Exemplo n.º 1
0
int add_to_swap(struct page *page)
{
	swp_entry_t entry;
	int err;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(!PageUptodate(page));

	entry = get_swap_page();
	if (!entry.val)
		return 0;

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page))) {
			swapcache_free(entry, NULL);
			return 0;
		}

	err = add_to_swap_cache(page, entry,
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);

	if (!err) {	
		SetPageDirty(page);
		return 1;
	} else {	
		swapcache_free(entry, NULL);
		return 0;
	}
}
Exemplo n.º 2
0
/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock. 
 */
int add_to_swap(struct page *page)
{
	swp_entry_t entry;
	int err;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(!PageUptodate(page));

#ifdef CONFIG_HSWAP
	if (!current_is_kswapd())
		entry = get_lowest_prio_swap_page();
	else
#endif
	entry = get_swap_page();
	if (!entry.val)
		return 0;

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page))) {
			swapcache_free(entry, NULL);
			return 0;
		}

	/*
	 * Radix-tree node allocations from PF_MEMALLOC contexts could
	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
	 * stops emergency reserves from being allocated.
	 *
	 * TODO: this could cause a theoretical memory reclaim
	 * deadlock in the swap out path.
	 */
	/*
	 * Add it to the swap cache and mark it dirty
	 */
	err = add_to_swap_cache(page, entry,
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);

	if (!err) {	/* Success */
		SetPageDirty(page);
		return 1;
	} else {	/* -ENOMEM radix-tree allocation failure */
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
		return 0;
	}
}
Exemplo n.º 3
0
/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock.
 */
int add_to_swap(struct page *page, struct list_head *list)
{
    swp_entry_t entry;
    int err;

    VM_BUG_ON_PAGE(!PageLocked(page), page);
    VM_BUG_ON_PAGE(!PageUptodate(page), page);

    entry = get_swap_page();
    if (!entry.val)
        return 0;

    if (mem_cgroup_try_charge_swap(page, entry)) {
        swapcache_free(entry);
        return 0;
    }

    if (unlikely(PageTransHuge(page)))
        if (unlikely(split_huge_page_to_list(page, list))) {
            swapcache_free(entry);
            return 0;
        }

    /*
     * Radix-tree node allocations from PF_MEMALLOC contexts could
     * completely exhaust the page allocator. __GFP_NOMEMALLOC
     * stops emergency reserves from being allocated.
     *
     * TODO: this could cause a theoretical memory reclaim
     * deadlock in the swap out path.
     */
    /*
     * Add it to the swap cache.
     */
    err = add_to_swap_cache(page, entry,
                            __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);

    if (!err) {
        return 1;
    } else {	/* -ENOMEM radix-tree allocation failure */
        /*
         * add_to_swap_cache() doesn't return -EEXIST, so we can safely
         * clear SWAP_HAS_CACHE flag.
         */
        swapcache_free(entry);
        return 0;
    }
}
Exemplo n.º 4
0
/**
 * delete_from_swap_cache:page从交换区高速缓存中删除
 */
void delete_from_swap_cache(struct page *page)
{
	swp_entry_t entry;

	entry.val = page_private(page);

	spin_lock_irq(&swapper_space.tree_lock);
	__delete_from_swap_cache(page);
	spin_unlock_irq(&swapper_space.tree_lock);

	swapcache_free(entry, page);
	page_cache_release(page);
}
Exemplo n.º 5
0
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr)
{
	struct page *found_page, *new_page = NULL;
	int err;

	do {
		found_page = find_get_page(&swapper_space, entry.val);
		if (found_page)
			break;

		if (!new_page) {
			new_page = alloc_page_vma(gfp_mask, vma, addr);
			if (!new_page)
				break;		
		}

		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
		if (err)
			break;

		err = swapcache_prepare(entry);
		if (err == -EEXIST) {	
			radix_tree_preload_end();
			continue;
		}
		if (err) {		
			radix_tree_preload_end();
			break;
		}

		
		__set_page_locked(new_page);
		SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			lru_cache_add_anon(new_page);
			swap_readpage(new_page);
			return new_page;
		}
		radix_tree_preload_end();
		ClearPageSwapBacked(new_page);
		__clear_page_locked(new_page);
		swapcache_free(entry, NULL);
	} while (err != -ENOMEM);

	if (new_page)
		page_cache_release(new_page);
	return found_page;
}
Exemplo n.º 6
0
/*
 * This must be called only on pages that have
 * been verified to be in the swap cache and locked.
 * It will never put the page into the free list,
 * the caller has a reference on the page.
 */
void delete_from_swap_cache(struct page *page)
{
    swp_entry_t entry;
    struct address_space *address_space;

    entry.val = page_private(page);

    address_space = swap_address_space(entry);
    spin_lock_irq(&address_space->tree_lock);
    __delete_from_swap_cache(page);
    spin_unlock_irq(&address_space->tree_lock);

    swapcache_free(entry);
    put_page(page);
}
Exemplo n.º 7
0
/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock. 
 */
int add_to_swap(struct page *page)
{
	swp_entry_t entry;
	int err;
	struct user_beancounter *ub;

	VM_BUG_ON(!PageLocked(page));
	VM_BUG_ON(!PageUptodate(page));


	ub = pb_grab_page_ub(page);
	if (IS_ERR(ub))
		return 0;

	entry = get_swap_page(ub);
	put_beancounter(ub);
	if (!entry.val)
		return 0;

	/*
	 * Radix-tree node allocations from PF_MEMALLOC contexts could
	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
	 * stops emergency reserves from being allocated.
	 *
	 * TODO: this could cause a theoretical memory reclaim
	 * deadlock in the swap out path.
	 */
	/*
	 * Add it to the swap cache and mark it dirty
	 */
	err = add_to_swap_cache(page, entry,
			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);

	if (!err) {	/* Success */
		SetPageDirty(page);
		return 1;
	} else {	/* -ENOMEM radix-tree allocation failure */
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
		return 0;
	}
}
Exemplo n.º 8
0
/* 
 * Locate a page of swap in physical memory, reserving swap cache space
 * and reading the disk if it is not already cached.
 * A failure return means that either the page allocation failed or that
 * the swap entry is no longer in use.
 */
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
			struct vm_area_struct *vma, unsigned long addr)
{
	struct page *found_page, *new_page = NULL;
	int err;

	do {
		/*
		 * First check the swap cache.  Since this is normally
		 * called after lookup_swap_cache() failed, re-calling
		 * that would confuse statistics.
		 */
		found_page = find_get_page(&swapper_space, entry.val);
		if (found_page)
			break;

		/*
		 * Get a new page to read into from swap.
		 */
		if (!new_page) {
			new_page = alloc_page_vma(gfp_mask, vma, addr);
			if (!new_page)
				break;		/* Out of memory */
		}

		/*
		 * call radix_tree_preload() while we can wait.
		 */
		err = radix_tree_preload(gfp_mask & GFP_KERNEL);
		if (err)
			break;

		/*
		 * Swap entry may have been freed since our caller observed it.
		 */
		err = swapcache_prepare(entry);
		if (err == -EEXIST) {	/* seems racy */
			radix_tree_preload_end();
			continue;
		}
		if (err) {		/* swp entry is obsolete ? */
			radix_tree_preload_end();
			break;
		}

		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
		__set_page_locked(new_page);
		SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			/*
			 * Initiate read into locked page and return.
			 */
			lru_cache_add_anon(new_page);
			swap_readpage(new_page);
			return new_page;
		}
		radix_tree_preload_end();
		ClearPageSwapBacked(new_page);
		__clear_page_locked(new_page);
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
	} while (err != -ENOMEM);

	if (new_page)
		page_cache_release(new_page);
	return found_page;
}
Exemplo n.º 9
0
struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
                                     struct vm_area_struct *vma, unsigned long addr,
                                     bool *new_page_allocated)
{
    struct page *found_page, *new_page = NULL;
    struct address_space *swapper_space = swap_address_space(entry);
    int err;
    *new_page_allocated = false;

    do {
        /*
         * First check the swap cache.  Since this is normally
         * called after lookup_swap_cache() failed, re-calling
         * that would confuse statistics.
         */
        found_page = find_get_page(swapper_space, entry.val);
        if (found_page)
            break;

        /*
         * Get a new page to read into from swap.
         */
        if (!new_page) {
            new_page = alloc_page_vma(gfp_mask, vma, addr);
            if (!new_page)
                break;		/* Out of memory */
        }

        /*
         * call radix_tree_preload() while we can wait.
         */
        err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
        if (err)
            break;

        /*
         * Swap entry may have been freed since our caller observed it.
         */
        err = swapcache_prepare(entry);
        if (err == -EEXIST) {
            radix_tree_preload_end();
            /*
             * We might race against get_swap_page() and stumble
             * across a SWAP_HAS_CACHE swap_map entry whose page
             * has not been brought into the swapcache yet, while
             * the other end is scheduled away waiting on discard
             * I/O completion at scan_swap_map().
             *
             * In order to avoid turning this transitory state
             * into a permanent loop around this -EEXIST case
             * if !CONFIG_PREEMPT and the I/O completion happens
             * to be waiting on the CPU waitqueue where we are now
             * busy looping, we just conditionally invoke the
             * scheduler here, if there are some more important
             * tasks to run.
             */
            cond_resched();
            continue;
        }
        if (err) {		/* swp entry is obsolete ? */
            radix_tree_preload_end();
            break;
        }

        /* May fail (-ENOMEM) if radix-tree node allocation failed. */
        __SetPageLocked(new_page);
        __SetPageSwapBacked(new_page);
        err = __add_to_swap_cache(new_page, entry);
        if (likely(!err)) {
            radix_tree_preload_end();
            /*
             * Initiate read into locked page and return.
             */
            lru_cache_add_anon(new_page);
            *new_page_allocated = true;
            return new_page;
        }
        radix_tree_preload_end();
        __ClearPageLocked(new_page);
        /*
         * add_to_swap_cache() doesn't return -EEXIST, so we can safely
         * clear SWAP_HAS_CACHE flag.
         */
        swapcache_free(entry);
    } while (err != -ENOMEM);

    if (new_page)
        put_page(new_page);
    return found_page;
}
Exemplo n.º 10
0
/*
 * zswap_get_swap_cache_page
 *
 * This is an adaption of read_swap_cache_async()
 *
 * This function tries to find a page with the given swap entry
 * in the swapper_space address space (the swap cache).  If the page
 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 * added to the swap cache, and returned in retpage.
 *
 * If success, the swap cache page is returned in retpage
 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 *     the new page is added to swapcache and locked
 * Returns ZSWAP_SWAPCACHE_FAIL on error
 */
static int zswap_get_swap_cache_page(swp_entry_t entry,
				struct page **retpage)
{
	struct page *found_page, *new_page = NULL;
	struct address_space *swapper_space = swap_address_space(entry);
	int err;

	*retpage = NULL;
	do {
		/*
		 * First check the swap cache.  Since this is normally
		 * called after lookup_swap_cache() failed, re-calling
		 * that would confuse statistics.
		 */
		found_page = find_get_page(swapper_space, entry.val);
		if (found_page)
			break;

		/*
		 * Get a new page to read into from swap.
		 */
		if (!new_page) {
			new_page = alloc_page(GFP_KERNEL);
			if (!new_page)
				break; /* Out of memory */
		}

		/*
		 * call radix_tree_preload() while we can wait.
		 */
		err = radix_tree_preload(GFP_KERNEL);
		if (err)
			break;

		/*
		 * Swap entry may have been freed since our caller observed it.
		 */
		err = swapcache_prepare(entry);
		if (err == -EEXIST) { /* seems racy */
			radix_tree_preload_end();
			continue;
		}
		if (err) { /* swp entry is obsolete ? */
			radix_tree_preload_end();
			break;
		}

		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
		__set_page_locked(new_page);
		SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			lru_cache_add_anon(new_page);
			*retpage = new_page;
			return ZSWAP_SWAPCACHE_NEW;
		}
		radix_tree_preload_end();
		ClearPageSwapBacked(new_page);
		__clear_page_locked(new_page);
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
	} while (err != -ENOMEM);

	if (new_page)
		page_cache_release(new_page);
	if (!found_page)
		return ZSWAP_SWAPCACHE_FAIL;
	*retpage = found_page;
	return ZSWAP_SWAPCACHE_EXIST;
}
Exemplo n.º 11
0
/*
 * zcache_get_swap_cache_page
 *
 * This is an adaption of read_swap_cache_async()
 *
 * If success, page is returned in retpage
 * Returns 0 if page was already in the swap cache, page is not locked
 * Returns 1 if the new page needs to be populated, page is locked
 */
static int zcache_get_swap_cache_page(int type, pgoff_t offset,
				struct page *new_page)
{
	struct page *found_page;
	swp_entry_t entry = swp_entry(type, offset);
	int err;

	BUG_ON(new_page == NULL);
	do {
		/*
		 * First check the swap cache.  Since this is normally
		 * called after lookup_swap_cache() failed, re-calling
		 * that would confuse statistics.
		 */
		found_page = find_get_page(&swapper_space, entry.val);
		if (found_page)
			return 0;

		/*
		 * call radix_tree_preload() while we can wait.
		 */
		err = radix_tree_preload(GFP_KERNEL);
		if (err)
			break;

		/*
		 * Swap entry may have been freed since our caller observed it.
		 */
		err = swapcache_prepare(entry);
		if (err == -EEXIST) { /* seems racy */
			radix_tree_preload_end();
			continue;
		}
		if (err) { /* swp entry is obsolete ? */
			radix_tree_preload_end();
			break;
		}

		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
		__set_page_locked(new_page);
		SetPageSwapBacked(new_page);
		err = __add_to_swap_cache(new_page, entry);
		if (likely(!err)) {
			radix_tree_preload_end();
			lru_cache_add_anon(new_page);
			return 1;
		}
		radix_tree_preload_end();
		ClearPageSwapBacked(new_page);
		__clear_page_locked(new_page);
		/*
		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
		 * clear SWAP_HAS_CACHE flag.
		 */
		swapcache_free(entry, NULL);
		/* FIXME: is it possible to get here without err==-ENOMEM?
		 * If not, we can dispense with the do loop, use goto retry */
	} while (err != -ENOMEM);

	return -ENOMEM;
}