Exemplo n.º 1
0
 int main() {
   int numRows = 0; //Initializes variable
   int numColumns = 0; //Initializes variable
   
   printf("Please enter the number of rows: ");
   scanf("%d", &numRows); //Asks the user to enter the number of rows and stores the value in variable numRows
   
   printf("Please enter the number of columns: ");
   scanf("%d", &numColumns); //Asks the user to enter the number of columns and stores the value in variable numColumns
   
   sumAB(numRows, numColumns); //Calls function to calculate the sum of Matrix A and Matrix B
   
   return 0;
 }
Exemplo n.º 2
0
template <typename PointInT, typename PointOutT, typename NormalT> void
pcl::TrajkovicKeypoint3D<PointInT, PointOutT, NormalT>::detectKeypoints (PointCloudOut &output)
{
  response_.reset (new pcl::PointCloud<float> (input_->width, input_->height));
  const Normals &normals = *normals_;
  const PointCloudIn &input = *input_;
  pcl::PointCloud<float>& response = *response_;
  const int w = static_cast<int> (input_->width) - half_window_size_;
  const int h = static_cast<int> (input_->height) - half_window_size_;

  if (method_ == FOUR_CORNERS)
  {
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
    for(int j = half_window_size_; j < h; ++j)
    {
      for(int i = half_window_size_; i < w; ++i)
      {
        if (!isFinite (input (i,j))) continue;
        const NormalT &center = normals (i,j);
        if (!isFinite (center)) continue;

        int count = 0;
        const NormalT &up = getNormalOrNull (i, j-half_window_size_, count);
        const NormalT &down = getNormalOrNull (i, j+half_window_size_, count);
        const NormalT &left = getNormalOrNull (i-half_window_size_, j, count);
        const NormalT &right = getNormalOrNull (i+half_window_size_, j, count);
        // Get rid of isolated points
        if (!count) continue;

        float sn1 = squaredNormalsDiff (up, center);
        float sn2 = squaredNormalsDiff (down, center);
        float r1 = sn1 + sn2;
        float r2 = squaredNormalsDiff (right, center) + squaredNormalsDiff (left, center);

        float d = std::min (r1, r2);
        if (d < first_threshold_) continue;

        sn1 = sqrt (sn1);
        sn2 = sqrt (sn2);
        float b1 = normalsDiff (right, up) * sn1;
        b1+= normalsDiff (left, down) * sn2;
        float b2 = normalsDiff (right, down) * sn2;
        b2+= normalsDiff (left, up) * sn1;
        float B = std::min (b1, b2);
        float A = r2 - r1 - 2*B;

        response (i,j) = ((B < 0) && ((B + A) > 0)) ? r1 - ((B*B)/A) : d;
      }
    }
  }
  else
  {
#ifdef _OPENMP
#pragma omp parallel for num_threads (threads_)
#endif
    for(int j = half_window_size_; j < h; ++j)
    {
      for(int i = half_window_size_; i < w; ++i)
      {
        if (!isFinite (input (i,j))) continue;
        const NormalT &center = normals (i,j);
        if (!isFinite (center)) continue;

        int count = 0;
        const NormalT &up = getNormalOrNull (i, j-half_window_size_, count);
        const NormalT &down = getNormalOrNull (i, j+half_window_size_, count);
        const NormalT &left = getNormalOrNull (i-half_window_size_, j, count);
        const NormalT &right = getNormalOrNull (i+half_window_size_, j, count);
        const NormalT &upleft = getNormalOrNull (i-half_window_size_, j-half_window_size_, count);
        const NormalT &upright = getNormalOrNull (i+half_window_size_, j-half_window_size_, count);
        const NormalT &downleft = getNormalOrNull (i-half_window_size_, j+half_window_size_, count);
        const NormalT &downright = getNormalOrNull (i+half_window_size_, j+half_window_size_, count);
        // Get rid of isolated points
        if (!count) continue;

        std::vector<float> r (4,0);

        r[0] = squaredNormalsDiff (up, center);
        r[0]+= squaredNormalsDiff (down, center);

        r[1] = squaredNormalsDiff (upright, center);
        r[1]+= squaredNormalsDiff (downleft, center);

        r[2] = squaredNormalsDiff (right, center);
        r[2]+= squaredNormalsDiff (left, center);

        r[3] = squaredNormalsDiff (downright, center);
        r[3]+= squaredNormalsDiff (upleft, center);

        float d = *(std::min_element (r.begin (), r.end ()));

        if (d < first_threshold_) continue;

        std::vector<float> B (4,0);
        std::vector<float> A (4,0);
        std::vector<float> sumAB (4,0);
        B[0] = normalsDiff (upright, up) * normalsDiff (up, center);
        B[0]+= normalsDiff (downleft, down) * normalsDiff (down, center);
        B[1] = normalsDiff (right, upright) * normalsDiff (upright, center);
        B[1]+= normalsDiff (left, downleft) * normalsDiff (downleft, center);
        B[2] = normalsDiff (downright, right) * normalsDiff (downright, center);
        B[2]+= normalsDiff (upleft, left) * normalsDiff (upleft, center);
        B[3] = normalsDiff (down, downright) * normalsDiff (downright, center);
        B[3]+= normalsDiff (up, upleft) * normalsDiff (upleft, center);
        A[0] = r[1] - r[0] - B[0] - B[0];
        A[1] = r[2] - r[1] - B[1] - B[1];
        A[2] = r[3] - r[2] - B[2] - B[2];
        A[3] = r[0] - r[3] - B[3] - B[3];
        sumAB[0] = A[0] + B[0];
        sumAB[1] = A[1] + B[1];
        sumAB[2] = A[2] + B[2];
        sumAB[3] = A[3] + B[3];
        if ((*std::max_element (B.begin (), B.end ()) < 0) &&
            (*std::min_element (sumAB.begin (), sumAB.end ()) > 0))
        {
          std::vector<float> D (4,0);
          D[0] = B[0] * B[0] / A[0];
          D[1] = B[1] * B[1] / A[1];
          D[2] = B[2] * B[2] / A[2];
          D[3] = B[3] * B[3] / A[3];
          response (i,j) = *(std::min (D.begin (), D.end ()));
        }
        else
          response (i,j) = d;
      }
    }
  }
  // Non maximas suppression
  std::vector<int> indices = *indices_;
  std::sort (indices.begin (), indices.end (),
             boost::bind (&TrajkovicKeypoint3D::greaterCornernessAtIndices, this, _1, _2));

  output.clear ();
  output.reserve (input_->size ());

  std::vector<bool> occupency_map (indices.size (), false);
  const int width (input_->width);
  const int height (input_->height);
  const int occupency_map_size (indices.size ());

#ifdef _OPENMP
#pragma omp parallel for shared (output) num_threads (threads_)
#endif
  for (int i = 0; i < indices.size (); ++i)
  {
    int idx = indices[i];
    if ((response_->points[idx] < second_threshold_) || occupency_map[idx])
      continue;

    PointOutT p;
    p.getVector3fMap () = input_->points[idx].getVector3fMap ();
    p.intensity = response_->points [idx];

#ifdef _OPENMP
#pragma omp critical
#endif
    {
      output.push_back (p);
      keypoints_indices_->indices.push_back (idx);
    }

    const int x = idx % width;
    const int y = idx / width;
    const int u_end = std::min (width, x + half_window_size_);
    const int v_end = std::min (height, y + half_window_size_);
    for(int v = std::max (0, y - half_window_size_); v < v_end; ++v)
      for(int u = std::max (0, x - half_window_size_); u < u_end; ++u)
        occupency_map[v*width + u] = true;
  }

  output.height = 1;
  output.width = static_cast<uint32_t> (output.size());
  // we don not change the denseness
  output.is_dense = true;
}
Exemplo n.º 3
0
/// R-MAT Generator. The modes is based on the recursive descent into a 2x2
/// matrix [A,B; C, 1-(A+B+C)].
/// See: R-MAT Generator: A Recursive Model for Graph Mining. 
/// D. Chakrabarti, Y. Zhan and C. Faloutsos, in SIAM Data Mining 2004. 
/// URL: http://www.cs.cmu.edu/~deepay/mywww/papers/siam04.pdf
PNGraph GenRMat(const int& Nodes, const int& Edges, const double& A, const double& B, const double& C, TRnd& Rnd) {
  PNGraph GraphPt = TNGraph::New();
  TNGraph& Graph = *GraphPt;
  Graph.Reserve(Nodes, Edges);
  IAssert(A+B+C < 1.0);
  int rngX, rngY, offX, offY;
  int Depth=0, Collisions=0, Cnt=0, PctDone=0;
  const int EdgeGap = Edges / 100 + 1;
  // sum of parameters (probabilities)
  TVec<double> sumA(128, 0), sumAB(128, 0), sumAC(128, 0), sumABC(128, 0);  // up to 2^128 vertices ~ 3.4e38
  for (int i = 0; i < 128; i++) {
    const double a = A * (Rnd.GetUniDev() + 0.5);
    const double b = B * (Rnd.GetUniDev() + 0.5);
    const double c = C * (Rnd.GetUniDev() + 0.5);
    const double d = (1.0 - (A+B+C)) * (Rnd.GetUniDev() + 0.5);
    const double abcd = a+b+c+d;
    sumA.Add(a / abcd);
    sumAB.Add((a+b) / abcd);
    sumAC.Add((a+c) / abcd);
    sumABC.Add((a+b+c) / abcd);
  }
  // nodes
  for (int node = 0; node < Nodes; node++) {
    IAssert(Graph.AddNode(-1) == node);
  }
  // edges
  for (int edge = 0; edge < Edges; ) {
    rngX = Nodes;  rngY = Nodes;  offX = 0;  offY = 0;
    Depth = 0;
    // recurse the matrix
    while (rngX > 1 || rngY > 1) {
      const double RndProb = Rnd.GetUniDev();
      if (rngX>1 && rngY>1) {
        if (RndProb < sumA[Depth]) { rngX/=2; rngY/=2; }
        else if (RndProb < sumAB[Depth]) { offX+=rngX/2;  rngX-=rngX/2;  rngY/=2; }
        else if (RndProb < sumABC[Depth]) { offY+=rngY/2;  rngX/=2;  rngY-=rngY/2; }
        else { offX+=rngX/2;  offY+=rngY/2;  rngX-=rngX/2;  rngY-=rngY/2; }
      } else
      if (rngX>1) { // row vector
        if (RndProb < sumAC[Depth]) { rngX/=2; rngY/=2; }
        else { offX+=rngX/2;  rngX-=rngX/2;  rngY/=2; }
      } else
      if (rngY>1) { // column vector
        if (RndProb < sumAB[Depth]) { rngX/=2; rngY/=2; }
        else { offY+=rngY/2;  rngX/=2;  rngY-=rngY/2; }
      } else { Fail; }
      Depth++;
    }
    // add edge
    const int NId1 = offX;
    const int NId2 = offY;
    if (NId1 != NId2 && ! Graph.IsEdge(NId1, NId2)) {
      Graph.AddEdge(NId1, NId2);
      if (++Cnt > EdgeGap) {
        Cnt=0;  printf("\r  %d%% edges", ++PctDone); }
      edge++;
    } else {
      Collisions++; }
  }
  printf("\r  RMat: nodes:%d, edges:%d, Iterations:%d, Collisions:%d (%.1f%%).\n", Nodes, Edges,
    Edges+Collisions, Collisions, 100*Collisions/double(Edges+Collisions));
  Graph.Defrag();
  return GraphPt;
}