Exemplo n.º 1
0
// Test that memory pressure listening is restarted after recovery.
TEST_F(MemoryPressureMesosTest, ROOT_CGROUPS_SlaveRecovery)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  // Enable checkpointing for the framework.
  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true);

  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> starting;
  Future<TaskStatus> running;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&starting))
    .WillOnce(FutureArg<1>(&running))
    .WillRepeatedly(Return()); // Ignore subsequent updates.

  Future<Nothing> runningAck =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  Future<Nothing> startingAck =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(starting);
  EXPECT_EQ(task.task_id(), starting->task_id());
  EXPECT_EQ(TASK_STARTING, starting->state());

  AWAIT_READY_FOR(startingAck, Seconds(120));

  AWAIT_READY(running);
  EXPECT_EQ(task.task_id(), running->task_id());
  EXPECT_EQ(TASK_RUNNING, running->state());

  // Wait for the ACK to be checkpointed.
  AWAIT_READY_FOR(runningAck, Seconds(120));

  // We restart the slave to let it recover.
  slave.get()->terminate();

  // Set up so we can wait until the new slave updates the container's
  // resources (this occurs after the executor has reregistered).
  Future<Nothing> update =
    FUTURE_DISPATCH(_, &MesosContainerizerProcess::update);

  // Use the same flags.
  _containerizer = MesosContainerizer::create(flags, true, &fetcher);
  ASSERT_SOME(_containerizer);
  containerizer.reset(_containerizer.get());

  Future<SlaveReregisteredMessage> reregistered =
      FUTURE_PROTOBUF(SlaveReregisteredMessage(), master.get()->pid, _);

  slave = StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  AWAIT_READY(reregistered);

  // Wait until the containerizer is updated.
  AWAIT_READY(update);

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    if (usage->mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Pause the clock to ensure that the reaper doesn't reap the exited
  // command executor and inform the containerizer/slave.
  Clock::pause();
  Clock::settle();

  Future<TaskStatus> killed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&killed));

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  AWAIT_READY_FOR(killed, Seconds(120));
  EXPECT_EQ(task.task_id(), killed->task_id());
  EXPECT_EQ(TASK_KILLED, killed->state());

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage->mem_low_pressure_counter(),
            usage->mem_medium_pressure_counter());
  EXPECT_GE(usage->mem_medium_pressure_counter(),
            usage->mem_critical_pressure_counter());

  Clock::resume();

  driver.stop();
  driver.join();
}
// This test verifies that the slave reports pending tasks when
// re-registering, otherwise the master will report them as being
// lost.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterPendingTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  // No TASK_LOST updates should occur!
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .Times(0);

  // We drop the _runTask dispatch to ensure the task remains
  // pending in the slave.
  Future<Nothing> _runTask = DROP_DISPATCH(slave.get()->pid, &Slave::_runTask);

  TaskInfo task1;
  task1.set_name("test task");
  task1.mutable_task_id()->set_value("1");
  task1.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task1.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task1.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  driver.launchTasks(offers.get()[0].id(), {task1});

  AWAIT_READY(_runTask);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  Clock::pause();
  Clock::settle();
  Clock::resume();

  driver.stop();
  driver.join();
}
// This test verifies that when the slave re-registers, we correctly
// send the information about actively running frameworks.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterFrameworks)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  EXPECT_CALL(exec, registered(_, _, _, _));

  // Send an update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<Nothing> _statusUpdate = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore retried update due to update framework.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(_statusUpdate);

  Future<ReregisterSlaveMessage> reregisterSlave =
    FUTURE_PROTOBUF(ReregisterSlaveMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  // Expect to receive the 'ReregisterSlaveMessage' containing the
  // active frameworks.
  AWAIT_READY(reregisterSlave);

  EXPECT_EQ(1u, reregisterSlave.get().frameworks().size());

  Clock::pause();
  Clock::settle();

  AWAIT_READY(status);

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
Exemplo n.º 4
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to send exited executor messages,
// we send a ShutdownMessage to the slave. Why? Because during a
// network partition, the master will remove a partitioned slave, thus
// sending its tasks to LOST. At this point, when the partition is
// removed, the slave may attempt to send exited executor messages if
// it was unaware that the master removed it. We've already
// notified frameworks that the tasks under the executors were LOST,
// so we have to have the slave shut down.
TEST_F(PartitionTest, PartitionedSlaveExitedExecutor)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);
  DROP_MESSAGES(Eq("PONG"), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Try<PID<Slave> > slave = StartSlave(&containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));\

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This allows us to have the slave send an
  // ExitedExecutorMessage.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop all the status updates from the slave, so that we can
  // ensure the ExitedExecutorMessage is what triggers the slave
  // shutdown.
  DROP_PROTOBUFS(StatusUpdateMessage(), _, master.get());

  driver.launchTasks(offers.get()[0].id(), tasks);

  // Drop the first shutdown message from the master (simulated
  // partition) and allow the second shutdown message to pass when
  // triggered by the ExitedExecutorMessage.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get());

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  uint32_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == master::MAX_SLAVE_PING_TIMEOUTS) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(master::SLAVE_PING_TIMEOUT);
    Clock::settle();
  }

  Clock::advance(master::SLAVE_PING_TIMEOUT);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get());

  // Induce an ExitedExecutorMessage from the slave.
  containerizer.destroy(
      frameworkId.get(), DEFAULT_EXECUTOR_INFO.executor_id());

  // Upon receiving the message, the master will shutdown the slave.
  AWAIT_READY(shutdownMessage);

  Clock::resume();

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we drop the
// RunTaskMessage so the slave should send TASK_LOST.
TEST_F(MasterSlaveReconciliationTest, ReconcileLostTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);

  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  // We now launch a task and drop the corresponding RunTaskMessage on
  // the slave, to ensure that only the master knows about this task.
  Future<RunTaskMessage> runTaskMessage =
    DROP_PROTOBUF(RunTaskMessage(), _, _);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(runTaskMessage);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // Make sure the slave generated the TASK_LOST.
  AWAIT_READY(statusUpdateMessage);

  AWAIT_READY(status);

  ASSERT_EQ(task.task_id(), status.get().task_id());
  ASSERT_EQ(TASK_LOST, status.get().state());

  // Before we obtain the metrics, ensure that the master has finished
  // processing the status update so metrics have been updated.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Check metrics.
  JSON::Object stats = Metrics();
  EXPECT_EQ(1u, stats.values.count("master/tasks_lost"));
  EXPECT_EQ(1u, stats.values["master/tasks_lost"]);
  EXPECT_EQ(
      1u,
      stats.values.count(
          "master/task_lost/source_slave/reason_reconciliation"));
  EXPECT_EQ(
      1u,
      stats.values["master/task_lost/source_slave/reason_reconciliation"]);

  driver.stop();
  driver.join();
}
// This test ensures that when explicit acknowledgements are enabled,
// acknowledgements for master-generated updates are dropped by the
// driver. We test this by creating an invalid task that uses no
// resources.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgementsMasterGeneratedUpdate)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get());
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      false,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  // Ensure no status update acknowledgements are sent to the master.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get()->pid);

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers->size());

  // Launch a task using no resources.
  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_ERROR, status->state());
  ASSERT_EQ(TaskStatus::SOURCE_MASTER, status->source());
  ASSERT_EQ(TaskStatus::REASON_TASK_INVALID, status->reason());

  // Now send the acknowledgement.
  driver.acknowledgeStatusUpdate(status.get());

  // Settle the clock to ensure driver processes the acknowledgement,
  // which should get dropped due to having come from the master.
  Clock::pause();
  Clock::settle();

  driver.stop();
  driver.join();
}
Exemplo n.º 7
0
bool InteractiveMarker::processMessage( const visualization_msgs::InteractiveMarker& message )
{
  boost::recursive_mutex::scoped_lock lock(mutex_);

  // copy values
  name_ = message.name;
  description_ = message.description;

  if ( message.controls.size() == 0 )
  {
    Q_EMIT statusUpdate( StatusProperty::Ok, name_, "Marker empty.");
    return false;
  }

  scale_ = message.scale;

  reference_frame_ = message.header.frame_id;
  reference_time_ = message.header.stamp;
  frame_locked_ = (message.header.stamp == ros::Time(0));

  position_ = Ogre::Vector3(
      message.pose.position.x,
      message.pose.position.y,
      message.pose.position.z );

  orientation_ = Ogre::Quaternion(
      message.pose.orientation.w,
      message.pose.orientation.x,
      message.pose.orientation.y,
      message.pose.orientation.z );

  pose_changed_ =false;
  time_since_last_feedback_ = 0;

  // setup axes
  axes_->setPosition(position_);
  axes_->setOrientation(orientation_);
  axes_->set( scale_, scale_*0.05 );

  has_menu_ = message.menu_entries.size() > 0;

  updateReferencePose();

  // Instead of just erasing all the old controls and making new ones
  // here, we want to preserve as much as possible from the old ones,
  // so that we don't lose the drag action in progress if a control is
  // being dragged when this update comes in.
  //
  // Controls are stored in a map from control name to control
  // pointer, so we loop over the incoming control messages looking
  // for names we already know about.  When we find them, we just call
  // the control's processMessage() function to update it.  When we
  // don't find them, we create a new Control.  We also keep track of
  // which control names we used to have but which are not present in
  // the incoming message, which we use to delete the unwanted
  // controls.

  // Make set of old-names called old-names-to-delete.
  std::set<std::string> old_names_to_delete;
  M_ControlPtr::const_iterator ci;
  for( ci = controls_.begin(); ci != controls_.end(); ci++ )
  {
    old_names_to_delete.insert( (*ci).first );
  }

  // Loop over new array:
  for ( unsigned i = 0; i < message.controls.size(); i++ )
  {
    const visualization_msgs::InteractiveMarkerControl& control_message = message.controls[ i ];
    M_ControlPtr::iterator search_iter = controls_.find( control_message.name );
    InteractiveMarkerControlPtr control;

    // If message->name in map,
    if( search_iter != controls_.end() )
    {    
      // Use existing control
      control = (*search_iter).second;
    }
    else
    {
      // Else make new control
      control = boost::make_shared<InteractiveMarkerControl>( context_, reference_node_, this );
      controls_[ control_message.name ] = control;
    }
    // Update the control with the message data
    control->processMessage( control_message );
    control->setShowVisualAids( show_visual_aids_ );

    // Remove message->name from old-names-to-delete
    old_names_to_delete.erase( control_message.name );
  }

  // Loop over old-names-to-delete
  std::set<std::string>::iterator si;
  for( si = old_names_to_delete.begin(); si != old_names_to_delete.end(); si++ )
  {
    // Remove Control object from map for name-to-delete
    controls_.erase( *si );
  }

  description_control_ =
    boost::make_shared<InteractiveMarkerControl>( context_,
                                                  reference_node_, this );

  description_control_->processMessage( interactive_markers::makeTitle( message ));

  //create menu
  menu_entries_.clear();
  menu_.reset();
  if ( has_menu_ )
  {
    menu_.reset( new QMenu() );
    top_level_menu_ids_.clear();

    // Put all menu entries into the menu_entries_ map and create the
    // tree of menu entry ids.
    for ( unsigned m=0; m < message.menu_entries.size(); m++ )
    {
      const visualization_msgs::MenuEntry& entry = message.menu_entries[ m ];
      MenuNode node;
      node.entry = entry;
      menu_entries_[ entry.id ] = node;
      if( entry.parent_id == 0 )
      {
        top_level_menu_ids_.push_back( entry.id );
      }
      else
      {
        // Find the parent node and add this entry to the parent's list of children.
        std::map< uint32_t, MenuNode >::iterator parent_it = menu_entries_.find( entry.parent_id );
        if( parent_it == menu_entries_.end() ) {
          ROS_ERROR("interactive marker menu entry %u found before its parent id %u.  Ignoring.", entry.id, entry.parent_id);
        }
        else
        {
          (*parent_it).second.child_ids.push_back( entry.id );
        }
      }
    }
    populateMenu( menu_.get(), top_level_menu_ids_ );
  }

  if ( frame_locked_ )
  {
    std::ostringstream s;
    s << "Locked to frame " << reference_frame_;
    Q_EMIT statusUpdate( StatusProperty::Ok, name_, s.str() );
  }
  else
  {
    Q_EMIT statusUpdate( StatusProperty::Ok, name_, "Position is fixed." );
  }
  return true;
}
Exemplo n.º 8
0
TEST_F(MemoryPressureMesosTest, CGROUPS_ROOT_Statistics)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();

  // We only care about memory cgroup for this test.
  flags.isolation = "cgroups/mem";
  flags.agent_subsystems = None();

  Fetcher fetcher;

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);
  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());      // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  Offer offer = offers.get()[0];

  // Run a task that triggers memory pressure event. We request 1G
  // disk because we are going to write a 512 MB file repeatedly.
  TaskInfo task = createTask(
      offer.slave_id(),
      Resources::parse("cpus:1;mem:256;disk:1024").get(),
      "while true; do dd count=512 bs=1M if=/dev/zero of=./temp; done");

  Future<TaskStatus> running;
  Future<TaskStatus> killed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&running))
    .WillOnce(FutureArg<1>(&killed))
    .WillRepeatedly(Return());       // Ignore subsequent updates.

  driver.launchTasks(offer.id(), {task});

  AWAIT_READY(running);
  EXPECT_EQ(task.task_id(), running.get().task_id());
  EXPECT_EQ(TASK_RUNNING, running.get().state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers.get().size());

  ContainerID containerId = *(containers.get().begin());

  // Wait a while for some memory pressure events to occur.
  Duration waited = Duration::zero();
  do {
    Future<ResourceStatistics> usage = containerizer->usage(containerId);
    AWAIT_READY(usage);

    if (usage.get().mem_low_pressure_counter() > 0) {
      // We will check the correctness of the memory pressure counters
      // later, because the memory-hammering task is still active
      // and potentially incrementing these counters.
      break;
    }

    os::sleep(Milliseconds(100));
    waited += Milliseconds(100);
  } while (waited < Seconds(5));

  EXPECT_LE(waited, Seconds(5));

  // Pause the clock to ensure that the reaper doesn't reap the exited
  // command executor and inform the containerizer/slave.
  Clock::pause();
  Clock::settle();

  // Stop the memory-hammering task.
  driver.killTask(task.task_id());

  AWAIT_READY(killed);
  EXPECT_EQ(task.task_id(), killed->task_id());
  EXPECT_EQ(TASK_KILLED, killed->state());

  // Now check the correctness of the memory pressure counters.
  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  EXPECT_GE(usage.get().mem_low_pressure_counter(),
            usage.get().mem_medium_pressure_counter());
  EXPECT_GE(usage.get().mem_medium_pressure_counter(),
            usage.get().mem_critical_pressure_counter());

  Clock::resume();

  driver.stop();
  driver.join();
}
Exemplo n.º 9
0
TEST_F(StatusUpdateManagerTest, RetryStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  slave::Flags flags = CreateSlaveFlags();

  Try<PID<Slave> > slave = StartSlave(&exec, flags);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _))
    .Times(1);

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), master.get(), _);

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 10
0
bool InitDriveThread::method_resizePartitions()
{
    int newStartOfRescuePartition = getFileContents("/sys/class/block/mmcblk0p1/start").trimmed().toInt();
    int newSizeOfRescuePartition  = sizeofBootFilesInKB()*1.024/1000 + 100;

    if (!umountSystemPartition())
    {
        emit error(tr("Error unmounting system partition."));
        return false;
    }

    if (!QFile::exists("/dev/mmcblk0p1"))
    {
        // SD card does not have a MBR.

        // Warn user that their SD card does not have an MBR and ask
        // if they would like us to create one for them
        QMessageBox::StandardButton answer;
        emit query(tr("Would you like NOOBS to create one for you?\nWARNING: This will erase all data on your SD card"),
                   tr("Error: No MBR present on SD Card"),
                   &answer);

        if(answer == QMessageBox::Yes)
        {
            emit statusUpdate(tr("Zeroing partition table"));
            if (!zeroMbr())
            {
                emit error(tr("Error zero'ing MBR/GPT. SD card may be broken or advertising wrong capacity."));
                return false;
            }

            // Create MBR containing single FAT partition
            emit statusUpdate(tr("Writing new MBR"));
            QProcess proc;
            proc.setProcessChannelMode(proc.MergedChannels);
            proc.start("/usr/sbin/parted /dev/mmcblk0 --script -- mktable msdos mkpartfs primary fat32 8192s -1");
            proc.waitForFinished(-1);
            if (proc.exitCode() != 0)
            {
                // Warn user if we failed to create an MBR on their card
                emit error(tr("Error creating MBR")+"\n"+proc.readAll());
                return false;
            }
            qDebug() << "Created missing MBR on SD card. parted output:" << proc.readAll();

            // Advise user that their SD card has now been formatted
            // suitably for installing NOOBS and that they will have to
            // re-copy the files before rebooting
            emit error(tr("SD card has now been formatted ready for NOOBS installation. Please re-copy the NOOBS files onto the card and reboot"));
            return false;
        }
        else
        {
            emit error(tr("SD card has not been formatted correctly. Please reformat using the SD Association Formatting Tool and try again."));
            return false;
        }

    }

    emit statusUpdate(tr("Removing partitions 2,3,4"));

    QFile f("/dev/mmcblk0");
    f.open(f.ReadWrite);
    // Seek to partition entry 2
    f.seek(462);
    // Zero out partition 2,3,4 to prevent parted complaining about invalid constraints
    f.write(QByteArray(16*3, '\0'));
    f.flush();
    // Tell Linux to re-read the partition table
    ioctl(f.handle(), BLKRRPART);
    f.close();
    QThread::msleep(500);

    emit statusUpdate(tr("Resizing FAT partition"));

    /* Relocating the start of the FAT partition is a write intensive operation
     * only move it when it is not aligned on a MiB boundary already */
    if (newStartOfRescuePartition < 2048 || newStartOfRescuePartition % 2048 != 0)
    {
        newStartOfRescuePartition = PARTITION_ALIGNMENT; /* 4 MiB */
    }

    QString cmd = "/usr/sbin/parted --script /dev/mmcblk0 resize 1 "+QString::number(newStartOfRescuePartition)+"s "+QString::number(newSizeOfRescuePartition)+"M";
    qDebug() << "Executing" << cmd;
    QProcess p;
    QProcessEnvironment env = QProcessEnvironment::systemEnvironment();
    /* Suppress parted's big fat warning about its file system manipulation code not being robust.
       It distracts from any real error messages that may follow it. */
    env.insert("PARTED_SUPPRESS_FILE_SYSTEM_MANIPULATION_WARNING", "1");
    p.setProcessEnvironment(env);
    p.setProcessChannelMode(p.MergedChannels);
    p.start(cmd);
    p.closeWriteChannel();
    p.waitForFinished(-1);

    if (p.exitCode() != 0)
    {
        emit error(tr("Error resizing existing FAT partition")+"\n"+p.readAll());
        return false;
    }
    qDebug() << "parted done, output:" << p.readAll();
    QThread::msleep(500);

    emit statusUpdate(tr("Creating extended partition"));

    QByteArray partitionTable;
    int startOfOurPartition = getFileContents("/sys/class/block/mmcblk0p1/start").trimmed().toInt();
    int sizeOfOurPartition  = getFileContents("/sys/class/block/mmcblk0p1/size").trimmed().toInt();
    int startOfExtended = startOfOurPartition+sizeOfOurPartition;

    // Align start of settings partition on 4 MiB boundary
    int startOfSettings = startOfExtended + PARTITION_GAP;
    if (startOfSettings % PARTITION_ALIGNMENT != 0)
         startOfSettings += PARTITION_ALIGNMENT-(startOfSettings % PARTITION_ALIGNMENT);

    // Primary partitions
    partitionTable  = QByteArray::number(startOfOurPartition)+","+QByteArray::number(sizeOfOurPartition)+",0E\n"; /* FAT partition */
    partitionTable += QByteArray::number(startOfExtended)+",,X\n"; /* Extended partition with all remaining space */
    partitionTable += "0,0\n";
    partitionTable += "0,0\n";
    // Logical partitions
    partitionTable += QByteArray::number(startOfSettings)+","+QByteArray::number(SETTINGS_PARTITION_SIZE)+",L\n"; /* Settings partition */
    qDebug() << "Writing partition table" << partitionTable;

    /* Let sfdisk write a proper partition table */
    cmd = QString("/sbin/sfdisk -uS /dev/mmcblk0");
    QProcess proc;
    proc.setProcessChannelMode(proc.MergedChannels);
    proc.start(cmd);
    proc.write(partitionTable);
    proc.closeWriteChannel();
    proc.waitForFinished(-1);
    if (proc.exitCode() != 0)
    {
        emit error(tr("Error creating extended partition")+"\n"+proc.readAll());
        return false;
    }
    qDebug() << "sfdisk done, output:" << proc.readAll();
    QThread::msleep(500);

    /* For reasons unknown Linux sometimes
     * only finds /dev/mmcblk0p2 and /dev/mmcblk0p1 goes missing */
    if (!QFile::exists("/dev/mmcblk0p1"))
    {
        /* Probe again */
        QProcess::execute("/usr/sbin/partprobe");
        QThread::msleep(1500);
    }

    QProcess::execute("/sbin/mlabel p:RECOVERY");

    return true;
}
Exemplo n.º 11
0
void InitDriveThread::run()
{
    QDir dir;

    emit statusUpdate("Waiting for SD card to be ready");
    while (!QFile::exists("/dev/mmcblk0"))
    {
        QThread::usleep(100);
    }

    emit statusUpdate(tr("Mounting FAT partition"));
    mountSystemPartition();

    // Try to resize existing partitions
    if (!method_resizePartitions())
        return;

    emit statusUpdate(tr("Formatting settings partition"));
    if (!formatSettingsPartition())
    {
        emit error(tr("Error formatting settings partition"));
        return;
    }

    emit statusUpdate(tr("Mounting FAT partition"));
    if (!mountSystemPartition())
    {
        emit error(tr("Error mounting system partition."));
        return;
    }

    dir.mkdir("/mnt/os");
    emit statusUpdate(tr("Editing cmdline.txt"));

    QString cmdlinefilename = "/mnt/recovery.cmdline";
    if (!QFile::exists(cmdlinefilename))
        cmdlinefilename = "/mnt/cmdline.txt";

    /* Remove "runinstaller" from cmdline.txt */
    QFile f(cmdlinefilename);
    if (!f.open(f.ReadOnly))
    {
        emit error(tr("Error opening %1").arg(cmdlinefilename));
        return;
    }
    QByteArray line = f.readAll().trimmed();
    line = line.replace("runinstaller", "").trimmed();
    f.close();
    f.open(f.WriteOnly);
    f.write(line);
    f.close();

#ifdef RISCOS_BLOB_FILENAME
    if (QFile::exists(RISCOS_BLOB_FILENAME))
    {
        emit statusUpdate(tr("Writing RiscOS blob"));
        if (!writeRiscOSblob())
        {
            emit error(tr("Error writing RiscOS blob"));
            return;
        }
    }
#endif

    /* Finish writing */
    emit statusUpdate(tr("Unmounting boot partition"));
    umountSystemPartition();

    emit statusUpdate(tr("Finish writing to disk (sync)"));
    sync();

    /* Perform a quick test to verify our changes were written
     * Drop page cache to make sure we are reading from card, and not from cache */
    QFile dc("/proc/sys/vm/drop_caches");
    dc.open(f.WriteOnly);
    dc.write("3\n");
    dc.close();

    emit statusUpdate(tr("Mounting boot partition again"));
    mountSystemPartition();

    /* Verify that cmdline.txt was written correctly */
    f.open(f.ReadOnly);
    QByteArray cmdlineread = f.readAll();
    f.close();
    umountSystemPartition();

    if (cmdlineread != line)
    {
        emit error(tr("SD card broken (writes do not persist)"));
        return;
    }

    emit completed();
}
// This test checks the behavior of passed invalid limits.
TEST_F(PosixRLimitsIsolatorTest, InvalidLimits)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
      .WillOnce(FutureArg<1>(&offers))
      .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers->size());

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "true");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Set impossible limit soft > hard.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* rlimit = rlimitInfo.add_rlimits();
  rlimit->set_type(RLimitInfo::RLimit::RLMT_CPU);
  rlimit->set_soft(100);
  rlimit->set_hard(1);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> taskStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
      .WillOnce(FutureArg<1>(&taskStatus));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(taskStatus);
  EXPECT_EQ(task.task_id(), taskStatus->task_id());
  EXPECT_EQ(TASK_FAILED, taskStatus->state());
  EXPECT_EQ(TaskStatus::REASON_EXECUTOR_TERMINATED, taskStatus->reason());

  driver.stop();
  driver.join();
}
// This test confirms that if a task exceeds configured resource
// limits it is forcibly terminated.
TEST_F(PosixRLimitsIsolatorTest, TaskExceedingLimit)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
      .WillOnce(FutureArg<1>(&offers))
      .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers->size());

  // The task attempts to use an infinite amount of CPU time.
  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "while true; do true; done");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Limit the process to use maximally 1 second of CPU time.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* cpuLimit = rlimitInfo.add_rlimits();
  cpuLimit->set_type(RLimitInfo::RLimit::RLMT_CPU);
  cpuLimit->set_soft(1);
  cpuLimit->set_hard(1);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFailed;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFailed));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFailed);
  EXPECT_EQ(task.task_id(), statusFailed->task_id());
  EXPECT_EQ(TASK_FAILED, statusFailed->state());

  driver.stop();
  driver.join();
}
// This test confirms that setting no values for the soft and hard
// limits implies an unlimited resource.
TEST_F(PosixRLimitsIsolatorTest, UnsetLimits) {
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = "posix/rlimits";

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), flags);
  ASSERT_SOME(slave);

  MockScheduler sched;

  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(_, _, _));

  Future<vector<Offer>> offers;

  EXPECT_CALL(sched, resourceOffers(_, _))
      .WillOnce(FutureArg<1>(&offers))
      .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers->size());

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      offers.get()[0].resources(),
      "exit `ulimit -c | grep -q unlimited`");

  // Force usage of C locale as we interpret a potentially translated
  // string in the task's command.
  mesos::Environment::Variable* locale =
      task.mutable_command()->mutable_environment()->add_variables();
  locale->set_name("LC_ALL");
  locale->set_value("C");

  ContainerInfo* container = task.mutable_container();
  container->set_type(ContainerInfo::MESOS);

  // Setting rlimit for core without soft or hard limit signifies
  // unlimited range.
  RLimitInfo rlimitInfo;
  RLimitInfo::RLimit* rlimit = rlimitInfo.add_rlimits();
  rlimit->set_type(RLimitInfo::RLimit::RLMT_CORE);

  container->mutable_rlimit_info()->CopyFrom(rlimitInfo);

  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinal;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
      .WillOnce(FutureArg<1>(&statusRunning))
      .WillOnce(FutureArg<1>(&statusFinal));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(task.task_id(), statusRunning->task_id());
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  AWAIT_READY(statusFinal);
  EXPECT_EQ(task.task_id(), statusFinal->task_id());
  EXPECT_EQ(TASK_FINISHED, statusFinal->state());

  driver.stop();
  driver.join();
}
// This test verifies that the environment secrets are resolved when launching a
// task.
TEST_F(EnvironmentSecretIsolatorTest, ResolveSecret)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  mesos::internal::slave::Flags flags = CreateSlaveFlags();

  Fetcher fetcher(flags);
  Try<SecretResolver*> secretResolver = SecretResolver::create();
  EXPECT_SOME(secretResolver);

  Try<MesosContainerizer*> containerizer =
    MesosContainerizer::create(flags, false, &fetcher, secretResolver.get());
  EXPECT_SOME(containerizer);

  Owned<MasterDetector> detector = master.get()->createDetector();
  Try<Owned<cluster::Slave>> slave =
    StartSlave(detector.get(), containerizer.get());
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<std::vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_FALSE(offers->empty());

  const string commandString = strings::format(
      "env; test \"$%s\" = \"%s\"",
      SECRET_ENV_NAME,
      SECRET_VALUE).get();

  CommandInfo command;
  command.set_value(commandString);

  // Request a secret.
  // TODO(kapil): Update createEnvironment() to support secrets.
  mesos::Environment::Variable *env =
    command.mutable_environment()->add_variables();
  env->set_name(SECRET_ENV_NAME);
  env->set_type(mesos::Environment::Variable::SECRET);

  mesos::Secret* secret = env->mutable_secret();
  secret->set_type(Secret::VALUE);
  secret->mutable_value()->set_data(SECRET_VALUE);

  TaskInfo task = createTask(
      offers.get()[0].slave_id(),
      Resources::parse("cpus:0.1;mem:32").get(),
      command);

  // NOTE: Successful tasks will output two status updates.
  Future<TaskStatus> statusRunning;
  Future<TaskStatus> statusFinished;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning))
    .WillOnce(FutureArg<1>(&statusFinished));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning.get().state());
  AWAIT_READY(statusFinished);
  EXPECT_EQ(TASK_FINISHED, statusFinished.get().state());

  driver.stop();
  driver.join();
}
Exemplo n.º 16
0
// This test verifies that status update manager ignores
// duplicate ACK for an earlier update when it is waiting
// for an ACK for a later update. This could happen when the
// duplicate ACK is for a retried update.
TEST_F(StatusUpdateManagerTest, IgnoreDuplicateStatusUpdateAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
      .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Drop the first update, so that status update manager
  // resends the update.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), master.get(), _);

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);
  StatusUpdate update = statusUpdateMessage.get().update();

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  // This is the ACK for the retried update.
  Future<Nothing> ack =
    FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(ack);

  // Now send TASK_FINISHED update so that the status update manager
  // is waiting for its ACK, which it never gets because we drop the
  // update.
  DROP_PROTOBUFS(StatusUpdateMessage(), master.get(), _);

  Future<Nothing> update2 = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  TaskStatus status2 = status.get();
  status2.set_state(TASK_FINISHED);

  execDriver->sendStatusUpdate(status2);

  AWAIT_READY(update2);

  // This is to catch the duplicate ack for TASK_RUNNING.
  Future<Nothing> duplicateAck =
      FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  // Now send a duplicate ACK for the TASK_RUNNING update.
  process::dispatch(
      slave.get(),
      &Slave::statusUpdateAcknowledgement,
      master.get(),
      update.slave_id(),
      frameworkId,
      update.status().task_id(),
      update.uuid());

  AWAIT_READY(duplicateAck);

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 17
0
// Ensures that when a scheduler enables explicit acknowledgements
// on the driver, there are no implicit acknowledgements sent, and
// the call to 'acknowledgeStatusUpdate' sends the ack to the master.
TEST_F(MesosSchedulerDriverTest, ExplicitAcknowledgements)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(detector.get(), &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      false,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 16, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  // Ensure no status update acknowledgements are sent from the driver
  // to the master until the explicit acknowledgement is sent.
  EXPECT_NO_FUTURE_CALLS(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _ ,
      master.get()->pid);

  EXPECT_CALL(exec, registered(_, _, _, _));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.start();

  AWAIT_READY(status);

  // Settle the clock to ensure driver finishes processing the status
  // update, we want to ensure that no implicit acknowledgement gets
  // sent.
  Clock::pause();
  Clock::settle();

  // Now send the acknowledgement.
  Future<mesos::scheduler::Call> acknowledgement = FUTURE_CALL(
      mesos::scheduler::Call(),
      mesos::scheduler::Call::ACKNOWLEDGE,
      _,
      master.get()->pid);

  driver.acknowledgeStatusUpdate(status.get());

  AWAIT_READY(acknowledgement);

  driver.stop();
  driver.join();
}
Exemplo n.º 18
0
// This test verifies that status update manager ignores
// unexpected ACK for an earlier update when it is waiting
// for an ACK for another update. We do this by dropping ACKs
// for the original update and sending a random ACK to the slave.
TEST_F(StatusUpdateManagerTest, IgnoreUnexpectedStatusUpdateAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
      .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), master.get(), _);

  // Drop the ACKs, so that status update manager
  // retries the update.
  DROP_CALLS(mesos::scheduler::Call(),
             mesos::scheduler::Call::ACKNOWLEDGE,
             _,
             master.get());

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);
  StatusUpdate update = statusUpdateMessage.get().update();

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  Future<Nothing> unexpectedAck =
      FUTURE_DISPATCH(_, &Slave::_statusUpdateAcknowledgement);

  // Now send an ACK with a random UUID.
  process::dispatch(
      slave.get(),
      &Slave::statusUpdateAcknowledgement,
      master.get(),
      update.slave_id(),
      frameworkId,
      update.status().task_id(),
      UUID::random().toBytes());

  AWAIT_READY(unexpectedAck);

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 19
0
TEST_P(MemoryIsolatorTest, ROOT_MemUsage)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  slave::Flags flags = CreateSlaveFlags();
  flags.isolation = GetParam();

  Fetcher fetcher(flags);

  Try<MesosContainerizer*> _containerizer =
    MesosContainerizer::create(flags, true, &fetcher);

  ASSERT_SOME(_containerizer);

  Owned<MesosContainerizer> containerizer(_containerizer.get());

  Owned<MasterDetector> detector = master.get()->createDetector();

  Try<Owned<cluster::Slave>> slave = StartSlave(
      detector.get(),
      containerizer.get());

  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched,
      DEFAULT_FRAMEWORK_INFO,
      master.get()->pid,
      DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer>> offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  ASSERT_FALSE(offers->empty());

  TaskInfo task = createTask(offers.get()[0], "sleep 120");

  Future<TaskStatus> statusRunning;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&statusRunning));

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(statusRunning);
  EXPECT_EQ(TASK_RUNNING, statusRunning->state());

  Future<hashset<ContainerID>> containers = containerizer->containers();
  AWAIT_READY(containers);
  ASSERT_EQ(1u, containers->size());

  ContainerID containerId = *(containers->begin());

  Future<ResourceStatistics> usage = containerizer->usage(containerId);
  AWAIT_READY(usage);

  // TODO(jieyu): Consider using a program that predictably increases
  // RSS so that we can set more meaningful expectation here.
  EXPECT_LT(0u, usage->mem_rss_bytes());

  driver.stop();
  driver.join();
}
Exemplo n.º 20
0
// This test verifies that the slave and status update manager
// properly handle duplicate terminal status updates, when the
// second update is received after the ACK for the first update.
// The proper behavior here is for the status update manager to
// forward the duplicate update to the scheduler.
TEST_F(StatusUpdateManagerTest, DuplicateTerminalUpdateAfterAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  slave::Flags flags = CreateSlaveFlags();

  Try<PID<Slave> > slave = StartSlave(&exec, flags);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Future<Nothing> _statusUpdateAcknowledgement =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(status);

  EXPECT_EQ(TASK_FINISHED, status.get().state());

  AWAIT_READY(_statusUpdateAcknowledgement);

  Future<TaskStatus> update;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&update));

  Future<Nothing> _statusUpdateAcknowledgement2 =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  Clock::pause();

  // Now send a TASK_KILLED update for the same task.
  TaskStatus status2 = status.get();
  status2.set_state(TASK_KILLED);
  execDriver->sendStatusUpdate(status2);

  // Ensure the scheduler receives TASK_KILLED.
  AWAIT_READY(update);
  EXPECT_EQ(TASK_KILLED, update.get().state());

  // Ensure the slave properly handles the ACK.
  // Clock::settle() ensures that the slave successfully
  // executes Slave::_statusUpdateAcknowledgement().
  AWAIT_READY(_statusUpdateAcknowledgement2);
  Clock::settle();

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 21
0
// The purpose of this test is to ensure that when slaves are removed
// from the master, and then attempt to re-register, we deny the
// re-registration by sending a ShutdownMessage to the slave.
// Why? Because during a network partition, the master will remove a
// partitioned slave, thus sending its tasks to LOST. At this point,
// when the partition is removed, the slave will attempt to
// re-register with its running tasks. We've already notified
// frameworks that these tasks were LOST, so we have to have the slave
// slave shut down.
TEST_F(PartitionTest, PartitionedSlaveReregistration)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  // Allow the master to PING the slave, but drop all PONG messages
  // from the slave. Note that we don't match on the master / slave
  // PIDs because it's actually the SlaveObserver Process that sends
  // the pings.
  Future<Message> ping = FUTURE_MESSAGE(Eq("PING"), _, _);
  DROP_MESSAGES(Eq("PONG"), _, _);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  StandaloneMasterDetector detector(master.get());

  Try<PID<Slave> > slave = StartSlave(&exec, &detector);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get(), DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return());

  driver.start();

  AWAIT_READY(offers);
  ASSERT_NE(0u, offers.get().size());

  // Launch a task. This is to ensure the task is killed by the slave,
  // during shutdown.
  TaskID taskId;
  taskId.set_value("1");

  TaskInfo task;
  task.set_name("");
  task.mutable_task_id()->MergeFrom(taskId);
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);
  task.mutable_executor()->mutable_command()->set_value("sleep 60");

  vector<TaskInfo> tasks;
  tasks.push_back(task);

  // Set up the expectations for launching the task.
  EXPECT_CALL(exec, registered(_, _, _, _));
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> runningStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&runningStatus));

  Future<Nothing> statusUpdateAck = FUTURE_DISPATCH(
      slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), tasks);

  AWAIT_READY(runningStatus);
  EXPECT_EQ(TASK_RUNNING, runningStatus.get().state());

  // Wait for the slave to have handled the acknowledgment prior
  // to pausing the clock.
  AWAIT_READY(statusUpdateAck);

  // Drop the first shutdown message from the master (simulated
  // partition), allow the second shutdown message to pass when
  // the slave re-registers.
  Future<ShutdownMessage> shutdownMessage =
    DROP_PROTOBUF(ShutdownMessage(), _, slave.get());

  Future<TaskStatus> lostStatus;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&lostStatus));

  Future<Nothing> slaveLost;
  EXPECT_CALL(sched, slaveLost(&driver, _))
    .WillOnce(FutureSatisfy(&slaveLost));

  Clock::pause();

  // Now, induce a partition of the slave by having the master
  // timeout the slave.
  uint32_t pings = 0;
  while (true) {
    AWAIT_READY(ping);
    pings++;
    if (pings == master::MAX_SLAVE_PING_TIMEOUTS) {
     break;
    }
    ping = FUTURE_MESSAGE(Eq("PING"), _, _);
    Clock::advance(master::SLAVE_PING_TIMEOUT);
    Clock::settle();
  }

  Clock::advance(master::SLAVE_PING_TIMEOUT);
  Clock::settle();

  // The master will have notified the framework of the lost task.
  AWAIT_READY(lostStatus);
  EXPECT_EQ(TASK_LOST, lostStatus.get().state());

  // Wait for the master to attempt to shut down the slave.
  AWAIT_READY(shutdownMessage);

  // The master will notify the framework that the slave was lost.
  AWAIT_READY(slaveLost);

  Clock::resume();

  // We now complete the partition on the slave side as well. This
  // is done by simulating a master loss event which would normally
  // occur during a network partition.
  detector.appoint(None());

  Future<Nothing> shutdown;
  EXPECT_CALL(exec, shutdown(_))
    .WillOnce(FutureSatisfy(&shutdown));

  shutdownMessage = FUTURE_PROTOBUF(ShutdownMessage(), _, slave.get());

  // Have the slave re-register with the master.
  detector.appoint(master.get());

  // Upon re-registration, the master will shutdown the slave.
  // The slave will then shut down the executor.
  AWAIT_READY(shutdownMessage);
  AWAIT_READY(shutdown);

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 22
0
// This test verifies that the slave and status update manager
// properly handle duplicate status updates, when the second
// update with the same UUID is received before the ACK for the
// first update. The proper behavior here is for the status update
// manager to drop the duplicate update.
TEST_F(StatusUpdateManagerTest, DuplicateUpdateBeforeAck)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave> > slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  // Capture the first status update message.
  Future<StatusUpdateMessage> statusUpdateMessage =
    FUTURE_PROTOBUF(StatusUpdateMessage(), _, _);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  // Drop the first ACK from the scheduler to the slave.
  Future<StatusUpdateAcknowledgementMessage> statusUpdateAckMessage =
    DROP_PROTOBUF(StatusUpdateAcknowledgementMessage(), _, slave.get());

  Clock::pause();

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(statusUpdateMessage);

  AWAIT_READY(status);

  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(statusUpdateAckMessage);

  Future<Nothing> __statusUpdate =
    FUTURE_DISPATCH(slave.get(), &Slave::__statusUpdate);

  // Now resend the TASK_RUNNING update.
  process::post(slave.get(), statusUpdateMessage.get());

  // At this point the status update manager has handled
  // the duplicate status update.
  AWAIT_READY(__statusUpdate);

  // After we advance the clock, the status update manager should
  // retry the TASK_RUNNING update and the scheduler should receive
  // and acknowledge it.
  Future<TaskStatus> update;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&update));

  Clock::advance(slave::STATUS_UPDATE_RETRY_INTERVAL_MIN);
  Clock::settle();

  // Ensure the scheduler receives TASK_FINISHED.
  AWAIT_READY(update);
  EXPECT_EQ(TASK_RUNNING, update.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  Clock::resume();

  driver.stop();
  driver.join();

  Shutdown();
}
Exemplo n.º 23
0
Servatrice::Servatrice(QSettings *_settings, QObject *parent)
	: Server(parent), dbMutex(QMutex::Recursive), settings(_settings), uptime(0), shutdownTimer(0)
{
	pingClock = new QTimer(this);
	connect(pingClock, SIGNAL(timeout()), this, SIGNAL(pingClockTimeout()));
	pingClock->start(1000);
	
	ProtocolItem::initializeHash();
	
	serverId = settings->value("server/id", 0).toInt();
	int statusUpdateTime = settings->value("server/statusupdate").toInt();
	statusUpdateClock = new QTimer(this);
	connect(statusUpdateClock, SIGNAL(timeout()), this, SLOT(statusUpdate()));
	if (statusUpdateTime != 0) {
		qDebug() << "Starting status update clock, interval " << statusUpdateTime << " ms";
		statusUpdateClock->start(statusUpdateTime);
	}
	
	threaded = settings->value("server/threaded", false).toInt();
	tcpServer = new Servatrice_TcpServer(this, threaded, this);
	int port = settings->value("server/port", 4747).toInt();
	qDebug() << "Starting server on port" << port;
	if (tcpServer->listen(QHostAddress::Any, port))
		qDebug() << "Server listening.";
	else
		qDebug() << "tcpServer->listen(): Error.";
	
	QString dbType = settings->value("database/type").toString();
	dbPrefix = settings->value("database/prefix").toString();
	if (dbType == "mysql")
		openDatabase();
	
	int size = settings->beginReadArray("rooms");
	for (int i = 0; i < size; ++i) {
	  	settings->setArrayIndex(i);
		
		QStringList gameTypes;
		int size2 = settings->beginReadArray("game_types");
		for (int j = 0; j < size2; ++j) {
			settings->setArrayIndex(j);
			gameTypes.append(settings->value("name").toString());
		}
		settings->endArray();
			
		Server_Room *newRoom = new Server_Room(
			i,
			settings->value("name").toString(),
			settings->value("description").toString(),
			settings->value("autojoin").toBool(),
			settings->value("joinmessage").toString(),
			gameTypes,
			this
		);
		addRoom(newRoom);
	}
	settings->endArray();
	
	updateLoginMessage();
	
	maxGameInactivityTime = settings->value("game/max_game_inactivity_time").toInt();
	maxPlayerInactivityTime = settings->value("game/max_player_inactivity_time").toInt();
	
	maxUsersPerAddress = settings->value("security/max_users_per_address").toInt();
	messageCountingInterval = settings->value("security/message_counting_interval").toInt();
	maxMessageCountPerInterval = settings->value("security/max_message_count_per_interval").toInt();
	maxMessageSizePerInterval = settings->value("security/max_message_size_per_interval").toInt();
	maxGamesPerUser = settings->value("security/max_games_per_user").toInt();
}
Exemplo n.º 24
0
// This test verifies that if master receives a status update
// for an already terminated task it forwards it without
// changing the state of the task.
TEST_F(StatusUpdateManagerTest, DuplicatedTerminalStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  Try<PID<Slave>> slave = StartSlave(&exec);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  FrameworkID frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(SaveArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Future<Nothing> _statusUpdateAcknowledgement =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(status);

  EXPECT_EQ(TASK_FINISHED, status.get().state());

  AWAIT_READY(_statusUpdateAcknowledgement);

  Future<TaskStatus> update;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&update));

  Future<Nothing> _statusUpdateAcknowledgement2 =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  Clock::pause();

  // Now send a TASK_KILLED update for the same task.
  TaskStatus status2 = status.get();
  status2.set_state(TASK_KILLED);
  execDriver->sendStatusUpdate(status2);

  // Ensure the scheduler receives TASK_KILLED.
  AWAIT_READY(update);
  EXPECT_EQ(TASK_KILLED, update.get().state());

  // Ensure the slave properly handles the ACK.
  // Clock::settle() ensures that the slave successfully
  // executes Slave::_statusUpdateAcknowledgement().
  AWAIT_READY(_statusUpdateAcknowledgement2);

  // Verify the latest task status.
  Future<process::http::Response> tasks =
    process::http::get(master.get(), "tasks");

  AWAIT_EXPECT_RESPONSE_STATUS_EQ(process::http::OK().status, tasks);
  AWAIT_EXPECT_RESPONSE_HEADER_EQ(APPLICATION_JSON, "Content-Type", tasks);

  Try<JSON::Object> parse = JSON::parse<JSON::Object>(tasks.get().body);
  ASSERT_SOME(parse);

  Result<JSON::String> state = parse.get().find<JSON::String>("tasks[0].state");

  ASSERT_SOME_EQ(JSON::String("TASK_FINISHED"), state);

  Clock::resume();

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that the master reconciles tasks that are
// missing from a re-registering slave. In this case, we trigger
// a race between the slave re-registration message and the launch
// message. There should be no TASK_LOST.
// This was motivated by MESOS-1696.
TEST_F(MasterSlaveReconciliationTest, ReconcileRace)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Future<SlaveRegisteredMessage> slaveRegisteredMessage =
    FUTURE_PROTOBUF(SlaveRegisteredMessage(), master.get()->pid, _);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  AWAIT_READY(slaveRegisteredMessage);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  // Since the agent may have retried registration, we want to
  // ensure that any duplicate registrations are flushed before
  // we appoint the master again. Otherwise, the agent may
  // receive a stale registration message.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Trigger a re-registration of the slave and capture the message
  // so that we can spoof a race with a launch task message.
  DROP_PROTOBUFS(ReregisterSlaveMessage(), slave.get()->pid, master.get()->pid);

  Future<ReregisterSlaveMessage> reregisterSlaveMessage =
    DROP_PROTOBUF(
        ReregisterSlaveMessage(),
        slave.get()->pid,
        master.get()->pid);

  detector.appoint(master.get()->pid);

  AWAIT_READY(reregisterSlaveMessage);

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  ExecutorDriver* executorDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&executorDriver));

  // Leave the task in TASK_STAGING.
  Future<Nothing> launchTask;
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(FutureSatisfy(&launchTask));

  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .Times(0);

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(launchTask);

  // Send the stale re-registration message, which does not contain
  // the task we just launched. This will trigger a reconciliation
  // by the master.
  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Prevent this from being dropped per the DROP_PROTOBUFS above.
  FUTURE_PROTOBUF(
      ReregisterSlaveMessage(),
      slave.get()->pid,
      master.get()->pid);

  process::post(
      slave.get()->pid,
      master.get()->pid,
      reregisterSlaveMessage.get());

  AWAIT_READY(slaveReregisteredMessage);

  // Neither the master nor the slave should send a TASK_LOST
  // as part of the reconciliation. We check this by calling
  // Clock::settle() to flush all pending events.
  Clock::pause();
  Clock::settle();
  Clock::resume();

  // Now send TASK_FINISHED and make sure it's the only message
  // received by the scheduler.
  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  TaskStatus taskStatus;
  taskStatus.mutable_task_id()->CopyFrom(task.task_id());
  taskStatus.set_state(TASK_FINISHED);
  executorDriver->sendStatusUpdate(taskStatus);

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
Exemplo n.º 26
0
TEST_F(StatusUpdateManagerTest, CheckpointStatusUpdate)
{
  Try<PID<Master> > master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);

  // Require flags to retrieve work_dir when recovering
  // the checkpointed data.
  slave::Flags flags = CreateSlaveFlags();

  Try<PID<Slave> > slave = StartSlave(&exec, flags);
  ASSERT_SOME(slave);

  FrameworkInfo frameworkInfo = DEFAULT_FRAMEWORK_INFO;
  frameworkInfo.set_checkpoint(true); // Enable checkpointing.

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, frameworkInfo, master.get(), DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(_, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(_, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(frameworkId);
  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  EXPECT_CALL(exec, registered(_, _, _, _))
    .Times(1);

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(_, _))
    .WillOnce(FutureArg<1>(&status));

  Future<Nothing> _statusUpdateAcknowledgement =
    FUTURE_DISPATCH(slave.get(), &Slave::_statusUpdateAcknowledgement);

  driver.launchTasks(offers.get()[0].id(), createTasks(offers.get()[0]));

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  AWAIT_READY(_statusUpdateAcknowledgement);

  // Ensure that both the status update and its acknowledgement are
  // correctly checkpointed.
  Result<slave::state::State> state =
    slave::state::recover(slave::paths::getMetaRootDir(flags.work_dir), true);

  ASSERT_SOME(state);
  ASSERT_SOME(state.get().slave);
  ASSERT_TRUE(state.get().slave.get().frameworks.contains(frameworkId.get()));

  slave::state::FrameworkState frameworkState =
    state.get().slave.get().frameworks.get(frameworkId.get()).get();

  ASSERT_EQ(1u, frameworkState.executors.size());

  slave::state::ExecutorState executorState =
    frameworkState.executors.begin()->second;

  ASSERT_EQ(1u, executorState.runs.size());

  slave::state::RunState runState = executorState.runs.begin()->second;

  ASSERT_EQ(1u, runState.tasks.size());

  slave::state::TaskState taskState = runState.tasks.begin()->second;

  EXPECT_EQ(1u, taskState.updates.size());
  EXPECT_EQ(1u, taskState.acks.size());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();

  Shutdown();
}
// This test verifies that when the slave re-registers, the master
// does not send TASK_LOST update for a task that has reached terminal
// state but is waiting for an acknowledgement.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminalTask)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  EXPECT_CALL(sched, registered(&driver, _, _));

  Future<vector<Offer> > offers;
  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(FutureArg<1>(&offers))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  driver.start();

  AWAIT_READY(offers);
  EXPECT_NE(0u, offers.get().size());

  TaskInfo task;
  task.set_name("test task");
  task.mutable_task_id()->set_value("1");
  task.mutable_slave_id()->MergeFrom(offers.get()[0].slave_id());
  task.mutable_resources()->MergeFrom(offers.get()[0].resources());
  task.mutable_executor()->MergeFrom(DEFAULT_EXECUTOR_INFO);

  EXPECT_CALL(exec, registered(_, _, _, _));

  // Send a terminal update right away.
  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_FINISHED));

  // Drop the status update from slave to the master, so that
  // the slave has a pending terminal update when it re-registers.
  DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<Nothing> _statusUpdate = FUTURE_DISPATCH(_, &Slave::_statusUpdate);

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status))
    .WillRepeatedly(Return()); // Ignore retried update due to update framework.

  driver.launchTasks(offers.get()[0].id(), {task});

  AWAIT_READY(_statusUpdate);

  Future<SlaveReregisteredMessage> slaveReregisteredMessage =
    FUTURE_PROTOBUF(SlaveReregisteredMessage(), _, _);

  // Simulate a spurious master change event (e.g., due to ZooKeeper
  // expiration) at the slave to force re-registration.
  detector.appoint(master.get()->pid);

  AWAIT_READY(slaveReregisteredMessage);

  // The master should not send a TASK_LOST after the slave
  // re-registers. We check this by calling Clock::settle() so that
  // the only update the scheduler receives is the retried
  // TASK_FINISHED update.
  // NOTE: The status update manager resends the status update when
  // it detects a new master.
  Clock::pause();
  Clock::settle();

  AWAIT_READY(status);
  ASSERT_EQ(TASK_FINISHED, status.get().state());

  EXPECT_CALL(exec, shutdown(_))
    .Times(AtMost(1));

  driver.stop();
  driver.join();
}
Exemplo n.º 28
0
Arquivo: ftp.c Projeto: breu/wview
/*  ... the main entry point for the ftp process
*/
int main (int argc, char *argv[])
{
    void            (*alarmHandler)(int);
    STIM            stim;
    int             i;
    int             seconds;
    time_t          ntime;
    struct tm       locTime;
    long            offset, retVal;
    long            msOffset;
    FILE            *pidfile;
    int             runAsDaemon = TRUE;

    if (argc > 1)
    {
        if (!strcmp(argv[1], "-f"))
        {
            runAsDaemon = FALSE;
        }
    }

    memset (&ftpWork, 0, sizeof (ftpWork));

    /*  ... initialize some system stuff first
    */
    retVal = ftpSysInit (&ftpWork);
    if (retVal == ERROR)
    {
        radMsgLogInit (PROC_NAME_FTP, FALSE, TRUE);
        radMsgLog (PRI_CATASTROPHIC, "ftp init failed!");
        radMsgLogExit ();
        exit (1);
    }
    else if (retVal == ERROR_ABORT)
    {
        exit (2);
    }


    /*  ... call the global radlib system init function
    */
    if (radSystemInit (WVIEW_SYSTEM_ID) == ERROR)
    {
        radMsgLogInit (PROC_NAME_FTP, TRUE, TRUE);
        radMsgLog (PRI_CATASTROPHIC, "radSystemInit failed!");
        radMsgLogExit ();
        exit (1);
    }


    /*  ... call the radlib process init function
    */
    if (radProcessInit (PROC_NAME_FTP,
                        ftpWork.fifoFile,
                        PROC_NUM_TIMERS_FTP,
                        runAsDaemon,                // TRUE for daemon
                        msgHandler,
                        evtHandler,
                        NULL)
        == ERROR)
    {
        printf ("radProcessInit failed: %s", PROC_NAME_FTP);
        radSystemExit (WVIEW_SYSTEM_ID);
        exit (1);
    }

    ftpWork.myPid = getpid ();
    pidfile = fopen (ftpWork.pidFile, "w");
    if (pidfile == NULL)
    {
        radMsgLog (PRI_CATASTROPHIC, "lock file create failed!");
        radProcessExit ();
        radSystemExit (WVIEW_SYSTEM_ID);
        exit (1);
    }
    fprintf (pidfile, "%d", getpid ());
    fclose (pidfile);


    alarmHandler = radProcessSignalGetHandler (SIGALRM);
    radProcessSignalCatchAll (FTPDefaultSigHandler);
    radProcessSignalCatch (SIGALRM, alarmHandler);
    radProcessSignalRelease(SIGABRT);


    ftpWork.timer = radTimerCreate (NULL, timerHandler, NULL);
    if (ftpWork.timer == NULL)
    {
        radMsgLog (PRI_HIGH, "radTimerCreate failed");
        ftpSysExit (&ftpWork);
        radProcessExit ();
        radSystemExit (WVIEW_SYSTEM_ID);
        exit (1);
    }

    //  ... initialize the ftp utilities
    retVal = ftpUtilsInit (&ftpWork.ftpData);

    if (retVal != OK)
    {
        if (retVal == ERROR)
        {
            radMsgLog (PRI_HIGH, "ftpUtilsInit failed");
        }
        radTimerDelete (ftpWork.timer);
        ftpSysExit (&ftpWork);
        radProcessExit ();
        radSystemExit (WVIEW_SYSTEM_ID);
        exit (1);
    }
    else
    {
        ftpWork.ftpId = &ftpWork.ftpData;
    }


    if (statusInit(ftpWork.statusFile, ftpStatusLabels) == ERROR)
    {
        radMsgLog (PRI_HIGH, "ALARM status init failed - exiting...");
        ftpSysExit (&ftpWork);
        radProcessExit ();
        radSystemExit (WVIEW_SYSTEM_ID);
        exit (1);
    }
    statusUpdate(STATUS_BOOTING);
    statusUpdateStat(FTP_STATS_RULES_DEFINED, 
                     radListGetNumberOfNodes(&ftpWork.ftpData.rules));

    //  ... start THE timer
    ntime = time (NULL);
    localtime_r (&ntime, &locTime);
    seconds = locTime.tm_sec - 15;         // start at 15 secs past

    /*  ... start the ftp timer to go off 1 min past the next 5 minute mark
    */
    offset = locTime.tm_min % 5;
    if (offset)
        offset = 6 - offset;
    else
        offset = 1;

    radMsgLog (PRI_HIGH,
               "starting ftp timer for %d mins %d secs",
               ((seconds > 0) ? ((offset > 0) ? offset-1 : offset) : offset),
                       (seconds > 0) ? 60 - seconds : (-1) * seconds);

    msOffset = radTimeGetMSSinceEpoch () % 1000;
    msOffset -= 250;                        // land on 250 ms mark


    ftpWork.msOffset = 0;
    radProcessTimerStart (ftpWork.timer,
                          ((((offset * 60) - seconds) * 1000)) - msOffset);

    statusUpdate(STATUS_RUNNING);
    statusUpdateMessage("Normal operation");


    while (! ftpWork.exiting)
    {
        /*  ... wait on timers, events, file descriptors, msgs, everything!
        */
        if (radProcessWait (0) == ERROR)
        {
            ftpWork.exiting = TRUE;
        }
    }


    statusUpdateMessage("exiting normally");
    radMsgLog (PRI_STATUS, "exiting normally...");
    statusUpdate(STATUS_SHUTDOWN);

    if (ftpWork.ftpId != NULL)
    {
        ftpUtilsExit (ftpWork.ftpId);
    }

    radTimerDelete (ftpWork.timer);
    ftpSysExit (&ftpWork);
    radProcessExit ();
    radSystemExit (WVIEW_SYSTEM_ID);
    exit (0);
}
// This test verifies that a re-registering slave sends the terminal
// unacknowledged tasks for a terminal executor. This is required
// for the master to correctly reconcile its view with the slave's
// view of tasks. This test drops a terminal update to the master
// and then forces the slave to re-register.
TEST_F(MasterSlaveReconciliationTest, SlaveReregisterTerminatedExecutor)
{
  Try<Owned<cluster::Master>> master = StartMaster();
  ASSERT_SOME(master);

  MockExecutor exec(DEFAULT_EXECUTOR_ID);
  TestContainerizer containerizer(&exec);

  StandaloneMasterDetector detector(master.get()->pid);

  Try<Owned<cluster::Slave>> slave = StartSlave(&detector, &containerizer);
  ASSERT_SOME(slave);

  MockScheduler sched;
  MesosSchedulerDriver driver(
      &sched, DEFAULT_FRAMEWORK_INFO, master.get()->pid, DEFAULT_CREDENTIAL);

  Future<FrameworkID> frameworkId;
  EXPECT_CALL(sched, registered(&driver, _, _))
    .WillOnce(FutureArg<1>(&frameworkId));

  EXPECT_CALL(sched, resourceOffers(&driver, _))
    .WillOnce(LaunchTasks(DEFAULT_EXECUTOR_INFO, 1, 1, 512, "*"))
    .WillRepeatedly(Return()); // Ignore subsequent offers.

  ExecutorDriver* execDriver;
  EXPECT_CALL(exec, registered(_, _, _, _))
    .WillOnce(SaveArg<0>(&execDriver));

  EXPECT_CALL(exec, launchTask(_, _))
    .WillOnce(SendStatusUpdateFromTask(TASK_RUNNING));

  Future<TaskStatus> status;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status));

  Future<StatusUpdateAcknowledgementMessage> statusUpdateAcknowledgementMessage
    = FUTURE_PROTOBUF(
        StatusUpdateAcknowledgementMessage(),
        master.get()->pid,
        slave.get()->pid);

  driver.start();

  AWAIT_READY(status);
  EXPECT_EQ(TASK_RUNNING, status.get().state());

  // Make sure the acknowledgement reaches the slave.
  AWAIT_READY(statusUpdateAcknowledgementMessage);

  // Drop the TASK_FINISHED status update sent to the master.
  Future<StatusUpdateMessage> statusUpdateMessage =
    DROP_PROTOBUF(StatusUpdateMessage(), _, master.get()->pid);

  Future<ExitedExecutorMessage> executorExitedMessage =
    FUTURE_PROTOBUF(ExitedExecutorMessage(), _, _);

  TaskStatus finishedStatus;
  finishedStatus = status.get();
  finishedStatus.set_state(TASK_FINISHED);
  execDriver->sendStatusUpdate(finishedStatus);

  // Ensure the update was sent.
  AWAIT_READY(statusUpdateMessage);

  EXPECT_CALL(sched, executorLost(&driver, DEFAULT_EXECUTOR_ID, _, _));

  // Now kill the executor.
  containerizer.destroy(frameworkId.get(), DEFAULT_EXECUTOR_ID);

  Future<TaskStatus> status2;
  EXPECT_CALL(sched, statusUpdate(&driver, _))
    .WillOnce(FutureArg<1>(&status2));

  // We drop the 'UpdateFrameworkMessage' from the master to slave to
  // stop the status update manager from retrying the update that was
  // already sent due to the new master detection.
  DROP_PROTOBUFS(UpdateFrameworkMessage(), _, _);

  detector.appoint(master.get()->pid);

  AWAIT_READY(status2);
  EXPECT_EQ(TASK_FINISHED, status2.get().state());

  driver.stop();
  driver.join();
}
Exemplo n.º 30
0
bool InitDriveThread::method_resizePartitions()
{
    int newStartOfRescuePartition = getFileContents("/sys/class/block/mmcblk0p1/start").trimmed().toInt();
    int newSizeOfRescuePartition  = sizeofBootFilesInKB()/1000 + 100;

    if (!umountSystemPartition())
    {
        emit error(tr("Error unmounting system partition."));
        return false;
    }

    if (!QFile::exists("/dev/mmcblk0p1"))
    {
        // SD card does not have a MBR.

        // Warn user that their SD card does not have an MBR and ask
        // if they would like us to create one for them
        QMessageBox::StandardButton answer;
        emit query(tr("Would you like NOOBS to create one for you?\nWARNING: This will erase all data on your SD card"),
                   tr("Error: No MBR present on SD Card"),
                   &answer);

        if(answer == QMessageBox::Yes)
        {
            emit statusUpdate(tr("Zeroing partition table"));
            if (!zeroMbr())
            {
                emit error(tr("Error zero'ing MBR/GPT. SD card may be broken or advertising wrong capacity."));
                return false;
            }

            // Create MBR containing single FAT partition
            emit statusUpdate(tr("Writing new MBR"));
            QProcess proc;
            proc.setProcessChannelMode(proc.MergedChannels);
            proc.start("/usr/sbin/parted /dev/mmcblk0 --script -- mktable msdos mkpartfs primary fat32 8192s -1");
            proc.waitForFinished(-1);
            if (proc.exitCode() != 0)
            {
                // Warn user if we failed to create an MBR on their card
                emit error(tr("Error creating MBR")+"\n"+proc.readAll());
                return false;
            }
            qDebug() << "Created missing MBR on SD card. parted output:" << proc.readAll();

            // Advise user that their SD card has now been formatted
            // suitably for installing NOOBS and that they will have to
            // re-copy the files before rebooting
            emit error(tr("SD card has now been formatted ready for NOOBS installation. Please re-copy the NOOBS files onto the card and reboot"));
            return false;
        }
        else
        {
            emit error(tr("SD card has not been formatted correctly. Please reformat using the SD Association Formatting Tool and try again."));
            return false;
        }

    }

    emit statusUpdate(tr("Removing partitions 2,3,4"));

    QFile f("/dev/mmcblk0");
    f.open(f.ReadWrite);
    // Seek to partition entry 2
    f.seek(462);
    // Zero out partition 2,3,4 to prevent parted complaining about invalid constraints
    f.write(QByteArray(16*3, '\0'));
    f.flush();
    // Tell Linux to re-read the partition table
    ioctl(f.handle(), BLKRRPART);
    f.close();
    QThread::msleep(500);

    emit statusUpdate(tr("Resizing FAT partition"));

    /* Relocating the start of the FAT partition is a write intensive operation
     * only move it when it is not aligned on a MiB boundary already */
    if (newStartOfRescuePartition < 2048 || newStartOfRescuePartition % 2048 != 0)
    {
        newStartOfRescuePartition = 8192; /* 4 MiB */
    }

    QString cmd = "/usr/sbin/parted --script /dev/mmcblk0 resize 1 "+QString::number(newStartOfRescuePartition)+"s "+QString::number(newSizeOfRescuePartition)+"M";
    qDebug() << "Executing" << cmd;
    QProcess p;
    p.setProcessChannelMode(p.MergedChannels);
    p.start(cmd);
    p.closeWriteChannel();
    p.waitForFinished(-1);

    if (p.exitCode() != 0)
    {
        emit error(tr("Error resizing existing FAT partition")+"\n"+p.readAll());
        return false;
    }
    qDebug() << "parted done, output:" << p.readAll();
    QThread::msleep(500);

    emit statusUpdate(tr("Creating extended partition"));

    mbr_table extended_mbr;
    QByteArray partitionTable;
    int startOfOurPartition = getFileContents("/sys/class/block/mmcblk0p1/start").trimmed().toInt();
    int sizeOfOurPartition = getFileContents("/sys/class/block/mmcblk0p1/size").trimmed().toInt();
    int startOfExtended = startOfOurPartition + sizeOfOurPartition;
    // Align on 4 MiB boundary
    startOfExtended += 8192-(startOfExtended % 8192);

// BUGBUG - reserve space for WinIOT
    startOfExtended += 5000 * 2048;    
//

    int sizeOfDisk = sizeofSDCardInBlocks();
    int sizeOfExtended = sizeOfDisk - startOfExtended;

    partitionTable  = QByteArray::number(startOfOurPartition)+","+QByteArray::number(sizeOfOurPartition)+",0E\n"; /* FAT partition */
    partitionTable += "0,0\n";
    partitionTable += "0,0\n";
    partitionTable += QByteArray::number(startOfExtended)+","+QByteArray::number(sizeOfExtended)+",X\n"; /* Extended partition with all remaining space */
    qDebug() << "Writing partition table" << partitionTable;

    /* Write out extended partition table with settings logical partition */
    memset(&extended_mbr, 0, sizeof extended_mbr);
    extended_mbr.part[0].starting_sector = EBR_PARTITION_OFFSET;
    extended_mbr.part[0].nr_of_sectors = SETTINGS_PARTITION_SIZE;
    extended_mbr.part[0].id = 0x83;

    extended_mbr.signature[0] = 0x55;
    extended_mbr.signature[1] = 0xAA;
    f.open(f.ReadWrite);
    f.seek(((qint64)startOfExtended)*512L);
    f.write((char *) &extended_mbr, sizeof(extended_mbr));
    f.flush();
    f.close();

    /* Let sfdisk write a proper partition table */
    cmd = QString("/sbin/sfdisk -uS /dev/mmcblk0");
    QProcess proc;
    proc.setProcessChannelMode(proc.MergedChannels);
    proc.start(cmd);
    proc.write(partitionTable);
    proc.closeWriteChannel();
    proc.waitForFinished(-1);
    if (proc.exitCode() != 0)
    {
        emit error(tr("Error creating extended partition")+"\n"+proc.readAll());
        return false;
    }
    qDebug() << "sfdisk done, output:" << proc.readAll();
    QThread::msleep(500);

    /* For reasons unknown Linux sometimes
     * only finds /dev/mmcblk0p2 and /dev/mmcblk0p1 goes missing */
    if (!QFile::exists("/dev/mmcblk0p1"))
    {
        /* Probe again */
        QProcess::execute("/usr/sbin/partprobe");
        QThread::msleep(1500);
    }

    QProcess::execute("/sbin/mlabel p:RECOVERY");

    emit statusUpdate(tr("Mounting FAT partition"));
    if (!mountSystemPartition())
    {
        emit error(tr("Error mounting system partition."));
        return false;
    }

    return true;
}