Exemplo n.º 1
0
bool rk_time_step(double current_time, double time_step, ButcherTable* const bt,
                  Solution* sln_time_prev, Solution* sln_time_new, Solution* error_fn, 
                  DiscreteProblem* dp, MatrixSolverType matrix_solver,
                  bool verbose, bool is_linear, double newton_tol, int newton_max_iter,
                  double newton_damping_coeff, double newton_max_allowed_residual_norm)
{
  // Check for not implemented features.
  if (matrix_solver != SOLVER_UMFPACK)
    error("Sorry, rk_time_step() still only works with UMFpack.");
  if (dp->get_weak_formulation()->get_neq() > 1)
    error("Sorry, rk_time_step() does not work with systems yet.");

  // Get number of stages from the Butcher's table.
  int num_stages = bt->get_size();

  // Check whether the user provided a nonzero B2-row if he wants temporal error estimation.
  if(error_fn != NULL) if (bt->is_embedded() == false) {
    error("rk_time_step(): R-K method must be embedded if temporal error estimate is requested.");
  }

  // Matrix for the time derivative part of the equation (left-hand side).
  UMFPackMatrix* matrix_left = new UMFPackMatrix();

  // Matrix and vector for the rest (right-hand side).
  UMFPackMatrix* matrix_right = new UMFPackMatrix();
  UMFPackVector* vector_right = new UMFPackVector();

  // Create matrix solver.
  Solver* solver = create_linear_solver(matrix_solver, matrix_right, vector_right);

  // Get space, mesh, and ndof for the stage solutions in the R-K method (K_i vectors).
  Space* K_space = dp->get_space(0);
  Mesh* K_mesh = K_space->get_mesh();
  int ndof = K_space->get_num_dofs();

  // Create spaces for stage solutions K_i. This is necessary
  // to define a num_stages x num_stages block weak formulation.
  Hermes::vector<Space*> stage_spaces;
  stage_spaces.push_back(K_space);
  for (int i = 1; i < num_stages; i++) {
    stage_spaces.push_back(K_space->dup(K_mesh));
  }
  Space::assign_dofs(stage_spaces);

  // Create a multistage weak formulation.
  WeakForm stage_wf_left;                   // For the matrix M (size ndof times ndof).
  WeakForm stage_wf_right(num_stages);      // For the rest of equation (written on the right),
                                            // size num_stages*ndof times num_stages*ndof.

  Solution** stage_time_sol = new Solution*[num_stages];
                                            // This array will be filled by artificially created
                                            // solutions to represent stage times.
  create_stage_wf(current_time, time_step, bt, dp, &stage_wf_left, &stage_wf_right, stage_time_sol); 

  // Initialize discrete problems for the assembling of the
  // matrix M and the stage Jacobian matrix and residual.
  DiscreteProblem stage_dp_left(&stage_wf_left, K_space);
  DiscreteProblem stage_dp_right(&stage_wf_right, stage_spaces);

  // Vector K_vector of length num_stages * ndof. will represent
  // the 'K_i' vectors in the usual R-K notation.
  scalar* K_vector = new scalar[num_stages*ndof];
  memset(K_vector, 0, num_stages * ndof * sizeof(scalar));

  // Vector u_ext_vec will represent h \sum_{j=1}^s a_{ij} K_i.
  scalar* u_ext_vec = new scalar[num_stages*ndof];

  // Vector for the left part of the residual.
  scalar* vector_left = new scalar[num_stages*ndof];

  // Prepare residuals of stage solutions.
  Hermes::vector<Solution*> residuals;
  Hermes::vector<bool> add_dir_lift;
  for (int i = 0; i < num_stages; i++) {
    residuals.push_back(new Solution(K_mesh));
    add_dir_lift.push_back(false);
  }

  // Assemble the block-diagonal mass matrix M of size ndof times ndof.
  // The corresponding part of the global residual vector is obtained 
  // just by multiplication.
  stage_dp_left.assemble(matrix_left);

  // The Newton's loop.
  double residual_norm;
  int it = 1;
  while (true)
  {
    // Prepare vector h\sum_{j=1}^s a_{ij} K_j.
    for (int i = 0; i < num_stages; i++) {                // block row
      for (int idx = 0; idx < ndof; idx++) {
        scalar increment = 0;
        for (int j = 0; j < num_stages; j++) {
          increment += bt->get_A(i, j) * K_vector[j*ndof + idx];
        }
        u_ext_vec[i*ndof + idx] = time_step * increment;
      }
    }

    multiply_as_diagonal_block_matrix(matrix_left, num_stages, K_vector, vector_left);

    // Assemble the block Jacobian matrix of the stationary residual F
    // Diagonal blocks are created even if empty, so that matrix_left
    // can be added later.
    bool rhs_only = false;
    bool force_diagonal_blocks = true;
    stage_dp_right.assemble(u_ext_vec, matrix_right, vector_right,
                            rhs_only, force_diagonal_blocks, false); // false = do not add Dirichlet lift while
                                                                     // converting u_ext_vec into Solutions.

    matrix_right->add_to_diagonal_blocks(num_stages, matrix_left);

    vector_right->add_vector(vector_left);

    // Multiply the residual vector with -1 since the matrix
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    vector_right->change_sign();

    // Measure the residual norm.
    if (HERMES_RESIDUAL_AS_VECTOR_RK) {
      // Calculate the l2-norm of residual vector.
      residual_norm = get_l2_norm(vector_right);
    }
    else {
      // Translate residual vector into residual functions.
      Solution::vector_to_solutions(vector_right, stage_dp_right.get_spaces(),
                                    residuals, add_dir_lift);
      residual_norm = calc_norms(residuals);
    }

    // Info for the user.
    if (verbose) info("---- Newton iter %d, ndof %d, residual norm %g",
                      it, ndof, residual_norm);

    // If maximum allowed residual norm is exceeded, fail.
    if (residual_norm > newton_max_allowed_residual_norm) {
      if (verbose) {
        info("Current residual norm: %g", residual_norm);
        info("Maximum allowed residual norm: %g", newton_max_allowed_residual_norm);
        info("Newton solve not successful, returning false.");
      }
      return false;
    }

    // If residual norm is within tolerance, or the maximum number
    // of iteration has been reached, or the problem is linear, then quit.
    if ((residual_norm < newton_tol || it > newton_max_iter) && it > 1) break;

    // Solve the linear system.
    if(!solver->solve()) error ("Matrix solver failed.\n");

    // Add \deltaK^{n+1} to K^n.
    for (int i = 0; i < num_stages*ndof; i++) {
      K_vector[i] += newton_damping_coeff * solver->get_solution()[i];
    }

    // If the problem is linear, quit.
    if (is_linear) {
      if (verbose) {
        info("Terminating Newton's loop as problem is linear.");
      }
      break;
    }

    // Increase iteration counter.
    it++;
  }

  // If max number of iterations was exceeded, fail.
  if (it >= newton_max_iter) {
    if (verbose) info("Maximum allowed number of Newton iterations exceeded, returning false.");

    return false;
  }

  // Project previous time level solution on the stage space,
  // to be able to add them together. The result of the projection 
  // will be stored in the vector coeff_vec.
  // FIXME - this projection is slow and it is not needed when the 
  //         spaces are the same (if spatial adaptivity does not take place). 
  scalar* coeff_vec = new scalar[ndof];
  OGProjection::project_global(K_space, sln_time_prev, coeff_vec, matrix_solver);

  // Calculate new time level solution in the stage space (u_{n+1} = u_n + h \sum_{j=1}^s b_j k_j).
  for (int i = 0; i < ndof; i++) {
    for (int j = 0; j < num_stages; j++) {
      coeff_vec[i] += time_step * bt->get_B(j) * K_vector[j*ndof + i];
    }
  }
  Solution::vector_to_solution(coeff_vec, K_space, sln_time_new);

  // If error_fn is not NULL, use the B2-row in the Butcher's
  // table to calculate the temporal error estimate.
  if (error_fn != NULL) {
    for (int i = 0; i < ndof; i++) {
      coeff_vec[i] = 0;
      for (int j = 0; j < num_stages; j++) {
        coeff_vec[i] += (bt->get_B(j) - bt->get_B2(j)) * K_vector[j*ndof + i];
      }
      coeff_vec[i] *= time_step;
    }
    Solution::vector_to_solution(coeff_vec, K_space, error_fn, false);
  }

  // Clean up.
  delete matrix_left;
  delete matrix_right;
  delete vector_right;
  delete solver;

  // Delete stage spaces, but not the first (original) one.
  for (int i = 1; i < num_stages; i++) delete stage_spaces[i];

  // Delete all residuals.
  for (int i = 0; i < num_stages; i++) delete residuals[i];

  // Delete artificial Solutions with stage times.
  for (int i = 0; i < num_stages; i++)
    delete stage_time_sol[i];
  delete [] stage_time_sol;

  // Clean up.
  delete [] K_vector;
  delete [] u_ext_vec;
  delete [] coeff_vec;
  delete [] vector_left;

  return true;
}
Exemplo n.º 2
0
bool rk_time_step(double current_time, double time_step, ButcherTable* const bt,
                  scalar* coeff_vec, scalar* err_vec, DiscreteProblem* dp, MatrixSolverType matrix_solver,
                  bool verbose, bool is_linear, double newton_tol, int newton_max_iter,
                  double newton_damping_coeff, double newton_max_allowed_residual_norm)
{
  // Check for not implemented features.
  if (matrix_solver != SOLVER_UMFPACK)
    error("Sorry, rk_time_step() still only works with UMFpack.");
  if (dp->get_weak_formulation()->get_neq() > 1)
    error("Sorry, rk_time_step() does not work with systems yet.");

  // Get number of stages from the Butcher's table.
  int num_stages = bt->get_size();

  // Check whether the user provided a second B-row if he wants 
  // err_vec.
  if(err_vec != NULL) {
    double b2_coeff_sum = 0;
    for (int i=0; i < num_stages; i++) b2_coeff_sum += fabs(bt->get_B2(i)); 
    if (b2_coeff_sum < 1e-10) 
      error("err_vec != NULL but the B2 row in the Butcher's table is zero in rk_time_step().");
  }

  // Matrix for the time derivative part of the equation (left-hand side).
  UMFPackMatrix* matrix_left = new UMFPackMatrix();

  // Matrix and vector for the rest (right-hand side).
  UMFPackMatrix* matrix_right = new UMFPackMatrix();
  UMFPackVector* vector_right = new UMFPackVector();

  // Create matrix solver.
  Solver* solver = create_linear_solver(matrix_solver, matrix_right, vector_right);

  // Get original space, mesh, and ndof.
  dp->get_space(0);
  Mesh* mesh = dp->get_space(0)->get_mesh();
  int ndof = dp->get_space(0)->get_num_dofs();

  // Create spaces for stage solutions. This is necessary
  // to define a num_stages x num_stages block weak formulation.
  Hermes::vector<Space*> stage_spaces;
  stage_spaces.push_back(dp->get_space(0));
  for (int i = 1; i < num_stages; i++) {
    stage_spaces.push_back(dp->get_space(0)->dup(mesh));
  }
  Space::assign_dofs(stage_spaces);

  // Create a multistage weak formulation.
  WeakForm stage_wf_left;                   // For the matrix M (size ndof times ndof).
  WeakForm stage_wf_right(num_stages);      // For the rest of equation (written on the right),
                                            // size num_stages*ndof times num_stages*ndof.
  create_stage_wf(current_time, time_step, bt, dp, &stage_wf_left, &stage_wf_right); 

  // Initialize discrete problems for the assembling of the
  // matrix M and the stage Jacobian matrix and residual.
  DiscreteProblem stage_dp_left(&stage_wf_left, dp->get_space(0));
  DiscreteProblem stage_dp_right(&stage_wf_right, stage_spaces);

  // Vector K_vector of length num_stages * ndof. will represent
  // the 'k_i' vectors in the usual R-K notation.
  scalar* K_vector = new scalar[num_stages*ndof];
  memset(K_vector, 0, num_stages * ndof * sizeof(scalar));

  // Vector u_prev_vec will represent y_n + h \sum_{j=1}^s a_{ij}k_i
  // in the usual R-K notation.
  scalar* u_prev_vec = new scalar[num_stages*ndof];

  // Vector for the left part of the residual.
  scalar* vector_left = new scalar[num_stages*ndof];

  // Prepare residuals of stage solutions.
  Hermes::vector<Solution*> residuals;
  Hermes::vector<bool> add_dir_lift;
  for (int i = 0; i < num_stages; i++) {
    residuals.push_back(new Solution(mesh));
    add_dir_lift.push_back(false);
  }

  // Assemble the block-diagonal mass matrix M of size ndof times ndof.
  // The corresponding part of the global residual vector is obtained 
  // just by multiplication.
  stage_dp_left.assemble(matrix_left);

  // The Newton's loop.
  double residual_norm;
  int it = 1;
  while (true)
  {
    // Prepare vector Y_n + h\sum_{j=1}^s a_{ij} K_j.
    for (int i = 0; i < num_stages; i++) {                // block row
      for (int idx = 0; idx < ndof; idx++) {
        scalar increment = 0;
        for (int j = 0; j < num_stages; j++) {
          increment += bt->get_A(i, j) * K_vector[j*ndof + idx];
        }
        u_prev_vec[i*ndof + idx] = coeff_vec[idx] + time_step * increment;
      }
    }

    multiply_as_diagonal_block_matrix(matrix_left, num_stages, 
                                      K_vector, vector_left);

    // Assemble the block Jacobian matrix of the stationary residual F
    // Diagonal blocks are created even if empty, so that matrix_left
    // can be added later.
    bool rhs_only = false;
    bool force_diagonal_blocks = true;
    stage_dp_right.assemble(u_prev_vec, matrix_right, vector_right,
                            rhs_only, force_diagonal_blocks);

    matrix_right->add_to_diagonal_blocks(num_stages, matrix_left);

    vector_right->add_vector(vector_left);

    // Multiply the residual vector with -1 since the matrix
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    vector_right->change_sign();

    // Measure the residual norm.
    if (HERMES_RESIDUAL_AS_VECTOR_RK) {
      // Calculate the l2-norm of residual vector.
      residual_norm = get_l2_norm(vector_right);
    }
    else {
      // Translate residual vector into residual functions.
      Solution::vector_to_solutions(vector_right, stage_dp_right.get_spaces(),
                                    residuals, add_dir_lift);
      residual_norm = calc_norms(residuals);
    }

    // Info for the user.
    if (verbose) info("---- Newton iter %d, ndof %d, residual norm %g",
                      it, ndof, residual_norm);

    // If maximum allowed residual norm is exceeded, fail.
    if (residual_norm > newton_max_allowed_residual_norm) {
      if (verbose) {
        info("Current residual norm: %g", residual_norm);
        info("Maximum allowed residual norm: %g", newton_max_allowed_residual_norm);
        info("Newton solve not successful, returning false.");
      }
      return false;
    }

    // If residual norm is within tolerance, or the maximum number
    // of iteration has been reached, or the problem is linear, then quit.
    if ((residual_norm < newton_tol || it > newton_max_iter) && it > 1) break;

    // Solve the linear system.
    if(!solver->solve()) error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < num_stages*ndof; i++) {
      K_vector[i] += newton_damping_coeff * solver->get_solution()[i];
    }

    // If the problem is linear, quit.
    if (is_linear) {
      if (verbose) {
        info("Terminating Newton's loop as problem is linear.");
      }
      break;
    }

    // Increase iteration counter.
    it++;
  }

  // If max number of iterations was exceeded, fail.
  if (it >= newton_max_iter) {
    if (verbose) info("Maximum allowed number of Newton iterations exceeded, returning false.");
    return false;
  }

  // Calculate the vector Y^{n+1} = Y^n + h \sum_{j=1}^s b_j k_j.
  for (int i = 0; i < ndof; i++) {
    for (int j = 0; j < num_stages; j++) {
      coeff_vec[i] += time_step * bt->get_B(j) * K_vector[j*ndof + i];
    }
  }

  // If err_vec is not NULL, use the second B-row in the Butcher's
  // table to calculate the second approximation Y_{n+1}. Then 
  // subtract the original one from it, and return this as an
  // error vector err_vec.
  if (err_vec != NULL) {
    for (int i = 0; i < ndof; i++) {
      err_vec[i] = 0;
      for (int j = 0; j < num_stages; j++) {
        err_vec[i] += (bt->get_B(j) - bt->get_B2(j)) * K_vector[j*ndof + i];
      }
      err_vec[i] *= time_step;
    }
  }

  // Clean up.
  delete matrix_left;
  delete matrix_right;
  delete vector_right;
  delete solver;

  // Delete stage spaces, but not the first (original) one.
  for (int i = 1; i < num_stages; i++) delete stage_spaces[i];

  // Delete all residuals.
  for (int i = 0; i < num_stages; i++) delete residuals[i];

  // TODO: Delete stage_wf, in particular its external solutions
  // stage_time_sol[i], i = 0, 1, ..., num_stages-1.

  // Delete stage_vec and u_prev_vec.
  delete [] K_vector;
  delete [] u_prev_vec;

  // debug
  delete [] vector_left;

  return true;
}