Exemplo n.º 1
0
//*******************************************************//
int findTrajectory(std::vector<std::vector<fSet> >& G, int &targetDistance, int v0_index, classPoint2T &point, std::vector<std::vector<int> >  &T, std::vector<std::vector<int> > &D){
	/* This function find out the trajectory of a feasible point */
	// Initialize a trajectory vector 
	std::vector<classPoint2T> traj;


	// std::cout<<"Size of G table:"<<M<<" x "<<N<<std::endl;
	int t = point.time;
	int d = targetDistance;
	int vend_index = point.vel;
	
  	// print T 
	std::cout<<"T table in findTrajectory:"<<std::endl;
	for(int i=0; i<M; i++){
		for(int j = 0; j<M; j++)
			std::cout<<T[i][j]<<"\t";
		std::cout<<"\n";
	}  
	
	// Add starting point to the trajectory
	classPoint2T startingPoint(0,v0_index);
	traj.push_back(startingPoint);
	
	/* Now travere the table and add vint and time to the trajectory. */
	if(recursiveMove(traj, t, d, vend_index, v0_index, G, T, D) ) {
		// std::cout<<"\t Successfully retrieve a plan"<<std::endl;
	}
	
/* 	// if starting time is not 0, donot return the obtained plan 
	if(traj[0].time >= 1) {
		std::cout<<"\t But starting time is not zero."<<std::endl; 
		return -1; 
	} */
	
	std::cout<<"\tplan obtained with arrival point ";
	point.print();
	std::cout<<" is:" <<std::endl;
	std::cout<<"[["<<targetDistance<<","<<v0_index<<","<<point.vel<<","<<point.time<<"],"<<std::endl;
	std::cout<<"[";
	for(unsigned int i =0;i<traj.size();++i){
		traj[i].print();
		if(i<traj.size() - 1)
			std::cout<<",";
	}
	std::cout<<"]\n"<<std::endl;
	
	return 1;
}
Exemplo n.º 2
0
void FrameBuffer::DrawSegment(V3 pp0, V3 pp1, unsigned int color) {

  float u0f = pp0[0];
  float u1f = pp1[0];
  float v0f = pp0[1];
  float v1f = pp1[1];

  float du = fabsf(u1f-u0f);
  float dv = fabsf(v1f-v0f);
  int stepsN = (du < dv) ? 1 + (int) dv : 1 + (int) du;

  V3 startingPoint(pp0);
  V3 endingPoint(pp1);
  int segsN;
  if (stepsN == 1)
    segsN = 1;
  else
    segsN = stepsN-1;
  V3 segmentStep = (endingPoint - startingPoint) / (float) segsN;
  int i;
  V3 currentPoint;
  for (i = 0,
       currentPoint = startingPoint; 
       i < stepsN; 
       i++,
       currentPoint = currentPoint + segmentStep) {
    int u = (int) currentPoint[0];
    int v = (int) currentPoint[1];
    if (IsOutsideFrame(u, v))
      continue;
    if (IsFarther(u, v, currentPoint[2]))
      continue;
    SetZ(u, v, currentPoint[2]);
    Set(u, v, color);
    currentPoint = currentPoint + segmentStep;
  }

}
Exemplo n.º 3
0
int main (int argc, char **argv) {

    int n = 0;
    int m = 0;
    int s = 0;
    int v = 0;
    float d = 0;
    char *parametro;

    int i = 0;
    int j = 0;
    int x = 0;
    int y = 0;
    int cont = 0;
    float g = 0;

    point *firstPoint = malloc(sizeof(point *));

    cell ***grid = NULL;

    cell *conectados = malloc(sizeof(cell *));
    cell *c = malloc(sizeof(cell *));

    printf("Bem vindos ao programa do vini limdo =3\n");

    for (i = 1; i < argc; i ++) { /*For para ler os parametros*/
        parametro = argv[i];
        if (parametro[1] == 'N') { /*Segurar essa linha contra acessos de chars alem da palavra do parametro*/
            n = atoi(&parametro[2]);
        }
        else if (parametro[1] == 'M') {
            m = atoi(&parametro[2]);
        }
        else if (parametro[1] == 's') {
            s = atoi(&parametro[2]);
        }
        else if (parametro[1] == 'd') {
            d = atof(&parametro[2]);
            g = 1.0/d;
        }
        else if (parametro[1] == 'v') {
            v = 1;
        }
        else if (parametro[1] == 'V') {
            v = 2;
        }
        else if (parametro[1] == 'C') {
            if (d == 0) {
                printf ("Erro; falta o d.\n");
                return 0; /*Sair bonitinho*/
            }

            printf ("Por favor, digite os pontos desejados e pressione ctrl+d no final.\n");
            grid = malloc((g+2)*sizeof(cell **));
            for (i = 0; i<g+2; i++) {
                grid[i] = malloc((g+2)*sizeof(cell *));
                for (j=0; j<g+2; j++) {
                    cell newCell;
                    newCell.point = NULL;
                    newCell.prox = NULL;
                    grid[i][j] = &newCell;
                }
            }

            while (scanf("%d %d", &x, &y) == 1) {
                cell *cab = grid[(int)(x/d +1)][(int)(y/d + 1)];    /*pointeiro para a cabeca da lista do grid na posição em que o novo ponto deve ser inserido*/
                point newPoint;                                     /*allocação de memória para a nova célula e seu respectivo ponto*/
                cell newCell;
                newPoint.x = x;                                     /*insere as informações no novo ponto*/
                newPoint.y = y;
                newPoint.link = 0;
                newCell.point = &newPoint;                          /*associa a célula com o ponto*/
                newCell.prox = cab->prox;                           /*insere a célula no começo da respeciva lista do grid*/
                cab->prox = &newCell;
                n++;                                                /*incrementa o n*/
            }
            printf("Pontos gerados.\n");

        }
    }

    srand(s);               /*Atualiza a seed do random*/

    printf("Parametros:\n  n = %d\n  m = %d\n  s = %d\n  d = %f\n  v = %d\n", n, m, s, d, v);   /*Imprime os parâmetros para depuração*/

    if (d != 0) {           /*primeira opção*/
        if (grid == NULL && n != 0) {                   /*Se o grid não existir e tivermos N, devemos inicialliza-lo com números aleatórios.*/

            printf ("Gerando pontos aleatórios....\n");
            grid = malloc((g+4)*sizeof(cell **));       /*malloc a da 1a dimensao*/
            for (i = 0; i<g+4; i++) {
                grid[i] = malloc((g+4)*sizeof(cell *)); /*malloc da 2a*/
                for (j=0; j<g+4; j++) {                 /*preenche cada espaço com uma célula vazia*/
                    cell *newCell = malloc(sizeof(cell *));
                    newCell->point = NULL;
                    newCell->prox = NULL;
                    grid[i][j] = newCell;
                }
            }

            for (i = 0; i < n; i ++) {                  /*coloca valores aleatórios no grid*/
                cell *cab = malloc(sizeof(cell *));                             /*Ponteiro para a cabeça da lista no lugar certo do grid*/
                point *newPoint = malloc(sizeof(point *));                      /*ponto a ser inserido*/
                cell *newCell = malloc(sizeof(cell *));                         /*célula referente a esse ponto*/
                newPoint->x = (rand()*1.0)/RAND_MAX;     /*insere valores no ponto*/
                newPoint->y = (rand()*1.0)/RAND_MAX;
                newPoint->link = i;
                newCell->point = newPoint;              /*conecta a celula com o ponto*/
                newCell->prox = NULL;

                cab = grid[(int)(newPoint->x/d +2)][(int)(newPoint->y/d +2)];     /*cabeca aponta para o lugar certo*/

                newCell->prox = cab->prox;               /*insere a celula criada logo após a cabeça*/
                cab->prox = newCell;
            }
        }

        else if (n == 0) {
            printf ("Houve um erro no cálculo no número de pontos ou ele não foi fornecido, apesar de ser necessário.\n");
            return 0;
        }

        c = NULL;
        cont = 0;
        if (v == 1)
            for (i = 0; i < g+4; i ++)
                for (j = 0; j < g+4; j ++)
                    for (c = grid[i][j]; c->prox != NULL; c = c->prox)
                        printf ("Point %d at grid[%d][%d]:\n    x=%f, y=%f\n", cont++, i, j, c->prox->point->x, c->prox->point->y);

        firstPoint = startingPoint(grid, g);
        if (firstPoint == NULL) {
            printf("Houve um erro ao pegar um ponto arbitrário do grafo em que começar o algoritmo.\n");
            return 0;
        }

        c = NULL;
        conectados->prox = NULL;
        conectados->point = firstPoint;

        cont = n;

        float a, b, f, e;
        while (conectados != NULL) {
            for (i = conectados->point->x/d +2 -1; i <= conectados->point->x/d +2 +1; i++) {
                for (j = conectados->point->y/d +2 -1; j <= conectados->point->y/d +2 +1; j++) {
                    for (c = grid[i][j]; c->prox != NULL;) {
                        a = conectados->point->x;
                        b = conectados->point->y;
                        f = c->prox->point->x;
                        e = c->prox->point->y;

                        if (((a-f)*(a-f)) + ((b-e)*(b-e)) <= d*d) {

                            /*Remove c->prox do grid e coloca ela no conectados*/
                            cont --;
                            cell *aux2 = malloc(sizeof(cell *));
                            cell *aux3 = malloc(sizeof(cell *));
                            aux2 = c->prox;
                            c->prox = aux2->prox;

                            if (conectados == NULL) {
                                conectados = aux2;
                                aux2->prox = NULL;
                            }
                            else {
                                aux3 = conectados->prox;
                                conectados->prox = aux2;
                                aux2->prox = aux3;
                            }

                        }
                        else {
                            c = c->prox;
                        }

                    }
                }
            }

            if (cont == 0) break;

            if (conectados != NULL) {
                /*Remove uma celula do conectados*/
                cell *aux = malloc(sizeof(cell *));
                aux = conectados;
                conectados = conectados->prox;
                free(aux);
            }

        }



        /*cont = linkAroundTheWorld(firstPoint, grid, d);     /*checa se o grafo é conexo*/

        if (cont == 0) {
            printf("O grafo é conexo!!\n");
            return 0;
        }
        else if (cont > 0) {
            printf("O grafo não é conexo.\n");
            return 0;
        }
        else {
            printf("Houve um erro na implementação do algoritmo. (erro 1)\n");
            return 0;
        }

    }


    return 0;
}
Exemplo n.º 4
0
    EndCriteria::Type HybridSimulatedAnnealing<Sampler, Probability, Temperature, Reannealing>::minimize(Problem &P, const EndCriteria &endCriteria) {
        EndCriteria::Type ecType = EndCriteria::None;
        P.reset();
        reannealing_.setProblem(P);
        Array x = P.currentValue();
        Size n = x.size();
        Size k = 1;
        Size kStationary = 1;
        Size kReAnneal = 1;
        Size kReset = 1;
        Size maxK = endCriteria.maxIterations();
        Size maxKStationary = endCriteria.maxStationaryStateIterations();
        bool temperatureBreached = false;
        Array currentTemperature(n, startTemperature_);
        Array annealStep(n, 1.0);
        Array bestPoint(x);
        Array currentPoint(x);
        Array startingPoint(x);
        Array newPoint(x);
        Real bestValue = P.value(bestPoint);
        Real currentValue = bestValue;
        Real startingValue = bestValue; //to reset to starting point if desired
        while (k <= maxK && kStationary <= maxKStationary && !temperatureBreached)
        {
            //Draw a new sample point
            sampler_(newPoint, currentPoint, currentTemperature);

            //Evaluate new point
            Real newValue = P.value(newPoint);

            //Determine if new point is accepted
            if (probability_(currentValue, newValue, currentTemperature)) {
                if (optimizeScheme_ == EveryNewPoint) {
                    P.setCurrentValue(newPoint);
                    P.setFunctionValue(newValue);
                    localOptimizer_->minimize(P, endCriteria);
                    newPoint = P.currentValue();
                    newValue = P.functionValue();
                }
                currentPoint = newPoint;
                currentValue = newValue;
            }

            //Check if we have a new best point
            if (newValue < bestValue) {
                if (optimizeScheme_ == EveryBestPoint) {
                    P.setCurrentValue(newPoint);
                    P.setFunctionValue(newValue);
                    localOptimizer_->minimize(P, endCriteria);
                    newPoint = P.currentValue();
                    newValue = P.functionValue();
                }
                kStationary = 0;
                bestValue = newValue;
                bestPoint = newPoint;
            }

            //Increase steps
            k++;
            kStationary++;
            for (Size i = 0; i < annealStep.size(); i++)
                annealStep[i]++;

            //Reanneal if necessary
            if (kReAnneal == reAnnealSteps_) {
                kReAnneal = 0;
                reannealing_(annealStep, currentPoint, currentValue, currentTemperature);
            }
            kReAnneal++;

            //Reset if necessary
            if (kReset == resetSteps_) {
                kReset = 0;
                switch (resetScheme_) {
                case NoResetScheme:
                    break;
                case ResetToBestPoint:
                    currentPoint = startingPoint;
                    currentValue = startingValue;
                    break;
                case ResetToOrigin:
                    currentPoint = bestPoint;
                    currentValue = bestValue;
                    break;
                }
            }
            kReset++;

            //Update the current temperature according to current step
            temperature_(currentTemperature, currentTemperature, annealStep);

            //Check if temperature condition is breached
            for (Size i = 0; i < n; i++)
                temperatureBreached = temperatureBreached && currentTemperature[i] < endTemperature_;
        }
        //Change end criteria type if appropriate
        if (k > maxK)
            ecType = EndCriteria::MaxIterations;
        else if (kStationary > maxKStationary)
            ecType = EndCriteria::StationaryPoint;

        //Set result to best point
        P.setCurrentValue(bestPoint);
        P.setFunctionValue(bestValue);
        return ecType;
    }
Exemplo n.º 5
0
// main function of verifyBamID
int execute(int argc, char** argv) {
  printf("verifyBamID %s -- verify identity and purity of sequence data\n"
	 "(c) 2010-2014 Hyun Min Kang, Goo Jun, and Goncalo Abecasis\n\n", VERSION);

  VerifyBamIDArgs args;
  ParameterList pl;

  BEGIN_LONG_PARAMETERS(longParameters)
    LONG_PARAMETER_GROUP("Input Files")
    LONG_STRINGPARAMETER("vcf",&args.sVcfFile)
    LONG_STRINGPARAMETER("bam",&args.sBamFile)
    LONG_STRINGPARAMETER("subset",&args.sSubsetInds)
    LONG_STRINGPARAMETER("smID",&args.sSMID)

    LONG_PARAMETER_GROUP("VCF analysis options")
    LONG_DOUBLEPARAMETER("genoError",&args.genoError)
    LONG_DOUBLEPARAMETER("minAF",&args.minAF)
    LONG_DOUBLEPARAMETER("minCallRate",&args.minCallRate)

    LONG_PARAMETER_GROUP("Individuals to compare with chip data")
    EXCLUSIVE_PARAMETER("site",&args.bSiteOnly)
    EXCLUSIVE_PARAMETER("self",&args.bSelfOnly)
    EXCLUSIVE_PARAMETER("best",&args.bFindBest)

    LONG_PARAMETER_GROUP("Chip-free optimization options")
    EXCLUSIVE_PARAMETER("free-none",&args.bFreeNone)
    EXCLUSIVE_PARAMETER("free-mix",&args.bFreeMixOnly)
    EXCLUSIVE_PARAMETER("free-refBias",&args.bFreeRefBiasOnly)
    EXCLUSIVE_PARAMETER("free-full",&args.bFreeFull)

    LONG_PARAMETER_GROUP("With-chip optimization options")
    EXCLUSIVE_PARAMETER("chip-none",&args.bChipNone)
    EXCLUSIVE_PARAMETER("chip-mix",&args.bChipMixOnly)
    EXCLUSIVE_PARAMETER("chip-refBias",&args.bChipRefBiasOnly)
    EXCLUSIVE_PARAMETER("chip-full",&args.bChipFull)

    LONG_PARAMETER_GROUP("BAM analysis options")
    LONG_PARAMETER("ignoreRG",&args.bIgnoreRG)
    LONG_PARAMETER("ignoreOverlapPair",&args.bIgnoreOverlapPair)
    LONG_PARAMETER("noEOF",&args.bNoEOF)
    LONG_PARAMETER("precise",&args.bPrecise)
    LONG_INTPARAMETER("minMapQ",&args.minMapQ)
    LONG_INTPARAMETER("maxDepth",&args.maxDepth)
    LONG_INTPARAMETER("minQ",&args.minQ)
    LONG_INTPARAMETER("maxQ",&args.maxQ)
    LONG_DOUBLEPARAMETER("grid",&args.grid)

    LONG_PARAMETER_GROUP("Modeling Reference Bias")
    LONG_DOUBLEPARAMETER("refRef",&args.pRefRef)
    LONG_DOUBLEPARAMETER("refHet",&args.pRefHet)
    LONG_DOUBLEPARAMETER("refAlt",&args.pRefAlt)

    LONG_PARAMETER_GROUP("Output options")
    LONG_STRINGPARAMETER("out",&args.sOutFile)
    LONG_PARAMETER("verbose",&args.bVerbose)
    LONG_PHONEHOME(VERSION)
  END_LONG_PARAMETERS();

  pl.Add(new LongParameters("Available Options",longParameters));
  pl.Read(argc, argv);
  pl.Status();

  // check the validity of input files
  if ( args.sVcfFile.IsEmpty() ) {
    error("--vcf [vcf file] required");
  }

  if ( args.sBamFile.IsEmpty() ) {
    error("--bam [bam file] is required");
  }

  if ( args.sOutFile.IsEmpty() ) {
    error("--out [output prefix] is required");
  }
  Logger::gLogger = new Logger((args.sOutFile + ".log").c_str(), args.bVerbose);

  if ( ! ( args.bSiteOnly || args.bSelfOnly || args.bFindBest ) ) {
    warning("--self option was autotomatically turned on by default. Specify --best option if you wanted to check across all possible samples in the VCF");
    args.bSelfOnly = true;
  }

  if ( ( args.maxDepth > 20 ) && ( !args.bPrecise ) ) {
    warning("--precise option is not turned on at --maxDepth %d : may be prone to precision errors",args.maxDepth);
  }

  if ( ( args.bChipRefBiasOnly ) && ( !args.bSelfOnly ) ) {
    error("--self must be set for --chip-refBias to work. Skipping..");
  }

  // check timestamp
  time_t t;
  time(&t);
  Logger::gLogger->writeLog("Analysis started on %s",ctime(&t));

  // load arguments
  VerifyBamID vbid(&args);

  // load input VCF and BAM files
  Logger::gLogger->writeLog("Opening Input Files");
  vbid.loadFiles(args.sBamFile.c_str(), args.sVcfFile.c_str());

  // Check which genotype-free method is used
  if ( args.bFreeNone ) {  // if no genotype-free mode is tested. skip it
    // do nothing for genotype-free estimation
    Logger::gLogger->writeLog("Skipping chip-free estimation of sample mixture");
  }
  else if ( args.bFreeMixOnly ) { // only mixture is estimated.
    // genotype-free method
    Logger::gLogger->writeLog("Performing chip-free estimation of sample mixture at fixed reference bias parameters (%lf, %lf, %lf)",args.pRefRef,args.pRefHet,args.pRefAlt);

    // scan across multiple readgroups
    for(int rg=-1; rg < vbid.nRGs - (int)args.bIgnoreRG; ++rg) {
      VerifyBamID::mixLLK mix(&vbid);
      mix.OptimizeLLK(rg);
      Logger::gLogger->writeLog("Optimal per-sample fMix = %lf, LLK0 = %lf, LLK1 = %lf\n",mix.fMix,mix.llk0,mix.llk1);
      vbid.mixOut.llk0s[rg+1] = mix.llk0;
      vbid.mixOut.llk1s[rg+1] = mix.llk1;
      vbid.mixOut.fMixs[rg+1] = mix.fMix;
    }

    //vbid.mixRefHet = 0.5;
    //vbid.mixRefAlt = 0.00;
  }
  else if ( args.bFreeRefBiasOnly ) {
    Logger::gLogger->writeLog("Performing chip-free estimation of reference-bias without sample mixture");
    for(int rg=-1; rg < vbid.nRGs - (int)args.bIgnoreRG; ++rg) {
      VerifyBamID::refBiasMixLLKFunc myFunc(&vbid, rg);
      AmoebaMinimizer myMinimizer;
      Vector startingPoint(2);
      startingPoint[0] = 0;      // pRefHet = 0.5
      startingPoint[1] = -4.595; // pRefAlt = 0.01
      myMinimizer.func = &myFunc;
      myMinimizer.Reset(2);
      myMinimizer.point = startingPoint;
      myMinimizer.Minimize(1e-6);
      double pRefHet = VerifyBamID::invLogit(myMinimizer.point[0]);
      double pRefAlt = VerifyBamID::invLogit(myMinimizer.point[1]);
      Logger::gLogger->writeLog("Reference Bias Estimated as ( Pr[refBase|HET] = %lf, Pr[refBase|ALT] = %lf) with LLK = %lf at readGroup %d",pRefHet,pRefAlt,myMinimizer.fmin,rg);
      //vbid.setRefBiasParams(1.0, pRefHet, pRefAlt);

      vbid.mixOut.llk0s[rg+1] = myFunc.llk0;
      vbid.mixOut.llk1s[rg+1] = myFunc.llk1;
      vbid.mixOut.refHets[rg+1] = myFunc.pRefHet;
      vbid.mixOut.refAlts[rg+1] = myFunc.pRefAlt;
    }
  }
  else if ( args.bFreeFull ) {
    Logger::gLogger->writeLog("Performing chip-free estimation of reference-bias and sample mixture together");
    for(int rg = -1; rg < vbid.nRGs - args.bIgnoreRG; ++rg) {
      VerifyBamID::fullMixLLKFunc myFunc(&vbid, rg);
      AmoebaMinimizer myMinimizer;
      Vector startingPoint(3);
      startingPoint[0] = -3.91;  // start with fMix = 0.01
      startingPoint[1] = 0;      // pRefHet = 0.5
      startingPoint[2] = -4.595; // pRefAlt = 0.01
      myMinimizer.func = &myFunc;
      myMinimizer.Reset(3);
      myMinimizer.point = startingPoint;
      myMinimizer.Minimize(1e-6);
      double fMix = VerifyBamID::invLogit(myMinimizer.point[0]);
      if ( fMix > 0.5 ) 
	fMix = 1.-fMix;
      double pRefHet = VerifyBamID::invLogit(myMinimizer.point[1]);
      double pRefAlt = VerifyBamID::invLogit(myMinimizer.point[2]);
      Logger::gLogger->writeLog("Optimal per-sample fMix = %lf\n",fMix);
      Logger::gLogger->writeLog("Reference Bias Estimated as ( Pr[refBase|HET] = %lf, Pr[refBase|ALT] = %lf) with LLK = %lf",pRefHet,pRefAlt,myMinimizer.fmin);
      //vbid.setRefBiasParams(1.0, pRefHet, pRefAlt);

      vbid.mixOut.llk0s[rg+1] = myFunc.llk0;
      vbid.mixOut.llk1s[rg+1] = myFunc.llk1;
      vbid.mixOut.fMixs[rg+1] = myFunc.fMix;
      vbid.mixOut.refHets[rg+1] = myFunc.pRefHet;
      vbid.mixOut.refAlts[rg+1] = myFunc.pRefAlt;
    }
  }
  Logger::gLogger->writeLog("calculating depth distribution");  
  vbid.calculateDepthDistribution(args.maxDepth, vbid.mixOut);

  Logger::gLogger->writeLog("finished calculating depth distribution");  

  std::vector<int> bestInds(vbid.nRGs+1,-1);
  std::vector<int> selfInds(vbid.nRGs+1,-1);

  if ( args.bChipNone ) {
    // do nothing
    Logger::gLogger->writeLog("Skipping with-chip estimation of sample mixture");
  }
  else if ( args.bChipMixOnly ) {
    Logger::gLogger->writeLog("Performing with-chip estimation of sample mixture at fixed reference bias parameter (%lf, %lf, %lf)",args.pRefRef,args.pRefHet,args.pRefAlt);
    
    for(int rg=-1; rg < (vbid.nRGs - (int)args.bIgnoreRG); ++rg) {
      double maxIBD = -1;
      VerifyBamID::ibdLLK ibd(&vbid);
      for(int i=0; i < (int)vbid.pGenotypes->indids.size(); ++i) {
	double fIBD = ibd.OptimizeLLK(i, rg);
	Logger::gLogger->writeLog("Comparing with individual %s.. Optimal fIBD = %lf, LLK0 = %lf, LLK1 = %lf for readgroup %d",vbid.pGenotypes->indids[i].c_str(),fIBD, ibd.llk0, ibd.llk1, rg);
	if ( maxIBD < fIBD ) {
	  bestInds[rg+1] = i;
	  vbid.bestOut.llk0s[rg+1] = ibd.llk0;
	  vbid.bestOut.llk1s[rg+1] = ibd.llk1;
	  vbid.bestOut.fMixs[rg+1] = 1-ibd.fIBD;
	  maxIBD = ibd.fIBD;
	}

	if ( ( (rg < 0) && (vbid.pPile->sBamSMID == vbid.pGenotypes->indids[i] ) ) || ( ( rg >= 0 ) && ( vbid.pPile->vsSMIDs[rg] == vbid.pGenotypes->indids[i]) ) ) {
	  selfInds[rg+1] = i;
	  vbid.selfOut.llk0s[rg+1] = ibd.llk0;
	  vbid.selfOut.llk1s[rg+1] = ibd.llk1;
	  vbid.selfOut.fMixs[rg+1] = 1-ibd.fIBD;
	}
      }

      if ( bestInds[rg+1] >= 0 ) {
	Logger::gLogger->writeLog("Best Matching Individual is %s with IBD = %lf",vbid.pGenotypes->indids[bestInds[rg+1]].c_str(),maxIBD);
	vbid.calculateDepthByGenotype(bestInds[rg+1],rg,vbid.bestOut);
      }

      if ( selfInds[rg+1] >= 0 ) {
	Logger::gLogger->writeLog("Self Individual is %s with IBD = %lf",vbid.pGenotypes->indids[selfInds[rg+1]].c_str(),vbid.selfOut.fMixs[rg+1]);
	vbid.calculateDepthByGenotype(selfInds[rg+1],rg,vbid.selfOut);
      }
    }
  }
  else if ( args.bChipRefBiasOnly ) {
    Logger::gLogger->writeLog("Performing with-chip estimation of reference-bias without sample mixture");
    if ( args.bSelfOnly ) {
      for(int rg=-1; rg < (vbid.nRGs - (int)args.bIgnoreRG); ++rg) {
	VerifyBamID::refBiasIbdLLKFunc myFunc(&vbid, rg);
	AmoebaMinimizer myMinimizer;
	Vector startingPoint(2);
	startingPoint[0] = 0;      // pRefHet = 0.5
	startingPoint[1] = -4.595; // pRefAlt = 0.01
	myMinimizer.func = &myFunc;
	myMinimizer.Reset(2);
	myMinimizer.point = startingPoint;
	myMinimizer.Minimize(1e-6);
	double pRefHet = VerifyBamID::invLogit(myMinimizer.point[0]);
	double pRefAlt = VerifyBamID::invLogit(myMinimizer.point[1]);
	Logger::gLogger->writeLog("Reference Bias Estimated as ( Pr[refBase|HET] = %lf, Pr[refBase|ALT] = %lf) with LLK = %lf",pRefHet,pRefAlt,myMinimizer.fmin);
	//vbid.setRefBiasParams(1.0, pRefHet, pRefAlt);

	vbid.selfOut.llk0s[rg+1] = myFunc.llk0;
	vbid.selfOut.llk1s[rg+1] = myFunc.llk1;
	vbid.selfOut.refHets[rg+1] = myFunc.pRefHet;
	vbid.selfOut.refAlts[rg+1] = myFunc.pRefAlt;
	vbid.calculateDepthByGenotype(0,rg,vbid.selfOut);
      }
    }
    else {
      Logger::gLogger->warning("--self must be set for --chip-refBias to work. Skipping..");
    }
  }
  else if ( args.bChipFull ) {
    Logger::gLogger->writeLog("Performing with-chip estimation of reference-bias and sample mixture together");
    for(int rg=-1; rg < (vbid.nRGs - (int)args.bIgnoreRG); ++rg) {
      double maxIBD = -1;

      for(int i=0; i < (int)vbid.pGenotypes->indids.size(); ++i) {
	VerifyBamID::fullIbdLLKFunc myFunc(&vbid,i,rg);
	AmoebaMinimizer myMinimizer;
	Vector startingPoint(3);
	startingPoint[0] = 3.91;  // start with fIBD = 0.99
	startingPoint[1] = 0;      // pRefHet = 0.5
	startingPoint[2] = -4.595; // pRefAlt = 0.01
	myMinimizer.func = &myFunc;

	myFunc.indIdx = i;
	myMinimizer.Reset(3);
	myMinimizer.point = startingPoint;
	myMinimizer.Minimize(1e-6);
	double fIBD = VerifyBamID::invLogit(myMinimizer.point[0]);
	double pRefHet = VerifyBamID::invLogit(myMinimizer.point[1]);
	double pRefAlt = VerifyBamID::invLogit(myMinimizer.point[2]);

	Logger::gLogger->writeLog("Comparing with individual %s.. Optimal fIBD = %lf, LLK0 = %lf, LLK1 = %lf for readgroup %d",vbid.pGenotypes->indids[i].c_str(), fIBD, myFunc.llk0, myFunc.llk1, rg);
	//Logger::gLogger->writeLog("Optimal per-sample fIBD = %lf, ",fIBD);
	Logger::gLogger->writeLog("Reference Bias Estimated as ( Pr[refBase|HET] = %lf, Pr[refBase|ALT] = %lf ) with LLK = %lf",pRefHet,pRefAlt,myMinimizer.fmin);
	if ( maxIBD < fIBD ) {
	  bestInds[rg+1] = i;
	  maxIBD = fIBD;
	  vbid.bestOut.llk0s[rg+1] = myFunc.llk0;
	  vbid.bestOut.llk1s[rg+1] = myFunc.llk1;
	  vbid.bestOut.fMixs[rg+1] = 1.-myFunc.fIBD;
	  vbid.bestOut.refHets[rg+1] = myFunc.pRefHet;
	  vbid.bestOut.refAlts[rg+1] = myFunc.pRefAlt;
	}

	if ( ( (rg < 0) && (vbid.pPile->sBamSMID == vbid.pGenotypes->indids[i] ) ) || ( ( rg >= 0 ) && ( vbid.pPile->vsSMIDs[rg] == vbid.pGenotypes->indids[i]) ) ) {
	  selfInds[rg+1] = i;
	  vbid.selfOut.llk0s[rg+1] = myFunc.llk0;
	  vbid.selfOut.llk1s[rg+1] = myFunc.llk1;
	  vbid.selfOut.fMixs[rg+1] = 1.-myFunc.fIBD;
	  vbid.selfOut.refHets[rg+1] = myFunc.pRefHet;
	  vbid.selfOut.refAlts[rg+1] = myFunc.pRefAlt;
	  vbid.calculateDepthByGenotype(i, rg, vbid.selfOut);
	}
      }
      //vbid.setRefBiasParams(1.0, pRefHet, pRefAlt);
      if ( bestInds[rg+1] >= 0 ) {
	Logger::gLogger->writeLog("Best Matching Individual is %s with IBD = %lf",vbid.pGenotypes->indids[bestInds[rg+1]].c_str(),maxIBD);
	vbid.calculateDepthByGenotype(bestInds[rg+1], rg, vbid.bestOut);
      }

      if ( selfInds[rg+1] >= 0 ) {
	Logger::gLogger->writeLog("Self Individual is %s with IBD = %lf",vbid.pGenotypes->indids[selfInds[rg+1]].c_str(),vbid.selfOut.fMixs[rg+1]);
	vbid.calculateDepthByGenotype(selfInds[rg+1],rg,vbid.selfOut);
      }
    }
  }

  // PRINT OUTPUT FILE - ".selfSM"
  // [SEQ_ID]  : SAMPLE ID in the sequence file
  // [CHIP_ID] : SAMPLE ID in the chip file (NA if not available)
  // [#SNPS] : Number of markers evaluated
  // [#READS]   : Number of reads evaluated
  // [AVG_DP]   : Mean depth
  // [FREEMIX]  : Chip-free estimated alpha (% MIX in 0-1 scale), NA if unavailable
  // [FREELK1]  : Chip-free log-likelihood at estimated alpha
  // [FREELK0]  : Chip-free log-likelihood at 0% contamination
  // [CHIPIBD]  : With-chip estimated alpha (% MIX in 0-1 scale)
  // [CHIPLK1]  : With-chip log-likelihood at estimated alpha
  // [CHIPLK0]  : With-chip log-likelihood at 0% contamination
  // [DPREF]    : Depth at reference site in the chip
  // [RDPHET]   : Relative depth at HET site in the chip
  // [RDPALT]   : Relative depth at HOMALT site in the chip
  // [FREE_RF]  : Pr(Ref|Ref) site estimated without chip data
  // [FREE_RH]  : Pr(Ref|Het) site estimated without chip data
  // [FREE_RA]  : Pr(Ref|Alt) site estimated without chip data
  // [CHIP_RF]  : Pr(Ref|Ref) site estimated with chip data
  // [CHIP_RH]  : Pr(Ref|Het) site estimated with chip data
  // [CHIP_RA]  : Pr(Ref|Alt) site estimated with chip data
  // [DPREF]    : Depth at reference alleles
  // [RDPHET]   : Relative depth at heterozygous alleles
  // [RDPALT]   : Relative depth at hom-alt alleles

  String selfSMFN = args.sOutFile + ".selfSM";
  String bestSMFN = args.sOutFile + ".bestSM";
  String selfRGFN = args.sOutFile + ".selfRG";
  String bestRGFN = args.sOutFile + ".bestRG";
  String dpSMFN = args.sOutFile + ".depthSM";
  String dpRGFN = args.sOutFile + ".depthRG";

  IFILE selfSMF = ifopen(selfSMFN,"wb");
  IFILE bestSMF = (args.bFindBest ? ifopen(bestSMFN,"wb") : NULL);
  IFILE selfRGF = (args.bIgnoreRG ? NULL : ifopen(selfRGFN,"wb"));
  IFILE bestRGF = (args.bFindBest && !args.bIgnoreRG) ? ifopen(bestRGFN,"wb") : NULL;

  IFILE dpSMF = ifopen(dpSMFN,"wb");
  IFILE dpRGF = (args.bIgnoreRG ? NULL : ifopen(dpRGFN,"wb"));
  if ( selfSMF == NULL ) {
    Logger::gLogger->error("Cannot write to %s",selfSMF);
  }
  if ( args.bFindBest && ( bestSMF == NULL ) ) {
    Logger::gLogger->error("Cannot write to %s",bestSMF);
  }
  if ( dpSMF == NULL ) {
    Logger::gLogger->error("Cannot write to %s",dpSMF);
  }

  ifprintf(dpSMF,"#RG\tDEPTH\t#SNPs\t%%SNPs\t%%CUMUL\n");
  int nCumMarkers = 0;
  for(int i=args.maxDepth; i >= 0; --i) {
    nCumMarkers += vbid.mixOut.depths[i];
    ifprintf(dpSMF,"ALL\t%d\t%d\t%.5lf\t%.5lf\n",i, vbid.mixOut.depths[i],(double) vbid.mixOut.depths[i]/(double)vbid.nMarkers,(double)nCumMarkers/(double)vbid.nMarkers);
  }
  ifclose(dpSMF);


  if ( dpRGF != NULL ) {
    ifprintf(dpRGF,"#RG\tDEPTH\t#SNPs\t%%SNPs\t%%CUMUL\n");
    for(int rg=0; rg < (vbid.nRGs - (int)args.bIgnoreRG); ++rg) {
      const char* rgID = vbid.pPile->vsRGIDs[rg].c_str();

      int nMarkers = 0;
      for(int i=args.maxDepth; i >= 0; --i) {
	nMarkers += vbid.mixOut.depths[(rg+1)*(args.maxDepth+1) + i];
      }

      nCumMarkers = 0;
      for(int i=args.maxDepth; i >= 0; --i) {
	int d = vbid.mixOut.depths[(rg+1)*(args.maxDepth+1) + i];
	nCumMarkers += d;
	ifprintf(dpRGF,"%s\t%d\t%d\t%.5lf\t%.5lf\n",rgID,i,d,(double)d/(double)vbid.nMarkers,(double)nCumMarkers/(double)nMarkers);
      }
    }
    ifclose(dpRGF);
  }

  const char* headers[] = {"#SEQ_ID","RG","CHIP_ID","#SNPS","#READS","AVG_DP","FREEMIX","FREELK1","FREELK0","FREE_RH","FREE_RA","CHIPMIX","CHIPLK1","CHIPLK0","CHIP_RH","CHIP_RA","DPREF","RDPHET","RDPALT"};
  int nheaders = sizeof(headers)/sizeof(headers[0]);

  for(int i=0; i < nheaders; ++i) { ifprintf(selfSMF,"%s%s",i>0 ? "\t" : "",headers[i]); }
  ifprintf(selfSMF,"\n");
  ifprintf(selfSMF,"%s\tALL",vbid.pPile->sBamSMID.c_str());
  ifprintf(selfSMF,"\t%s",selfInds[0] >= 0 ? vbid.pGenotypes->indids[selfInds[0]].c_str() : "NA");
  ifprintf(selfSMF,"\t%d\t%d\t%.2lf",vbid.nMarkers,vbid.mixOut.numReads[0],(double)vbid.mixOut.numReads[0]/(double)vbid.nMarkers);
  if ( args.bFreeNone ) { ifprintf(selfSMF,"\tNA\tNA\tNA\tNA\tNA"); }
  else if ( args.bFreeMixOnly ) { ifprintf(selfSMF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA",vbid.mixOut.fMixs[0],vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0]); }
  else if ( args.bFreeRefBiasOnly ) { ifprintf(selfSMF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0],vbid.mixOut.refHets[0],vbid.mixOut.refAlts[0]); }
  else if ( args.bFreeFull ) { ifprintf(selfSMF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.fMixs[0],vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0],vbid.mixOut.refHets[0],vbid.mixOut.refAlts[0]); }
  else { error("Invalid option in handling bFree"); }

  if ( args.bChipNone || bestInds[0] < 0 ) { ifprintf(selfSMF,"\tNA\tNA\tNA\tNA\tNA\tNA\tNA\tNA"); }
  else if ( args.bChipMixOnly ) { ifprintf(selfSMF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA\t%.3lf\t%.4lf\t%.4lf",vbid.selfOut.fMixs[0],vbid.selfOut.llk1s[0],vbid.selfOut.llk0s[0],(double)vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[1], (double)vbid.selfOut.numReads[2]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[2], (double)vbid.selfOut.numReads[3]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[3]); }
  else if ( args.bChipMixOnly ) { ifprintf(selfSMF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf",vbid.selfOut.llk1s[0], vbid.selfOut.llk0s[0], vbid.selfOut.refHets[0], vbid.selfOut.refAlts[0], (double)vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[1], (double)vbid.selfOut.numReads[2]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[2], (double)vbid.selfOut.numReads[3]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[3]); }
  else if ( args.bChipFull ) { ifprintf(selfSMF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf", vbid.selfOut.fMixs[0], vbid.selfOut.llk1s[0], vbid.selfOut.llk0s[0], vbid.selfOut.refHets[0], vbid.selfOut.refAlts[0], (double)vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[1], (double)vbid.selfOut.numReads[2]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[2], (double)vbid.selfOut.numReads[3]*vbid.selfOut.numGenos[1]/vbid.selfOut.numReads[1]/vbid.selfOut.numGenos[3]); }
  else { error("Invalid option in handling bChip"); }
  ifprintf(selfSMF,"\n");
  ifclose(selfSMF);

  if ( bestSMF != NULL ) {
    for(int i=0; i < nheaders; ++i) { ifprintf(bestSMF,"%s%s",i>0 ? "\t" : "",headers[i]); }
    ifprintf(bestSMF,"\n");
    ifprintf(bestSMF,"%s\tALL",vbid.pPile->sBamSMID.c_str());
    ifprintf(bestSMF,"\t%s",bestInds[0] >= 0 ? vbid.pGenotypes->indids[bestInds[0]].c_str() : "NA");
    ifprintf(bestSMF,"\t%d\t%d\t%.2lf",vbid.nMarkers,vbid.mixOut.numReads[0],(double)vbid.mixOut.numReads[0]/(double)vbid.nMarkers);
    if ( args.bFreeNone ) { ifprintf(bestSMF,"\tNA\tNA\tNA\tNA\tNA"); }
    else if ( args.bFreeMixOnly ) { ifprintf(bestSMF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA",vbid.mixOut.fMixs[0],vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0]); }
    else if ( args.bFreeRefBiasOnly ) { ifprintf(bestSMF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0],vbid.mixOut.refHets[0],vbid.mixOut.refAlts[0]); }
    else if ( args.bFreeFull ) { ifprintf(bestSMF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.fMixs[0],vbid.mixOut.llk1s[0],vbid.mixOut.llk0s[0],vbid.mixOut.refHets[0],vbid.mixOut.refAlts[0]); }
    else { error("Invalid option in handling bFree"); }
    
    if ( args.bChipNone || bestInds[0] < 0 ) { ifprintf(bestSMF,"\tNA\tNA\tNA\tNA\tNA\tNA\tNA\tNA"); }
    else if ( args.bChipMixOnly ) { ifprintf(bestSMF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA\t%.3lf\t%.4lf\t%.4lf",vbid.bestOut.fMixs[0],vbid.bestOut.llk1s[0],vbid.bestOut.llk0s[0],(double)vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[1], (double)vbid.bestOut.numReads[2]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[2], (double)vbid.bestOut.numReads[3]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[3]); }
    else if ( args.bChipMixOnly ) { ifprintf(bestSMF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf",vbid.bestOut.llk1s[0], vbid.bestOut.llk0s[0], vbid.bestOut.refHets[0], vbid.bestOut.refAlts[0], (double)vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[1], (double)vbid.bestOut.numReads[2]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[2], (double)vbid.bestOut.numReads[3]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[3]); }
    else if ( args.bChipFull ) { ifprintf(bestSMF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf", vbid.bestOut.fMixs[0], vbid.bestOut.llk1s[0], vbid.bestOut.llk0s[0], vbid.bestOut.refHets[0], vbid.bestOut.refAlts[0], (double)vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[1], (double)vbid.bestOut.numReads[2]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[2], (double)vbid.bestOut.numReads[3]*vbid.bestOut.numGenos[1]/vbid.bestOut.numReads[1]/vbid.bestOut.numGenos[3]); }
    else { error("Invalid option in handling bChip"); }
    ifprintf(bestSMF,"\n");
    ifclose(bestSMF);
  }

  if ( selfRGF != NULL ) {
    for(int i=0; i < nheaders; ++i) { ifprintf(selfRGF,"%s%s",i>0 ? "\t" : "",headers[i]); }
    ifprintf(selfRGF,"\n");
    for(int rg=0; rg < vbid.nRGs; ++rg) {
      ifprintf(selfRGF,"%s\t%s",vbid.pPile->sBamSMID.c_str(),vbid.pPile->vsRGIDs[rg].c_str());
      ifprintf(selfRGF,"\t%s",bestInds[rg] >= 0 ? vbid.pGenotypes->indids[bestInds[rg]].c_str() : "NA");
      ifprintf(selfRGF,"\t%d\t%d\t%.2lf",vbid.nMarkers,vbid.mixOut.numReads[(rg+1)*4],(double)vbid.mixOut.numReads[(rg+1)*4]/(double)vbid.mixOut.numGenos[(rg+1)*4]);
      if ( args.bFreeNone ) { ifprintf(selfRGF,"\tNA\tNA\tNA\tNA\tNA"); }
      else if ( args.bFreeMixOnly ) { ifprintf(selfRGF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA",vbid.mixOut.fMixs[rg+1],vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1]); }
      else if ( args.bFreeRefBiasOnly ) { ifprintf(selfRGF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1],vbid.mixOut.refHets[rg+1],vbid.mixOut.refAlts[rg+1]); }
      else if ( args.bFreeFull ) { ifprintf(selfRGF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.fMixs[rg+1],vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1],vbid.mixOut.refHets[rg+1],vbid.mixOut.refAlts[rg+1]); }
      else { error("Invalid option in handling bFree"); }
      
      if ( args.bChipNone || bestInds[0] < 0 ) { ifprintf(selfRGF,"\tNA\tNA\tNA\tNA\tNA\tNA\tNA\tNA"); }
      else if ( args.bChipMixOnly ) { ifprintf(selfRGF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA\t%.3lf\t%.4lf\t%.4lf",vbid.selfOut.fMixs[rg+1], vbid.selfOut.llk1s[rg+1], vbid.selfOut.llk0s[rg+1], (double)vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+1], (double)vbid.selfOut.numReads[(rg+1)*4+2]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+2], (double)vbid.selfOut.numReads[(rg+1)*4+3]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+3]); }
      else if ( args.bChipMixOnly ) { ifprintf(selfRGF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf",vbid.selfOut.llk1s[rg+1], vbid.selfOut.llk0s[rg+1], vbid.selfOut.refHets[rg+1], vbid.selfOut.refAlts[rg+1], (double)vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+1], (double)vbid.selfOut.numReads[(rg+1)*4+2]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4]/vbid.selfOut.numGenos[(rg+1)*4+2], (double)vbid.selfOut.numReads[(rg+1)*4+3]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+3]); }
      else if ( args.bChipFull ) { ifprintf(selfRGF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf", vbid.selfOut.fMixs[rg+1], vbid.selfOut.llk1s[rg+1], vbid.selfOut.llk0s[rg+1], vbid.selfOut.refHets[rg+1], vbid.selfOut.refAlts[rg+1], (double)vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+1], (double)vbid.selfOut.numReads[(rg+1)*4+2]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+2], (double)vbid.selfOut.numReads[(rg+1)*4+3]*vbid.selfOut.numGenos[(rg+1)*4+1]/vbid.selfOut.numReads[(rg+1)*4+1]/vbid.selfOut.numGenos[(rg+1)*4+3]); }
      else { error("Invalid option in handling bChip"); }
      ifprintf(selfRGF,"\n");
    }
    ifclose(selfRGF);
  }

  if ( bestRGF != NULL ) {
    for(int i=0; i < nheaders; ++i) { ifprintf(bestRGF,"%s%s",i>0 ? "\t" : "",headers[i]); }
    ifprintf(bestRGF,"\n");
    for(int rg=0; rg < vbid.nRGs; ++rg) {
      ifprintf(bestRGF,"%s\t%s",vbid.pPile->sBamSMID.c_str(),vbid.pPile->vsRGIDs[rg].c_str());
      ifprintf(bestRGF,"\t%s",bestInds[rg] >= 0 ? vbid.pGenotypes->indids[bestInds[rg]].c_str() : "NA");
      ifprintf(bestRGF,"\t%d\t%d\t%.2lf",vbid.nMarkers,vbid.mixOut.numReads[(rg+1)*4],(double)vbid.mixOut.numReads[(rg+1)*4]/(double)vbid.mixOut.numGenos[(rg+1)*4]);
      if ( args.bFreeNone ) { ifprintf(bestRGF,"\tNA\tNA\tNA\tNA\tNA"); }
      else if ( args.bFreeMixOnly ) { ifprintf(bestRGF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA",vbid.mixOut.fMixs[rg+1],vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1]); }
      else if ( args.bFreeRefBiasOnly ) { ifprintf(bestRGF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1],vbid.mixOut.refHets[rg+1],vbid.mixOut.refAlts[rg+1]); }
      else if ( args.bFreeFull ) { ifprintf(bestRGF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf",vbid.mixOut.fMixs[rg+1],vbid.mixOut.llk1s[rg+1],vbid.mixOut.llk0s[rg+1],vbid.mixOut.refHets[rg+1],vbid.mixOut.refAlts[rg+1]); }
      else { error("Invalid option in handling bFree"); }
      
      if ( args.bChipNone || bestInds[0] < 0 ) { ifprintf(bestRGF,"\tNA\tNA\tNA\tNA\tNA\tNA\tNA\tNA"); }
      else if ( args.bChipMixOnly ) { ifprintf(bestRGF,"\t%.5lf\t%.2lf\t%.2lf\tNA\tNA\t%.3lf\t%.4lf\t%.4lf",vbid.bestOut.fMixs[rg+1], vbid.bestOut.llk1s[rg+1], vbid.bestOut.llk0s[rg+1], (double)vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+1], (double)vbid.bestOut.numReads[(rg+1)*4+2]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+2], (double)vbid.bestOut.numReads[(rg+1)*4+3]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+3]); }
      else if ( args.bChipMixOnly ) { ifprintf(bestRGF,"\tNA\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf",vbid.bestOut.llk1s[rg+1], vbid.bestOut.llk0s[rg+1], vbid.bestOut.refHets[rg+1], vbid.bestOut.refAlts[rg+1], (double)vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+1], (double)vbid.bestOut.numReads[(rg+1)*4+2]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4]/vbid.bestOut.numGenos[(rg+1)*4+2], (double)vbid.bestOut.numReads[(rg+1)*4+3]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+3]); }
      else if ( args.bChipFull ) { ifprintf(bestRGF,"\t%.5lf\t%.2lf\t%.2lf\t%.5lf\t%.5lf\t%.3lf\t%.4lf\t%.4lf", vbid.bestOut.fMixs[rg+1], vbid.bestOut.llk1s[rg+1], vbid.bestOut.llk0s[rg+1], vbid.bestOut.refHets[rg+1], vbid.bestOut.refAlts[rg+1], (double)vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+1], (double)vbid.bestOut.numReads[(rg+1)*4+2]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+2], (double)vbid.bestOut.numReads[(rg+1)*4+3]*vbid.bestOut.numGenos[(rg+1)*4+1]/vbid.bestOut.numReads[(rg+1)*4+1]/vbid.bestOut.numGenos[(rg+1)*4+3]); }
      else { error("Invalid option in handling bChip"); }
      ifprintf(bestRGF,"\n");
    }
    ifclose(bestRGF);
  }
  
  time(&t);
  Logger::gLogger->writeLog("Analysis finished on %s",ctime(&t));

  return 0;
}