the eigenvectors of the   
                            tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  If eigenvectors are   
           desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.   

    QSTORE (workspace) REAL array, dimension (LDQS, N)   
           Referenced only when ICOMPQ = 1.  Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.  If ICOMPQ = 1,   
           then  LDQS >= max(1,N).  In any case,  LDQS >= 1.   

    WORK   (workspace) REAL array,   
           If ICOMPQ = 0 or 1, the dimension of WORK must be at least   
                       1 + 3*N + 2*N*lg N + 2*N**2   
                       ( lg( N ) = smallest integer k   
                                   such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of WORK must be at least   
                       4*N + N**2.   

    IWORK  (workspace) INTEGER array,   
           If ICOMPQ = 0 or 1, the dimension of IWORK must be at least   
                          6 + 6*N + 5*N*lg N.   
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of IWORK must be at least   
                          3 + 5*N.   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1 * 1;
    qstore -= qstore_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "SLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
	    ftnlen)6, (ftnlen)1);

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1   
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    latime_1.ops += spm1 << 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (r__1 = e[smm1], dabs(r__1));
	d__[submat] -= (r__1 = e[smm1], dabs(r__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vectors   
          routine */

	latime_1.ops += 3;
	temp = log((real) (*n)) / log(2.f);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i__ = 0; i__ <= i__1; ++i__) {
	    iwork[iprmpt + i__] = 1;
	    iwork[igivpt + i__] = 1;
/* L50: */
	}
	iwork[iqptr] = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and   
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	if (*icompq == 2) {
	    ssteqr_("I", &matsiz, &d__[submat], &e[submat], &q_ref(submat, 
		    submat), ldq, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    ssteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
		    iwork[iqptr + curr]], &matsiz, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		latime_1.ops += (real) (*qsiz) * 2 * matsiz * matsiz;
		sgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q_ref(1, 
			submat), ldq, &work[iq - 1 + iwork[iqptr + curr]], &
			matsiz, &c_b24, &qstore_ref(1, submat), ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2)   
       into an eigensystem of size MATSIZ.   
       SLAED1 is used only for the full eigensystem of a tridiagonal   
       matrix.   
       SLAED7 handles the cases in which eigenvalues only or eigenvalues   
       and eigenvectors of a full symmetric matrix (which was reduced to   
       tridiagonal form) are desired. */

	    if (*icompq == 2) {
		slaed1_(&matsiz, &d__[submat], &q_ref(submat, submat), ldq, &
			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
			work[1], &iwork[subpbs + 1], info);
	    } else {
		slaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
			submat], &qstore_ref(1, submat), ldqs, &iwork[indxq + 
			submat], &e[submat + msd2 - 1], &msd2, &work[iq], &
			iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
			igivpt], &iwork[igivcl], &work[igivnm], &work[iwrem], 
			&iwork[subpbs + 1], info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final   
       merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    scopy_(qsiz, &qstore_ref(1, j), &c__1, &q_ref(1, i__), &c__1);
/* L100: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    scopy_(n, &q_ref(1, j), &c__1, &work[*n * i__ + 1], &c__1);
/* L110: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
	slacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
/* L120: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of SLAED0 */

} /* slaed0_ */
Exemplo n.º 13
0
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl,
	 real *vu, integer *il, integer *iu, real *abstol, integer *m, real *
	w, real *z, integer *ldz, real *work, integer *iwork, integer *ifail, 
	integer *info)
{
/*  -- LAPACK driver routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSBEVX computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric band matrix A.  Eigenvalues and eigenvectors can 
  
    be selected by specifying either a range of values or a range of   
    indices for the desired eigenvalues.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found;   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found;   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    KD      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'.  KD >= 0.   

    AB      (input/output) REAL array, dimension (LDAB, N)   
            On entry, the upper or lower triangle of the symmetric band   
            matrix A, stored in the first KD+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB 
  
            as follows:   
            if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 
  
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). 
  

            On exit, AB is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the first   
            superdiagonal and the diagonal of the tridiagonal matrix T   
            are returned in rows KD and KD+1 of AB, and if UPLO = 'L',   
            the diagonal and first subdiagonal of T are returned in the   
            first two rows of AB.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KD + 1.   

    Q       (output) REAL array, dimension (LDQ, N)   
            If JOBZ = 'V', the N-by-N orthogonal matrix used in the   
                           reduction to tridiagonal form.   
            If JOBZ = 'N', the array Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  If JOBZ = 'V', then   
            LDQ >= max(1,N).   

    VL      (input) REAL   
    VU      (input) REAL   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) REAL   
            The absolute error tolerance for the eigenvalues.   
            An approximate eigenvalue is accepted as converged   
            when it is determined to lie in an interval [a,b]   
            of width less than or equal to   

                    ABSTOL + EPS *   max( |a|,|b| ) ,   

            where EPS is the machine precision.  If ABSTOL is less than   
            or equal to zero, then  EPS*|T|  will be used in its place,   
            where |T| is the 1-norm of the tridiagonal matrix obtained   
            by reducing AB to tridiagonal form.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*SLAMCH('S'), not zero. 
  
            If this routine returns with INFO>0, indicating that some   
            eigenvectors did not converge, try setting ABSTOL to   
            2*SLAMCH('S').   

            See "Computing Small Singular Values of Bidiagonal Matrices   
            with Guaranteed High Relative Accuracy," by Demmel and   
            Kahan, LAPACK Working Note #3.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) REAL array, dimension (N)   
            The first M elements contain the selected eigenvalues in   
            ascending order.   

    Z       (output) REAL array, dimension (LDZ, max(1,M))   
            If JOBZ = 'V', then if INFO = 0, the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix A   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If an eigenvector fails to converge, then that column of Z   
            contains the latest approximation to the eigenvector, and the 
  
            index of the eigenvector is returned in IFAIL.   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are 
  
            supplied in the array Z; if RANGE = 'V', the exact value of M 
  
            is not known in advance and an upper bound must be used.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) REAL array, dimension (7*N)   

    IWORK   (workspace) INTEGER array, dimension (5*N)   

    IFAIL   (output) INTEGER array, dimension (N)   
            If JOBZ = 'V', then if INFO = 0, the first M elements of   
            IFAIL are zero.  If INFO > 0, then IFAIL contains the   
            indices of the eigenvectors that failed to converge.   
            If JOBZ = 'N', then IFAIL is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, then i eigenvectors failed to converge.   
                  Their indices are stored in array IFAIL.   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static real c_b14 = 1.f;
    static integer c__1 = 1;
    static real c_b34 = 0.f;
    
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer indd, inde;
    static real anrm;
    static integer imax;
    static real rmin, rmax;
    static integer itmp1, i, j, indee;
    static real sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    static char order[1];
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    static logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
	    );
    static logical wantz;
    static integer jj;
    static logical alleig, indeig;
    static integer iscale, indibl;
    static logical valeig;
    extern doublereal slamch_(char *);
    static real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static real abstll, bignum;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *);
    static integer indisp, indiwo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    static integer indwrk;
    extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *), sstein_(integer *, real *, real *, 
	    integer *, real *, integer *, integer *, real *, integer *, real *
	    , integer *, integer *, integer *), ssterf_(integer *, real *, 
	    real *, integer *);
    static integer nsplit;
    static real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *), ssteqr_(char *, integer *, real *, 
	    real *, real *, integer *, real *, integer *);
    static real eps, vll, vuu, tmp1;



#define W(I) w[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]
#define IFAIL(I) ifail[(I)-1]

#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *ldab)]
#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define Z(I,J) z[(I)-1 + ((J)-1)* ( *ldz)]

    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (*ldq < *n) {
	*info = -9;
    } else if (valeig && *n > 0 && *vu <= *vl) {
	*info = -11;
    } else if (indeig && *il < 1) {
	*info = -12;
    } else if (indeig && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -13;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -18;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    W(1) = AB(1,1);
	} else {
	    if (*vl < AB(1,1) && *vu >= AB(1,1)) {
		*m = 1;
		W(1) = AB(1,1);
	    }
	}
	if (wantz) {
	    Z(1,1) = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = slansb_("M", uplo, n, kd, &AB(1,1), ldab, &WORK(1));
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &AB(1,1), ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &AB(1,1), ldab, &WORK(indd), &WORK(inde),
	     &Q(1,1), ldq, &WORK(indwrk), &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal   
       to zero, then call SSTERF or SSTEQR.  If this fails for some   
       eigenvalue, then try SSTEBZ. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && *abstol <= 0.f) {
	scopy_(n, &WORK(indd), &c__1, &W(1), &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1);
	    ssterf_(n, &W(1), &WORK(indee), info);
	} else {
	    slacpy_("A", n, n, &Q(1,1), ldq, &Z(1,1), ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &WORK(inde), &c__1, &WORK(indee), &c__1);
	    ssteqr_(jobz, n, &W(1), &WORK(indee), &Z(1,1), ldz, &WORK(
		    indwrk), info);
	    if (*info == 0) {
		i__1 = *n;
		for (i = 1; i <= *n; ++i) {
		    IFAIL(i) = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &WORK(indd), &WORK(
	    inde), m, &nsplit, &W(1), &IWORK(indibl), &IWORK(indisp), &WORK(
	    indwrk), &IWORK(indiwo), info);

    if (wantz) {
	sstein_(n, &WORK(indd), &WORK(inde), m, &W(1), &IWORK(indibl), &IWORK(
		indisp), &Z(1,1), ldz, &WORK(indwrk), &IWORK(indiwo), &
		IFAIL(1), info);

/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by SSTEIN. */

	i__1 = *m;
	for (j = 1; j <= *m; ++j) {
	    scopy_(n, &Z(1,j), &c__1, &WORK(1), &c__1);
	    sgemv_("N", n, n, &c_b14, &Q(1,1), ldq, &WORK(1), &c__1, &
		    c_b34, &Z(1,j), &c__1);
/* L20: */
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &W(1), &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= *m-1; ++j) {
	    i = 0;
	    tmp1 = W(j);
	    i__2 = *m;
	    for (jj = j + 1; jj <= *m; ++jj) {
		if (W(jj) < tmp1) {
		    i = jj;
		    tmp1 = W(jj);
		}
/* L40: */
	    }

	    if (i != 0) {
		itmp1 = IWORK(indibl + i - 1);
		W(i) = W(j);
		IWORK(indibl + i - 1) = IWORK(indibl + j - 1);
		W(j) = tmp1;
		IWORK(indibl + j - 1) = itmp1;
		sswap_(n, &Z(1,i), &c__1, &Z(1,j), &
			c__1);
		if (*info != 0) {
		    itmp1 = IFAIL(i);
		    IFAIL(i) = IFAIL(j);
		    IFAIL(j) = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of SSBEVX */

} /* ssbevx_ */
Exemplo n.º 14
0
 int sstev_(char *jobz, int *n, float *d__, float *e, float *
	z__, int *ldz, float *work, int *info)
{
    /* System generated locals */
    int z_dim1, z_offset, i__1;
    float r__1;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    float eps;
    int imax;
    float rmin, rmax, tnrm, sigma;
    extern int lsame_(char *, char *);
    extern  int sscal_(int *, float *, float *, int *);
    int wantz;
    int iscale;
    extern double slamch_(char *);
    float safmin;
    extern  int xerbla_(char *, int *);
    float bignum;
    extern double slanst_(char *, int *, float *, float *);
    extern  int ssterf_(int *, float *, float *, int *);
    float smlnum;
    extern  int ssteqr_(char *, int *, float *, float *, 
	    float *, int *, float *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSTEV computes all eigenvalues and, optionally, eigenvectors of a */
/*  float symmetric tridiagonal matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  N       (input) INTEGER */
/*          The order of the matrix.  N >= 0. */

/*  D       (input/output) REAL array, dimension (N) */
/*          On entry, the n diagonal elements of the tridiagonal matrix */
/*          A. */
/*          On exit, if INFO = 0, the eigenvalues in ascending order. */

/*  E       (input/output) REAL array, dimension (N-1) */
/*          On entry, the (n-1) subdiagonal elements of the tridiagonal */
/*          matrix A, stored in elements 1 to N-1 of E. */
/*          On exit, the contents of E are destroyed. */

/*  Z       (output) REAL array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with D(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= MAX(1,N). */

/*  WORK    (workspace) REAL array, dimension (MAX(1,2*N-2)) */
/*          If JOBZ = 'N', WORK is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of E did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -6;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSTEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (wantz) {
	    z__[z_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    tnrm = slanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0.f && tnrm < rmin) {
	iscale = 1;
	sigma = rmin / tnrm;
    } else if (tnrm > rmax) {
	iscale = 1;
	sigma = rmax / tnrm;
    }
    if (iscale == 1) {
	sscal_(n, &sigma, &d__[1], &c__1);
	i__1 = *n - 1;
	sscal_(&i__1, &sigma, &e[1], &c__1);
    }

/*     For eigenvalues only, call SSTERF.  For eigenvalues and */
/*     eigenvectors, call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &d__[1], &e[1], info);
    } else {
	ssteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &d__[1], &c__1);
    }

    return 0;

/*     End of SSTEV */

} /* sstev_ */
Exemplo n.º 15
0
/* Subroutine */ int slaed0_(integer *icompq, integer *qsiz, integer *n, real 
	*d, real *e, real *q, integer *ldq, real *qstore, integer *ldqs, real 
	*work, integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SLAED0 computes all eigenvalues and corresponding eigenvectors of a   
    symmetric tridiagonal matrix using the divide and conquer method.   

    Arguments   
    =========   

    ICOMPQ  (input) INTEGER   
            = 0:  Compute eigenvalues only.   
            = 1:  Compute eigenvectors of original dense symmetric matrix 
  
                  also.  On entry, Q contains the orthogonal matrix used 
  
                  to reduce the original matrix to tridiagonal form.   
            = 2:  Compute eigenvalues and eigenvectors of tridiagonal   
                  matrix.   

    QSIZ   (input) INTEGER   
           The dimension of the orthogonal matrix used to reduce   
           the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. 
  

    N      (input) INTEGER   
           The dimension of the symmetric tridiagonal matrix.  N >= 0.   

    D      (input/output) REAL array, dimension (N)   
           On entry, the main diagonal of the tridiagonal matrix.   
           On exit, its eigenvalues.   

    E      (input) REAL array, dimension (N-1)   
           The off-diagonal elements of the tridiagonal matrix.   
           On exit, E has been destroyed.   

    Q      (input/output) REAL array, dimension (LDQ, N)   
           On entry, Q must contain an N-by-N orthogonal matrix.   
           If ICOMPQ = 0    Q is not referenced.   
           If ICOMPQ = 1    On entry, Q is a subset of the columns of the 
  
                            orthogonal matrix used to reduce the full   
                            matrix to tridiagonal form corresponding to   
                            the subset of the full matrix which is being 
  
                            decomposed at this time.   
           If ICOMPQ = 2    On entry, Q will be the identity matrix.   
                            On exit, Q contains the eigenvectors of the   
                            tridiagonal matrix.   

    LDQ    (input) INTEGER   
           The leading dimension of the array Q.  If eigenvectors are   
           desired, then  LDQ >= max(1,N).  In any case,  LDQ >= 1.   

    QSTORE (workspace) REAL array, dimension (LDQS, N)   
           Referenced only when ICOMPQ = 1.  Used to store parts of   
           the eigenvector matrix when the updating matrix multiplies   
           take place.   

    LDQS   (input) INTEGER   
           The leading dimension of the array QSTORE.  If ICOMPQ = 1,   
           then  LDQS >= max(1,N).  In any case,  LDQS >= 1.   

    WORK   (workspace) REAL array,   
                                  dimension (1 + 3*N + 2*N*lg N + 2*N**2) 
  
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   

    IWORK  (workspace) INTEGER array,   
           If ICOMPQ = 0 or 1, the dimension of IWORK must be at least   
                          6 + 6*N + 5*N*lg N.   
                          ( lg( N ) = smallest integer k   
                                      such that 2^k >= N )   
           If ICOMPQ = 2, the dimension of IWORK must be at least   
                          2 + 5*N.   

    INFO   (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  The algorithm failed to compute an eigenvalue while   
                  working on the submatrix lying in rows and columns   
                  INFO/(N+1) through mod(INFO,N+1).   

    ===================================================================== 
  


       Test the input parameters.   

    
   Parameter adjustments   
       Function Body */
    /* Table of constant values */
    static integer c__2 = 2;
    static real c_b16 = 1.f;
    static real c_b17 = 0.f;
    static integer c__1 = 1;
    
    /* System generated locals */
    integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    real r__1;
    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    /* Local variables */
    static real temp;
    static integer curr, i, j, k;
    extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, real *, integer *, real *, 
	    real *, integer *);
    static integer iperm, indxq, iwrem;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    static integer iqptr, tlvls;
    extern /* Subroutine */ int slaed1_(integer *, real *, real *, integer *, 
	    integer *, real *, integer *, real *, integer *, integer *), 
	    slaed7_(integer *, integer *, integer *, integer *, integer *, 
	    integer *, real *, real *, integer *, integer *, real *, integer *
	    , real *, integer *, integer *, integer *, integer *, integer *, 
	    real *, real *, integer *, integer *);
    static integer iq, igivcl;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer igivnm, submat;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    static integer curprb, subpbs, igivpt, curlvl, matsiz, iprmpt;
    extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, 
	    real *, integer *, real *, integer *);
    static integer lgn, msd2, smm1, spm1, spm2;



#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define Q(I,J) q[(I)-1 + ((J)-1)* ( *ldq)]
#define QSTORE(I,J) qstore[(I)-1 + ((J)-1)* ( *ldqs)]

    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < max(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < max(1,*n)) {
	*info = -7;
    } else if (*ldqs < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Determine the size and placement of the submatrices, and save in   
       the leading elements of IWORK. */

    IWORK(1) = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (IWORK(subpbs) > 25) {
	for (j = subpbs; j >= 1; --j) {
	    IWORK(j * 2) = (IWORK(j) + 1) / 2;
	    IWORK((j << 1) - 1) = IWORK(j) / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= subpbs; ++j) {
	IWORK(j) += IWORK(j - 1);
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 
  
       using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i = 1; i <= spm1; ++i) {
	submat = IWORK(i) + 1;
	smm1 = submat - 1;
	D(smm1) -= (r__1 = E(smm1), dabs(r__1));
	D(submat) -= (r__1 = E(smm1), dabs(r__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vector
s   
          routine */

	temp = log((real) (*n)) / log(2.f);
	lgn = (integer) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i = 0; i <= subpbs; ++i) {
	    IWORK(iprmpt + i) = 1;
	    IWORK(igivpt + i) = 1;
/* L50: */
	}
	IWORK(iqptr) = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and 
  
       conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i = 0; i <= spm1; ++i) {
	if (i == 0) {
	    submat = 1;
	    matsiz = IWORK(1);
	} else {
	    submat = IWORK(i) + 1;
	    matsiz = IWORK(i + 1) - IWORK(i);
	}
	if (*icompq == 2) {
	    ssteqr_("I", &matsiz, &D(submat), &E(submat), &Q(submat,submat), ldq, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    ssteqr_("I", &matsiz, &D(submat), &E(submat), &WORK(iq - 1 + 
		    IWORK(iqptr + curr)), &matsiz, &WORK(1), info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		sgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b16, &Q(1,submat), ldq, &WORK(iq - 1 + IWORK(iqptr + curr)),
			 &matsiz, &c_b17, &QSTORE(1,submat), 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    IWORK(iqptr + curr + 1) = IWORK(iqptr + curr) + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = IWORK(i + 1);
	for (j = submat; j <= IWORK(i+1); ++j) {
	    IWORK(indxq + j) = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices   
       into eigensystem for the corresponding larger matrix.   

       while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i = 0; i <= spm2; i += 2) {
	    if (i == 0) {
		submat = 1;
		matsiz = IWORK(2);
		msd2 = IWORK(1);
		curprb = 0;
	    } else {
		submat = IWORK(i) + 1;
		matsiz = IWORK(i + 2) - IWORK(i);
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - M
SD2)   
       into an eigensystem of size MATSIZ.   
       SLAED1 is used only for the full eigensystem of a tridiagon
al   
       matrix.   
       SLAED7 handles the cases in which eigenvalues only or eigen
values   
       and eigenvectors of a full symmetric matrix (which was redu
ced to   
       tridiagonal form) are desired. */

	    if (*icompq == 2) {
		slaed1_(&matsiz, &D(submat), &Q(submat,submat), 
			ldq, &IWORK(indxq + submat), &E(submat + msd2 - 1), &
			msd2, &WORK(1), &IWORK(subpbs + 1), info);
	    } else {
		slaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &D(
			submat), &QSTORE(1,submat), ldqs, &
			IWORK(indxq + submat), &E(submat + msd2 - 1), &msd2, &
			WORK(iq), &IWORK(iqptr), &IWORK(iprmpt), &IWORK(iperm)
			, &IWORK(igivpt), &IWORK(igivcl), &WORK(igivnm), &
			WORK(iwrem), &IWORK(subpbs + 1), info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    IWORK(i / 2 + 1) = IWORK(i + 2);
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while   

       Re-merge the eigenvalues/vectors which were deflated at the final 
  
       merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    scopy_(qsiz, &QSTORE(1,j), &c__1, &Q(1,i), &c__1);
/* L100: */
	}
	scopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
	    scopy_(n, &Q(1,j), &c__1, &WORK(*n * i + 1), &c__1);
/* L110: */
	}
	scopy_(n, &WORK(1), &c__1, &D(1), &c__1);
	slacpy_("A", n, n, &WORK(*n + 1), n, &Q(1,1), ldq);
    } else {
	i__1 = *n;
	for (i = 1; i <= *n; ++i) {
	    j = IWORK(indxq + i);
	    WORK(i) = D(j);
/* L120: */
	}
	scopy_(n, &WORK(1), &c__1, &D(1), &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of SLAED0 */

} /* slaed0_ */
Exemplo n.º 16
0
/* Subroutine */ int ssbgv_(char *jobz, char *uplo, integer *n, integer *ka, 
	integer *kb, real *ab, integer *ldab, real *bb, integer *ldbb, real *
	w, real *z__, integer *ldz, real *work, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SSBGV computes all the eigenvalues, and optionally, the eigenvectors   
    of a real generalized symmetric-definite banded eigenproblem, of   
    the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric   
    and banded, and B is also positive definite.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangles of A and B are stored;   
            = 'L':  Lower triangles of A and B are stored.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    KA      (input) INTEGER   
            The number of superdiagonals of the matrix A if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'. KA >= 0.   

    KB      (input) INTEGER   
            The number of superdiagonals of the matrix B if UPLO = 'U',   
            or the number of subdiagonals if UPLO = 'L'. KB >= 0.   

    AB      (input/output) REAL array, dimension (LDAB, N)   
            On entry, the upper or lower triangle of the symmetric band   
            matrix A, stored in the first ka+1 rows of the array.  The   
            j-th column of A is stored in the j-th column of the array AB   
            as follows:   
            if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;   
            if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).   

            On exit, the contents of AB are destroyed.   

    LDAB    (input) INTEGER   
            The leading dimension of the array AB.  LDAB >= KA+1.   

    BB      (input/output) REAL array, dimension (LDBB, N)   
            On entry, the upper or lower triangle of the symmetric band   
            matrix B, stored in the first kb+1 rows of the array.  The   
            j-th column of B is stored in the j-th column of the array BB   
            as follows:   
            if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;   
            if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).   

            On exit, the factor S from the split Cholesky factorization   
            B = S**T*S, as returned by SPBSTF.   

    LDBB    (input) INTEGER   
            The leading dimension of the array BB.  LDBB >= KB+1.   

    W       (output) REAL array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) REAL array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of   
            eigenvectors, with the i-th column of Z holding the   
            eigenvector associated with W(i). The eigenvectors are   
            normalized so that Z**T*B*Z = I.   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= N.   

    WORK    (workspace) REAL array, dimension (3*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, and i is:   
               <= N:  the algorithm failed to converge:   
                      i off-diagonal elements of an intermediate   
                      tridiagonal form did not converge to zero;   
               > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF   
                      returned INFO = i: B is not positive definite.   
                      The factorization of B could not be completed and   
                      no eigenvalues or eigenvectors were computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
    /* Local variables */
    static integer inde;
    static char vect[1];
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static logical upper, wantz;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    static integer indwrk;
    extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *, 
	    integer *, integer *), ssbtrd_(char *, char *, integer *, 
	    integer *, real *, integer *, real *, real *, real *, integer *, 
	    real *, integer *), ssbgst_(char *, char *, 
	    integer *, integer *, integer *, real *, integer *, real *, 
	    integer *, real *, integer *, real *, integer *), 
	    ssterf_(integer *, real *, real *, integer *), ssteqr_(char *, 
	    integer *, real *, real *, real *, integer *, real *, integer *);

    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1 * 1;
    ab -= ab_offset;
    bb_dim1 = *ldbb;
    bb_offset = 1 + bb_dim1 * 1;
    bb -= bb_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ka < 0) {
	*info = -4;
    } else if (*kb < 0 || *kb > *ka) {
	*info = -5;
    } else if (*ldab < *ka + 1) {
	*info = -7;
    } else if (*ldbb < *kb + 1) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a split Cholesky factorization of B. */

    spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem. */

    inde = 1;
    indwrk = inde + *n;
    ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
	     &z__[z_offset], ldz, &work[indwrk], &iinfo)
	    ;

/*     Reduce to tridiagonal form. */

    if (wantz) {
	*(unsigned char *)vect = 'U';
    } else {
	*(unsigned char *)vect = 'N';
    }
    ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &work[inde], &z__[
	    z_offset], ldz, &work[indwrk], &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	ssteqr_(jobz, n, &w[1], &work[inde], &z__[z_offset], ldz, &work[
		indwrk], info);
    }
    return 0;

/*     End of SSBGV */

} /* ssbgv_ */
Exemplo n.º 17
0
 int slaed0_(int *icompq, int *qsiz, int *n, float 
	*d__, float *e, float *q, int *ldq, float *qstore, int *ldqs, 
	float *work, int *iwork, int *info)
{
    /* System generated locals */
    int q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
    float r__1;

    /* Builtin functions */
    double log(double);
    int pow_ii(int *, int *);

    /* Local variables */
    int i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
    float temp;
    int curr;
    extern  int sgemm_(char *, char *, int *, int *, 
	    int *, float *, float *, int *, float *, int *, float *, 
	    float *, int *);
    int iperm, indxq, iwrem;
    extern  int scopy_(int *, float *, int *, float *, 
	    int *);
    int iqptr, tlvls;
    extern  int slaed1_(int *, float *, float *, int *, 
	    int *, float *, int *, float *, int *, int *), 
	    slaed7_(int *, int *, int *, int *, int *, 
	    int *, float *, float *, int *, int *, float *, int *
, float *, int *, int *, int *, int *, int *, 
	    float *, float *, int *, int *);
    int igivcl;
    extern  int xerbla_(char *, int *);
    extern int ilaenv_(int *, char *, char *, int *, int *, 
	    int *, int *);
    int igivnm, submat;
    extern  int slacpy_(char *, int *, int *, float *, 
	    int *, float *, int *);
    int curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, smlsiz;
    extern  int ssteqr_(char *, int *, float *, float *, 
	    float *, int *, float *, int *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAED0 computes all eigenvalues and corresponding eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          = 0:  Compute eigenvalues only. */
/*          = 1:  Compute eigenvectors of original dense symmetric matrix */
/*                also.  On entry, Q contains the orthogonal matrix used */
/*                to reduce the original matrix to tridiagonal form. */
/*          = 2:  Compute eigenvalues and eigenvectors of tridiagonal */
/*                matrix. */

/*  QSIZ   (input) INTEGER */
/*         The dimension of the orthogonal matrix used to reduce */
/*         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1. */

/*  N      (input) INTEGER */
/*         The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D      (input/output) REAL array, dimension (N) */
/*         On entry, the main diagonal of the tridiagonal matrix. */
/*         On exit, its eigenvalues. */

/*  E      (input) REAL array, dimension (N-1) */
/*         The off-diagonal elements of the tridiagonal matrix. */
/*         On exit, E has been destroyed. */

/*  Q      (input/output) REAL array, dimension (LDQ, N) */
/*         On entry, Q must contain an N-by-N orthogonal matrix. */
/*         If ICOMPQ = 0    Q is not referenced. */
/*         If ICOMPQ = 1    On entry, Q is a subset of the columns of the */
/*                          orthogonal matrix used to reduce the full */
/*                          matrix to tridiagonal form corresponding to */
/*                          the subset of the full matrix which is being */
/*                          decomposed at this time. */
/*         If ICOMPQ = 2    On entry, Q will be the identity matrix. */
/*                          On exit, Q contains the eigenvectors of the */
/*                          tridiagonal matrix. */

/*  LDQ    (input) INTEGER */
/*         The leading dimension of the array Q.  If eigenvectors are */
/*         desired, then  LDQ >= MAX(1,N).  In any case,  LDQ >= 1. */

/*  QSTORE (workspace) REAL array, dimension (LDQS, N) */
/*         Referenced only when ICOMPQ = 1.  Used to store parts of */
/*         the eigenvector matrix when the updating matrix multiplies */
/*         take place. */

/*  LDQS   (input) INTEGER */
/*         The leading dimension of the array QSTORE.  If ICOMPQ = 1, */
/*         then  LDQS >= MAX(1,N).  In any case,  LDQS >= 1. */

/*  WORK   (workspace) REAL array, */
/*         If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
/*                     1 + 3*N + 2*N*lg N + 2*N**2 */
/*                     ( lg( N ) = smallest int k */
/*                                 such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of WORK must be at least */
/*                     4*N + N**2. */

/*  IWORK  (workspace) INTEGER array, */
/*         If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
/*                        6 + 6*N + 5*N*lg N. */
/*                        ( lg( N ) = smallest int k */
/*                                    such that 2^k >= N ) */
/*         If ICOMPQ = 2, the dimension of IWORK must be at least */
/*                        3 + 5*N. */

/*  INFO   (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    qstore_dim1 = *ldqs;
    qstore_offset = 1 + qstore_dim1;
    qstore -= qstore_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;

    if (*icompq < 0 || *icompq > 2) {
	*info = -1;
    } else if (*icompq == 1 && *qsiz < MAX(0,*n)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldq < MAX(1,*n)) {
	*info = -7;
    } else if (*ldqs < MAX(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED0", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    smlsiz = ilaenv_(&c__9, "SLAED0", " ", &c__0, &c__0, &c__0, &c__0);

/*     Determine the size and placement of the submatrices, and save in */
/*     the leading elements of IWORK. */

    iwork[1] = *n;
    subpbs = 1;
    tlvls = 0;
L10:
    if (iwork[subpbs] > smlsiz) {
	for (j = subpbs; j >= 1; --j) {
	    iwork[j * 2] = (iwork[j] + 1) / 2;
	    iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
	}
	++tlvls;
	subpbs <<= 1;
	goto L10;
    }
    i__1 = subpbs;
    for (j = 2; j <= i__1; ++j) {
	iwork[j] += iwork[j - 1];
/* L30: */
    }

/*     Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/*     using rank-1 modifications (cuts). */

    spm1 = subpbs - 1;
    i__1 = spm1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	submat = iwork[i__] + 1;
	smm1 = submat - 1;
	d__[smm1] -= (r__1 = e[smm1], ABS(r__1));
	d__[submat] -= (r__1 = e[smm1], ABS(r__1));
/* L40: */
    }

    indxq = (*n << 2) + 3;
    if (*icompq != 2) {

/*        Set up workspaces for eigenvalues only/accumulate new vectors */
/*        routine */

	temp = log((float) (*n)) / log(2.f);
	lgn = (int) temp;
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	if (pow_ii(&c__2, &lgn) < *n) {
	    ++lgn;
	}
	iprmpt = indxq + *n + 1;
	iperm = iprmpt + *n * lgn;
	iqptr = iperm + *n * lgn;
	igivpt = iqptr + *n + 2;
	igivcl = igivpt + *n * lgn;

	igivnm = 1;
	iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
	i__1 = *n;
	iwrem = iq + i__1 * i__1 + 1;

/*        Initialize pointers */

	i__1 = subpbs;
	for (i__ = 0; i__ <= i__1; ++i__) {
	    iwork[iprmpt + i__] = 1;
	    iwork[igivpt + i__] = 1;
/* L50: */
	}
	iwork[iqptr] = 1;
    }

/*     Solve each submatrix eigenproblem at the bottom of the divide and */
/*     conquer tree. */

    curr = 0;
    i__1 = spm1;
    for (i__ = 0; i__ <= i__1; ++i__) {
	if (i__ == 0) {
	    submat = 1;
	    matsiz = iwork[1];
	} else {
	    submat = iwork[i__] + 1;
	    matsiz = iwork[i__ + 1] - iwork[i__];
	}
	if (*icompq == 2) {
	    ssteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat + 
		    submat * q_dim1], ldq, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	} else {
	    ssteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 + 
		    iwork[iqptr + curr]], &matsiz, &work[1], info);
	    if (*info != 0) {
		goto L130;
	    }
	    if (*icompq == 1) {
		sgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat * 
			q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]], 
			 &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1], 
			ldqs);
	    }
/* Computing 2nd power */
	    i__2 = matsiz;
	    iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
	    ++curr;
	}
	k = 1;
	i__2 = iwork[i__ + 1];
	for (j = submat; j <= i__2; ++j) {
	    iwork[indxq + j] = k;
	    ++k;
/* L60: */
	}
/* L70: */
    }

/*     Successively merge eigensystems of adjacent submatrices */
/*     into eigensystem for the corresponding larger matrix. */

/*     while ( SUBPBS > 1 ) */

    curlvl = 1;
L80:
    if (subpbs > 1) {
	spm2 = subpbs - 2;
	i__1 = spm2;
	for (i__ = 0; i__ <= i__1; i__ += 2) {
	    if (i__ == 0) {
		submat = 1;
		matsiz = iwork[2];
		msd2 = iwork[1];
		curprb = 0;
	    } else {
		submat = iwork[i__] + 1;
		matsiz = iwork[i__ + 2] - iwork[i__];
		msd2 = matsiz / 2;
		++curprb;
	    }

/*     Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/*     into an eigensystem of size MATSIZ. */
/*     SLAED1 is used only for the full eigensystem of a tridiagonal */
/*     matrix. */
/*     SLAED7 handles the cases in which eigenvalues only or eigenvalues */
/*     and eigenvectors of a full symmetric matrix (which was reduced to */
/*     tridiagonal form) are desired. */

	    if (*icompq == 2) {
		slaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1], 
			ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
			msd2, &work[1], &iwork[subpbs + 1], info);
	    } else {
		slaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
			submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
			iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
			work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
, &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
			work[iwrem], &iwork[subpbs + 1], info);
	    }
	    if (*info != 0) {
		goto L130;
	    }
	    iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
	}
	subpbs /= 2;
	++curlvl;
	goto L80;
    }

/*     end while */

/*     Re-merge the eigenvalues/vectors which were deflated at the final */
/*     merge step. */

    if (*icompq == 1) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    scopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 
		    + 1], &c__1);
/* L100: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
    } else if (*icompq == 2) {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
	    scopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
/* L110: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
	slacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
    } else {
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    j = iwork[indxq + i__];
	    work[i__] = d__[j];
/* L120: */
	}
	scopy_(n, &work[1], &c__1, &d__[1], &c__1);
    }
    goto L140;

L130:
    *info = submat * (*n + 1) + submat + matsiz - 1;

L140:
    return 0;

/*     End of SLAED0 */

} /* slaed0_ */
Exemplo n.º 18
0
/* Subroutine */ int ssbevx_(char *jobz, char *range, char *uplo, integer *n, 
	integer *kd, real *ab, integer *ldab, real *q, integer *ldq, real *vl, 
	 real *vu, integer *il, integer *iu, real *abstol, integer *m, real *
	w, real *z__, integer *ldz, real *work, integer *iwork, integer *
	ifail, integer *info)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
	    i__2;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, jj;
    real eps, vll, vuu, tmp1;
    integer indd, inde;
    real anrm;
    integer imax;
    real rmin, rmax;
    logical test;
    integer itmp1, indee;
    real sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    char order[1];
    extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
	    real *, integer *, real *, integer *, real *, real *, integer *);
    logical lower;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), sswap_(integer *, real *, integer *, real *, integer *
);
    logical wantz, alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    extern doublereal slamch_(char *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real abstll, bignum;
    extern doublereal slansb_(char *, char *, integer *, integer *, real *, 
	    integer *, real *);
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *);
    integer indisp, indiwo;
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
	    integer *, real *, integer *);
    integer indwrk;
    extern /* Subroutine */ int ssbtrd_(char *, char *, integer *, integer *, 
	    real *, integer *, real *, real *, real *, integer *, real *, 
	    integer *), sstein_(integer *, real *, real *, 
	    integer *, real *, integer *, integer *, real *, integer *, real *
, integer *, integer *, integer *), ssterf_(integer *, real *, 
	    real *, integer *);
    integer nsplit;
    real smlnum;
    extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, 
	    real *, integer *, integer *, real *, real *, real *, integer *, 
	    integer *, real *, integer *, integer *, real *, integer *, 
	    integer *), ssteqr_(char *, integer *, real *, 
	    real *, real *, integer *, real *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSBEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a real symmetric band matrix A.  Eigenvalues and eigenvectors can */
/*  be selected by specifying either a range of values or a range of */
/*  indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  KD      (input) INTEGER */
/*          The number of superdiagonals of the matrix A if UPLO = 'U', */
/*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */

/*  AB      (input/output) REAL array, dimension (LDAB, N) */
/*          On entry, the upper or lower triangle of the symmetric band */
/*          matrix A, stored in the first KD+1 rows of the array.  The */
/*          j-th column of A is stored in the j-th column of the array AB */
/*          as follows: */
/*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */

/*          On exit, AB is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the first */
/*          superdiagonal and the diagonal of the tridiagonal matrix T */
/*          are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/*          the diagonal and first subdiagonal of T are returned in the */
/*          first two rows of AB. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= KD + 1. */

/*  Q       (output) REAL array, dimension (LDQ, N) */
/*          If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
/*                         reduction to tridiagonal form. */
/*          If JOBZ = 'N', the array Q is not referenced. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q.  If JOBZ = 'V', then */
/*          LDQ >= max(1,N). */

/*  VL      (input) REAL */
/*  VU      (input) REAL */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) REAL */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AB to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*SLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) REAL array, dimension (N) */
/*          The first M elements contain the selected eigenvalues in */
/*          ascending order. */

/*  Z       (output) REAL array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and the */
/*          index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) REAL array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");
    lower = lsame_(uplo, "L");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*kd < 0) {
	*info = -5;
    } else if (*ldab < *kd + 1) {
	*info = -7;
    } else if (wantz && *ldq < max(1,*n)) {
	*info = -9;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -11;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -12;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -13;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -18;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSBEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	*m = 1;
	if (lower) {
	    tmp1 = ab[ab_dim1 + 1];
	} else {
	    tmp1 = ab[*kd + 1 + ab_dim1];
	}
	if (valeig) {
	    if (! (*vl < tmp1 && *vu >= tmp1)) {
		*m = 0;
	    }
	}
	if (*m == 1) {
	    w[1] = tmp1;
	    if (wantz) {
		z__[z_dim1 + 1] = 1.f;
	    }
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
    rmax = dmin(r__1,r__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.f;
	vuu = 0.f;
    }
    anrm = slansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    slascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	} else {
	    slascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab, 
		    info);
	}
	if (*abstol > 0.f) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call SSBTRD to reduce symmetric band matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indwrk = inde + *n;
    ssbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde], 
	     &q[q_offset], ldq, &work[indwrk], &iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call SSTERF or SSTEQR.  If this fails for some */
/*     eigenvalue, then try SSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.f) {
	scopy_(n, &work[indd], &c__1, &w[1], &c__1);
	indee = indwrk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssterf_(n, &w[1], &work[indee], info);
	} else {
	    slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
	    i__1 = *n - 1;
	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
		    indwrk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwo = indisp + *n;
    sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwrk], &iwork[indiwo], info);

    if (wantz) {
	sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
		ifail[1], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by SSTEIN. */

	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
	    sgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
		    c_b34, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L50: */
	}
    }

    return 0;

/*     End of SSBEVX */

} /* ssbevx_ */
Exemplo n.º 19
0
/* Subroutine */ int ssyev_(char *jobz, char *uplo, integer *n, real *a, 
	integer *lda, real *w, real *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer nb;
    real eps;
    integer inde;
    real anrm;
    integer imax;
    real rmin, rmax, sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    logical lower, wantz;
    integer iscale;
    extern doublereal slamch_(char *);
    real safmin;
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    real bignum;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *);
    integer indtau, indwrk;
    extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
    extern doublereal slansy_(char *, char *, integer *, real *, integer *, 
	    real *);
    integer llwork;
    real smlnum;
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int sorgtr_(char *, integer *, real *, integer *, 
	    real *, real *, integer *, integer *), ssteqr_(char *, 
	    integer *, real *, real *, real *, integer *, real *, integer *), ssytrd_(char *, integer *, real *, integer *, real *, 
	    real *, real *, real *, integer *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSYEV computes all eigenvalues and, optionally, eigenvectors of a */
/*  real symmetric matrix A. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA, N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the */
/*          leading N-by-N upper triangular part of A contains the */
/*          upper triangular part of the matrix A.  If UPLO = 'L', */
/*          the leading N-by-N lower triangular part of A contains */
/*          the lower triangular part of the matrix A. */
/*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/*          orthonormal eigenvectors of the matrix A. */
/*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
/*          or the upper triangle (if UPLO='U') of A, including the */
/*          diagonal, is destroyed. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  W       (output) REAL array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The length of the array WORK.  LWORK >= max(1,3*N-1). */
/*          For optimal efficiency, LWORK >= (NB+2)*N, */
/*          where NB is the blocksize for SSYTRD returned by ILAENV. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lower = lsame_(uplo, "L");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || lsame_(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }

    if (*info == 0) {
	nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
/* Computing MAX */
	i__1 = 1, i__2 = (nb + 2) * *n;
	lwkopt = max(i__1,i__2);
	work[1] = (real) lwkopt;

/* Computing MAX */
	i__1 = 1, i__2 = *n * 3 - 1;
	if (*lwork < max(i__1,i__2) && ! lquery) {
	    *info = -8;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYEV ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = a[a_dim1 + 1];
	work[1] = 2.f;
	if (wantz) {
	    a[a_dim1 + 1] = 1.f;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = slamch_("Safe minimum");
    eps = slamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1.f / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    iscale = 0;
    if (anrm > 0.f && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	slascl_(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, 
		info);
    }

/*     Call SSYTRD to reduce symmetric matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    ssytrd_(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
	    work[indwrk], &llwork, &iinfo);

/*     For eigenvalues only, call SSTERF.  For eigenvectors, first call */
/*     SORGTR to generate the orthogonal matrix, then call SSTEQR. */

    if (! wantz) {
	ssterf_(n, &w[1], &work[inde], info);
    } else {
	sorgtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
		llwork, &iinfo);
	ssteqr_(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau], 
		 info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	r__1 = 1.f / sigma;
	sscal_(&imax, &r__1, &w[1], &c__1);
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (real) lwkopt;

    return 0;

/*     End of SSYEV */

} /* ssyev_ */