/** Compute fundamental matrix out of eight feature correspondences between the previous and current frame.
 * @param std::vector<Match> vector with feature matches
 * @param std::vector<int> vector with eight indices of the vector with matches
 * @return Eigen::Matrix3f fundamental matrix */
Eigen::Matrix3f MonoOdometer5::getF(std::vector<Match> matches, std::vector<int> indices)
{
    int N = indices.size();

	// see Trucco & Verri, Introductory Techniques for 3D Computer Vision, chapter 6
    Eigen::Matrix<float, Eigen::Dynamic, 9> A;
    A.resize(N, 9);

    for(int i=0; i<N; i++)
    {
        cv::Point2f pPrev = matches[indices[i]].pPrev_;
        cv::Point2f pCurr = matches[indices[i]].pCurr_;
        
        A(i, 0) = pCurr.x * pPrev.x;
        A(i, 1) = pCurr.x * pPrev.y;
        A(i, 2) = pCurr.x;
        A(i, 3) = pCurr.y * pPrev.x;
        A(i, 4) = pCurr.y * pPrev.y;
        A(i, 5) = pCurr.y;
        A(i, 6) = pPrev.x;
        A(i, 7) = pPrev.y;
        A(i, 8) = 1;
    }
    
    Eigen::JacobiSVD<Eigen::Matrix<float, Eigen::Dynamic, 9>> svdA(A, Eigen::ComputeFullU | Eigen::ComputeFullV);

    Eigen::Matrix3f F;
    F << svdA.matrixV()(0, 8), svdA.matrixV()(1, 8), svdA.matrixV()(2, 8), svdA.matrixV()(3, 8), svdA.matrixV()(4, 8), svdA.matrixV()(5, 8), svdA.matrixV()(6, 8), svdA.matrixV()(7, 8), svdA.matrixV()(8, 8);
    
	// re-enforce rank 2 constraint on fundamental matrix
    Eigen::JacobiSVD<Eigen::Matrix3f> svdF(F, Eigen::ComputeFullU | Eigen::ComputeFullV);
    Eigen::Matrix3f D(Eigen::Matrix3f::Zero());
    D(0, 0) = svdF.singularValues()(0);
    D(1, 1) = svdF.singularValues()(1);
    
    F = (svdF.matrixU()) * D * (svdF.matrixV()).transpose();
    
    return F;
}
Exemplo n.º 2
0
matf GetFundamentalMat8Points(const vector<TrackedPoint> & points,
			      const vector<size_t> & sample) {
  size_t n = sample.size();
  matf A(max(n, (size_t)9), 9);
  for (size_t i = 0; i < n; ++i) {
    const TrackedPoint & p = points[sample[i]];
    A(i, 0) = p.x1 * p.x2;
    A(i, 1) = p.y1 * p.x2;
    A(i, 2) =        p.x2;
    A(i, 3) = p.x1 * p.y2;
    A(i, 4) = p.y1 * p.y2;
    A(i, 5) =        p.y2;
    A(i, 6) = p.x1;
    A(i, 7) = p.y1;
    A(i, 8) = 1.0f;
  }
  for (size_t i = n; i < 9; ++i)
    for (size_t j = 0; j < 9; ++j)
      A(i, j) = 0.0f;
  SVD svd(A);
  matf F(3, 3);
  F(0,0) = svd.vt.at<float>(8, 0);
  F(0,1) = svd.vt.at<float>(8, 1);
  F(0,2) = svd.vt.at<float>(8, 2);
  F(1,0) = svd.vt.at<float>(8, 3);
  F(1,1) = svd.vt.at<float>(8, 4);
  F(1,2) = svd.vt.at<float>(8, 5);
  F(2,0) = svd.vt.at<float>(8, 6);
  F(2,1) = svd.vt.at<float>(8, 7);
  F(2,2) = svd.vt.at<float>(8, 8);
  
  // make F singular
  SVD svdF(F);
  svdF.w.at<float>(2, 0) = 0.0f;
  return svdF.u * Mat::diag(svdF.w) * svdF.vt;
}