Exemplo n.º 1
0
void DataSetVOC::importPaulData(CStr &_inDir, CStr &vocDir)
{
	string inDir, outImgDir = vocDir + "JPEGImages/", annoDir = vocDir + "Annotations/";
	CmFile::MkDir(outImgDir);
	CmFile::MkDir(annoDir);
	CmFile::MkDir(vocDir + "ImageSets/Main/");
	vecS namesNE;
	FILE *f = fopen(_S(_inDir + "Possitive.txt"), "r");
	CV_Assert(f != NULL);
	char fName[1000];
	int l, x, y, w, h;
	while (fscanf(f, "%s %d %d %d %d %d\n", fName, &l, &x, &y, &w, &h) == 6){
		string nameNE = CmFile::GetNameNE(fName);
		namesNE.push_back(nameNE);
		Mat img = imread(_inDir + fName), imgN;
		double ratio = 500.0 / max(img.cols, img.rows);
		resize(img, imgN, Size(), ratio, ratio);
		imwrite(outImgDir + nameNE + ".jpg", imgN);
		
		FileStorage fs(annoDir + nameNE + ".yml", FileStorage::WRITE);
		fs<<"annotation"<<"{"<<"object"<<"{"<<"bndbox"<<"{";
		fs<<"xmin"<<format("'%d'", 1 + cvRound(x*ratio))<<"ymin"<<format("'%d'", 1 + cvRound(y*ratio));
		fs<<"xmax"<<format("'%d'", min(imgN.cols, cvRound((x+w)*ratio)))<<"ymax"<<format("'%d'", min(imgN.rows, cvRound((y+h)*ratio)));
		fs<<"}"<<"name"<<"Salient"<<"}"<<"}";
	}
	fclose(f);

	int imgNum = namesNE.size();
	random_shuffle(namesNE.begin(), namesNE.end());
	vecS trainSet(namesNE.begin(), namesNE.begin() + imgNum/2);
	vecS testSet(namesNE.begin() + imgNum/2, namesNE.end());
	CmFile::writeStrList(vocDir + "ImageSets/Main/TrainVal.txt", trainSet);
	CmFile::writeStrList(vocDir + "ImageSets/Main/Test.txt", testSet);
	
}
Exemplo n.º 2
0
bool DataSetVOC::importSaliencyBench(CStr &salDir, CStr &vocDir)
{
	string inDir, outImgDir = vocDir + "JPEGImages/", annoDir = vocDir + "Annotations/";
	CmFile::MkDir(outImgDir);
	CmFile::MkDir(annoDir);
	CmFile::MkDir(vocDir + "ImageSets/Main/");
	vecS namesNE;
	int imgNum = CmFile::GetNamesNE(salDir + "Src/*.jpg", namesNE, inDir);
	random_shuffle(namesNE.begin(), namesNE.end());
	for (int i = 0; i < imgNum; i++){
		CmFile::Copy(inDir + namesNE[i] + ".jpg", outImgDir + namesNE[i] + ".jpg");
		Mat mask1u = CmFile::LoadMask(inDir + namesNE[i] + ".png");
		Vec4i bb = getMaskRange(mask1u);
		FileStorage fs(annoDir + namesNE[i] + ".yml", FileStorage::WRITE);
		fs<<"annotation"<<"{"<<"object"<<"{"<<"bndbox"<<"{";
		fs<<"xmin"<<format("'%d'", bb[0])<<"ymin"<<format("'%d'", bb[1])<<"xmax"<<format("'%d'", bb[2])<<"ymax"<<format("'%d'", bb[3]);
		fs<<"}"<<"name"<<"Salient"<<"}"<<"}";
	}

	vecS trainSet(namesNE.begin(), namesNE.begin() + imgNum/2);
	vecS testSet(namesNE.begin() + imgNum/2, namesNE.end());
	CmFile::writeStrList(vocDir + "ImageSets/Main/TrainVal.txt", trainSet);
	CmFile::writeStrList(vocDir + "ImageSets/Main/Test.txt", testSet);
	vecS classNames;
	classNames.push_back("Salient");
	CmFile::writeStrList(vocDir + "ImageSets/Main/Class.txt", classNames);
	
	return true;	
}
Exemplo n.º 3
0
void webMain()
{
	testSet();
	testMultiSet();
	testUnorderedSet();
	testPointerSet();
	testUnorderedSetOfPointers();
}
Exemplo n.º 4
0
int main()
{
    srand(time(0));
    if(!testSet())
        return 1;
    if(!testMap())
        return 1;
    cout<<"LockHashMap test succ\n";
    return 0;
}
Exemplo n.º 5
0
	void testGet() {
		testSet();
		for(int i=0;i<8;i++){
			if(vector_->Get(i)){
				LOG4CXX_INFO(Sp::core_logger, "true");
			}
			else{
				LOG4CXX_INFO(Sp::core_logger, "false");
			}
		}
	}
Exemplo n.º 6
0
int main(int argc, char **argv) {
	testTime();
	printf("\n");
	testClock();
	printf("\n");
	testSysTime();
	printf("\n");
	// TODO: timeofday
	testSet();
	printf("\n");
	testCopy();
	return 0;
}
UnlabelledClassificationData UnlabelledClassificationData::partition(UINT trainingSizePercentage){

    //Partitions the dataset into a training dataset (which is kept by this instance of the UnlabelledClassificationData) and
	//a testing/validation dataset (which is return as a new instance of the UnlabelledClassificationData).  The trainingSizePercentage
	//therefore sets the size of the data which remains in this instance and the remaining percentage of data is then added to
	//the testing/validation dataset

    //The dataset has changed so flag that any previous cross validation setup will now not work
    crossValidationSetup = false;
    crossValidationIndexs.clear();

	const UINT numTrainingExamples = (UINT) floor( double(totalNumSamples) / 100.0 * double(trainingSizePercentage) );

	UnlabelledClassificationData trainingSet(numDimensions);
	UnlabelledClassificationData testSet(numDimensions);
	vector< UINT > indexs( totalNumSamples );

	//Create the random partion indexs
	Random random;
    UINT indexA = 0;
    UINT indexB = 0;
    UINT temp = 0;
	for(UINT i=0; i<totalNumSamples; i++) indexs[i] = i;
	for(UINT x=0; x<totalNumSamples*1000; x++){
        //Pick two random indexs
		indexA = random.getRandomNumberInt(0,totalNumSamples);
        indexB = random.getRandomNumberInt(0,totalNumSamples);

        //Swap the indexs
        temp = indexs[ indexA ];
		indexs[ indexA ] = indexs[ indexB ];
		indexs[ indexB ] = temp;
	}

	//Add the data to the training and test sets
	for(UINT i=0; i<numTrainingExamples; i++){
		trainingSet.addSample( data.getRowVector( indexs[i] ) );
	}
	for(UINT i=numTrainingExamples; i<totalNumSamples; i++){
		testSet.addSample( data.getRowVector( indexs[i] )  );
	}

	//Overwrite the training data in this instance with the training data of the trainingSet
	data = trainingSet.getData();
	totalNumSamples = trainingSet.getNumSamples();

	return testSet;
}
Exemplo n.º 8
0
int
main(int argc, char **argv)
{
  uint16_t i;
  PQ_PARAM_SET_ID plist[] = {DRAFT_401, DRAFT_439, DRAFT_593, DRAFT_743};
  size_t numParams = sizeof(plist)/sizeof(PQ_PARAM_SET_ID);

  for(i = 0; i<numParams; i++)
  {
    testPack(plist[i]);
    testKeyGen(plist[i]);
    testSet(plist[i]);
  }

  rng_cleanup();

  exit(EXIT_SUCCESS);
}
LabelledRegressionData LabelledRegressionData::partition(const UINT trainingSizePercentage){

	//Partitions the dataset into a training dataset (which is kept by this instance of the LabelledRegressionData) and
	//a testing/validation dataset (which is return as a new instance of the LabelledRegressionData).  The trainingSizePercentage
	//therefore sets the size of the data which remains in this instance and the remaining percentage of data is then added to
	//the testing/validation dataset

	const UINT numTrainingExamples = (UINT) floor( double(totalNumSamples) / 100.0 * double(trainingSizePercentage) );

	LabelledRegressionData trainingSet(numInputDimensions,numTargetDimensions);
	LabelledRegressionData testSet(numInputDimensions,numTargetDimensions);
	vector< UINT > indexs( totalNumSamples );

	//Create the random partion indexs
	Random random;
    UINT randomIndex = 0;
	for(UINT i=0; i<totalNumSamples; i++) indexs[i] = i;
	for(UINT x=0; x<totalNumSamples; x++){
		randomIndex = random.getRandomNumberInt(0,totalNumSamples);
		SWAP( indexs[ x ] , indexs[ randomIndex ] );
	}

	//Add the data to the training and test sets
	for(UINT i=0; i<numTrainingExamples; i++){
		trainingSet.addSample( data[ indexs[i] ].getInputVector(), data[ indexs[i] ].getTargetVector() );
	}
	for(UINT i=numTrainingExamples; i<totalNumSamples; i++){
		testSet.addSample( data[ indexs[i] ].getInputVector(), data[ indexs[i] ].getTargetVector() );
	}

	//Overwrite the training data in this instance with the training data of the trainingSet
	data = trainingSet.getData();
	totalNumSamples = trainingSet.getNumSamples();

    //The dataset has changed so flag that any previous cross validation setup will now not work
    crossValidationSetup = false;
    crossValidationIndexs.clear();

	return testSet;
}
Exemplo n.º 10
0
 void create( size_t countCards, size_t countSets, std::vector<card>& cards, std::vector<set>& sets ) {
     while( true ) {
         sets.clear();
         cards.clear();
         std::random_shuffle( _cards.begin(), _cards.end() );
         for( size_t f = 0; f < countCards; f++ ) {
             cards.push_back( _cards.at( f ) );
         }
         for( size_t c1 = 0; c1 < cards.size() - 2; c1++ ) {
             for( size_t c2 = c1 + 1; c2 < cards.size() - 1; c2++ ) {
                 for( size_t c3 = c2 + 1; c3 < cards.size(); c3++ ) {
                     if( testSet( &cards.at( c1 ), &cards.at( c2 ), &cards.at( c3 ) ) ) {
                         set s;
                         s.index.push_back( c1 ); s.index.push_back( c2 ); s.index.push_back( c3 );
                         sets.push_back( s );
                     }
                 }
             }
         }
         if( sets.size() == countSets ) return;
     }
 }
Exemplo n.º 11
0
int main(int argc, char** argv)
{
#ifdef PARALLEL_CORES
  omp_set_num_threads(PARALLEL_CORES);
#endif

  std::string directory = "./";
  if(argc > 1)
    directory = std::string(argv[1]);

  IDXLoader loader(28, 28, 10000, 1, directory);
  OpenANN::DirectStorageDataSet trainSet(&loader.trainingInput,
                                         &loader.trainingInput);

  int H = 196;
  OpenANN::SparseAutoEncoder sae(loader.D, H, 3.0, 0.1, 3e-3, OpenANN::LOGISTIC);
  sae.trainingSet(trainSet);

  OpenANN::LBFGS optimizer(20);
  OpenANN::StoppingCriteria stop;
  stop.maximalIterations = 400;
  optimizer.setOptimizable(sae);
  optimizer.setStopCriteria(stop);
  optimizer.optimize();

  OpenANN::MulticlassEvaluator evaluator(1, OpenANN::Logger::FILE);
  OpenANN::DirectStorageDataSet testSet(&loader.testInput, &loader.testInput,
                                        &evaluator);
  sae.validationSet(testSet);

  QApplication app(argc, argv);
  SparseAutoEncoderVisualization visual(sae, trainSet, H, 5, 7, 800, 600);
  visual.show();
  visual.resize(800, 600);
  return app.exec();
}
Exemplo n.º 12
0
int main(int argc, char **argv) {
   OptionParser opts;

   string mapFile, evidFile;//interactFile,ignoreFile;

   int factor;

   opts.addOption(new StringOption("map", 
            "--map <filename>                 : map file",
            "../input/grid.bmp", mapFile, false));

   opts.addOption(new StringOption("evidence", 
            "--evidence <filename>            : evidence file",
            "", evidFile, true));
   opts.addOption(new IntOption("factor", 
            "--factor <int>                   : scaling factor",
            1, factor, true));


   opts.parse(argc,argv);

   cout << "Loading Map File"<<endl;
   BMPFile bmpFile(mapFile); 
   Grid grid(bmpFile, black);
//   cout << "xdim: "<<grid.dims().first<<" yDim: "<<grid.dims().second<<endl;
   cout << "Loading Evidence"<<endl;
   //Evidence trainSet(evidFile, grid, factor);
   /* used when need to train two seperate models
   Evidence evid_int(interactFile, grid, factor);
   Evidence evid_ig(ignoreFile, grid, factor);
   Evidence train_int(grid),test_int(grid),train_ig(grid), test_ig(grid);
   evid_int.split(train_int, test_int, 0.05);
   evid_ig.split(train_ig, test_ig, 0.05);
   */
   Evidence evid(evidFile,grid,factor);
   Evidence trainSet(grid),testSet(grid);
   evid.split(trainSet,testSet,0.05);
   cout<<"Optimize over "<<trainSet.size()<<" examples"<<endl;
#if 0 
   for (int i=0; i < evid.size(); i++) {
      cout << "Evid "<<i<<endl;
      vector<pair<int, int> > traj = evid.at(i);
      vector<double> timestamps = evid.getTimes(i);

      cout << timestamps.size()<<"  "<<traj.size()<<endl;

      for (int j=0; j < traj.size(); j++) {
         cout << timestamps.at(j)<<"  "<<traj.at(j).first
            << "  "<<traj.at(j).second<<endl;
      } 
   }
#endif
//   testSet.write("testTraj.data");

   cout << "Generating Feature Set"<<endl;

   vector<PosFeature> features;

   cout << "   Constant Feature"<<endl;

   ConstantFeature constFeat(grid);
   features.push_back(constFeat);

   cout << "   Obstacle Feature"<<endl;

   ObstacleFeature obsFeat(grid);
   features.push_back(obsFeat);
	

   for (int i=1; i < 5; i++) {
      cout << "   Blur Feature "<<i<<endl;
      ObstacleBlurFeature blurFeat(grid, 5*i);
      features.push_back(blurFeat);
   }

   /*
   cout << "    Robot Feature"<<endl;
   RobotGlobalFeature robglobal(grid,snackbot,factor);
   features.push_back(robglobal);
   //  robot local blurres features
   for (int i=1; i < 5; i++) {
      cout << "  RobotBlur Feature "<<i<<endl;
      RobotLocalBlurFeature robblur(grid,snackbot,5*i,factor);
      features.push_back(robblur);
   }
	
   */
 
   /* 
   cout << "   Creating feature array"<<endl;
   FeatureArray featArray2(features);

   cout << "   Creating lower resolution feature array"<<endl;
   FeatureArray featArray(featArray2, factor);
   */

   cout << " Speed Feature"<<endl;
   vector<double> speedTable(2,0.0);
   speedTable.at(1) = 0.75;
   //speedTable.at(2) = 1.1;
   DisVecSeqFeature speedfeat(speedTable);


   /* Robset training weights: 
	* -3.83 -8.35991 -2.6512 -5.43475 -3.15203 -3.29758
	*  0.596987 0.439284
	* 0.589445 -0.82448
	* Non-robot-ending trainng weights:
	* -4.57257  -6.2 -0.3537 -2.7385 -0.9357 -0.2797
	* -0.495205 -0.2863
	* -1.2225 0.43993
	*/
   vector<double> weights(6+2+2, -0.0);
   weights.at(0) = -25;	
   weights.at(1) = -8.36;
   weights.at(2) = -2.65;
   weights.at(3) = -5.43;
   weights.at(4) = -3.17;
   weights.at(5) = -3.34;
   
   weights.at(6) = 0.5; // robot feature
   weights.at(7) = 0.3; // robot feature
  
   weights.at(8) = -0.29;  // velocity feature
   weights.at(9) = -1.11; // velocity feature

   //weights.push_back(1.5);//the last parameter is for velocity feature
   Parameters params(weights);

   DisSeqOrderInferEngine engine(8,InferenceEngine::GRID8);

   trajOptimizerplus optimizer(grid,trainSet,features,speedfeat,engine);

   optimizer.optimize(params,0.005,1000,1.0,OPT_EXP);

   return 0;

}
Exemplo n.º 13
0
TimeSeriesClassificationData TimeSeriesClassificationData::split(const UINT trainingSizePercentage,const bool useStratifiedSampling){

    //Partitions the dataset into a training dataset (which is kept by this instance of the TimeSeriesClassificationData) and
    //a testing/validation dataset (which is return as a new instance of the TimeSeriesClassificationData).  The trainingSizePercentage
    //therefore sets the size of the data which remains in this instance and the remaining percentage of data is then added to
    //the testing/validation dataset

    //The dataset has changed so flag that any previous cross validation setup will now not work
    crossValidationSetup = false;
    crossValidationIndexs.clear();

    TimeSeriesClassificationData trainingSet(numDimensions);
    TimeSeriesClassificationData testSet(numDimensions);
    trainingSet.setAllowNullGestureClass(allowNullGestureClass);
    testSet.setAllowNullGestureClass(allowNullGestureClass);
    Vector< UINT > indexs( totalNumSamples );

    //Create the random partion indexs
    Random random;
    UINT randomIndex = 0;

    if( useStratifiedSampling ){
        //Break the data into seperate classes
        Vector< Vector< UINT > > classData( getNumClasses() );

        //Add the indexs to their respective classes
        for(UINT i=0; i<totalNumSamples; i++){
            classData[ getClassLabelIndexValue( data[i].getClassLabel() ) ].push_back( i );
        }

        //Randomize the order of the indexs in each of the class index buffers
        for(UINT k=0; k<getNumClasses(); k++){
            UINT numSamples = (UINT)classData[k].size();
            for(UINT x=0; x<numSamples; x++){
                //Pick a random index
                randomIndex = random.getRandomNumberInt(0,numSamples);

                //Swap the indexs
                SWAP( classData[k][ x ] ,classData[k][ randomIndex ] );
            }
        }

        //Loop over each class and add the data to the trainingSet and testSet
        for(UINT k=0; k<getNumClasses(); k++){
            UINT numTrainingExamples = (UINT) floor( Float(classData[k].size()) / 100.0 * Float(trainingSizePercentage) );

            //Add the data to the training and test sets
            for(UINT i=0; i<numTrainingExamples; i++){
                trainingSet.addSample( data[ classData[k][i] ].getClassLabel(), data[ classData[k][i] ].getData() );
            }
            for(UINT i=numTrainingExamples; i<classData[k].size(); i++){
                testSet.addSample( data[ classData[k][i] ].getClassLabel(), data[ classData[k][i] ].getData() );
            }
        }

        //Overwrite the training data in this instance with the training data of the trainingSet
        data = trainingSet.getClassificationData();
        totalNumSamples = trainingSet.getNumSamples();
    }else{

        const UINT numTrainingExamples = (UINT) floor( Float(totalNumSamples) / 100.0 * Float(trainingSizePercentage) );
        //Create the random partion indexs
        Random random;
        for(UINT i=0; i<totalNumSamples; i++) indexs[i] = i;
        for(UINT x=0; x<totalNumSamples; x++){
            //Pick a random index
            randomIndex = random.getRandomNumberInt(0,totalNumSamples);

            //Swap the indexs
            SWAP( indexs[ x ] , indexs[ randomIndex ] );
        }

        //Add the data to the training and test sets
        for(UINT i=0; i<numTrainingExamples; i++){
            trainingSet.addSample( data[ indexs[i] ].getClassLabel(), data[ indexs[i] ].getData() );
        }
        for(UINT i=numTrainingExamples; i<totalNumSamples; i++){
            testSet.addSample( data[ indexs[i] ].getClassLabel(), data[ indexs[i] ].getData() );
        }

        //Overwrite the training data in this instance with the training data of the trainingSet
        data = trainingSet.getClassificationData();
        totalNumSamples = trainingSet.getNumSamples();
    }

    return testSet;
}
Exemplo n.º 14
0
int main (int argc, char ** argv)
{
	printf ("MATHCHECK	   TESTS\n");
	printf ("==================\n\n");

	init (argc, argv);

	KeySet * ks = create_ks ("153", "== + ../bla/val1 + ../bla/val2 ../bla/val3");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("250", "< + ../bla/val1 + ../bla/val2 ../bla/val3");
	test (ks, (-1));
	ksDel (ks);

	ks = create_ks ("250", ">= + @/bla/val1 + @/bla/val2 @/bla/val3");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("2", "== / @/bla/val1 @/bla/val2");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("", ":= / @/bla/val1 @/bla/val2");
	testSet (ks, "2");
	ksDel (ks);

	ks = create_ks ("1", "== / ../bla/val1 ../bla/val3");
	test (ks, (-1));
	ksDel (ks);

	ks = create_ks ("3", "== + '1.5' '1.5'");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("4.5", "== + '1.5' + '1.5' '1.5'");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("", ":= + '1.5' + '1.5' '1.5'");
	testSet (ks, "4.5");
	ksDel (ks);

	ks = create_ks ("1", "== + '1.5' '1.5'");
	test (ks, (-1));
	ksDel (ks);

	ks = create_ks ("10", "== + ../bla/val3 '7'");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("7", "== + @/bla/nonExisting '7'");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("", ":= + @/bla/nonExisting '7'");
	testSet (ks, "7");
	ksDel (ks);

	ks = create_ks ("7", "== * @/bla/nonExisting '7'");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("3", "== + ../bla/nonExisting + ../bla/nonExistingToo ../bla/val3");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("", ":= + ../bla/nonExisting + ../bla/nonExistingToo ../bla/val3");
	testSet (ks, "3");
	ksDel (ks);

	ks = create_ks ("3", "== / @/bla/nonExisting / ../bla/nonExistingToo @/bla/val3");
	test (ks, 1);
	ksDel (ks);

	ks = create_ks ("3", "== + @/bla/nonExisting / ../bla/val3 ../bla/nonExistingToo");
	test (ks, 1);
	ksDel (ks);

	test_multiUp ();

	printf ("\ntestmod_mathcheck RESULTS: %d test(s) done. %d error(s).\n", nbTest, nbError);

	char buffer[24];
	elektraFtoA (buffer, sizeof (buffer), (1.5));
	succeed_if (!(strcmp (buffer, "1.5")), "elektraFtoA failed");
	fprintf (stderr, "elektraFtoA: val: %g, ret: %s\n", (1.5), buffer);
	fprintf (stderr, "elektraEFtoF: string: %s, ret: %g\n", buffer, elektraEFtoF (buffer));
	succeed_if ((elektraEFtoF (buffer) - (1.5)) < 0.00001, "elektraEFtoF failed");
	return nbError;
}
Exemplo n.º 15
0
 void testSimple()
 {
     testSet(false, 10000, true);
     testSet(true, 10000, true);
 }
Exemplo n.º 16
0
ClassificationData ClassificationData::split(const UINT trainingSizePercentage,const bool useStratifiedSampling){

    //Partitions the dataset into a training dataset (which is kept by this instance of the ClassificationData) and
	//a testing/validation dataset (which is return as a new instance of the ClassificationData).  The trainingSizePercentage
	//therefore sets the size of the data which remains in this instance and the remaining percentage of data is then added to
	//the testing/validation dataset

    //The dataset has changed so flag that any previous cross validation setup will now not work
    crossValidationSetup = false;
    crossValidationIndexs.clear();

    ClassificationData trainingSet(numDimensions);
    ClassificationData testSet(numDimensions);
    trainingSet.setAllowNullGestureClass( allowNullGestureClass );
    testSet.setAllowNullGestureClass( allowNullGestureClass );

	//Create the random partion indexs
	Random random;
    UINT randomIndex = 0;
    UINT K = getNumClasses();

    if( useStratifiedSampling ){
        //Break the data into seperate classes
        Vector< Vector< UINT > > classData( K );

        //Add the indexs to their respective classes
        for(UINT i=0; i<totalNumSamples; i++){
            classData[ getClassLabelIndexValue( data[i].getClassLabel() ) ].push_back( i );
        }

        //Randomize the order of the indexs in each of the class index buffers
        for(UINT k=0; k<K; k++){
            std::random_shuffle(classData[k].begin(), classData[k].end());
        }
        
        //Reserve the memory
        UINT numTrainingSamples = 0;
        UINT numTestSamples = 0;
        
        for(UINT k=0; k<K; k++){
            UINT numTrainingExamples = (UINT) floor( Float(classData[k].size()) / 100.0 * Float(trainingSizePercentage) );
            UINT numTestExamples = ((UINT)classData[k].size())-numTrainingExamples;
            numTrainingSamples += numTrainingExamples;
            numTestSamples += numTestExamples;
        }
        
        trainingSet.reserve( numTrainingSamples );
        testSet.reserve( numTestSamples );

        //Loop over each class and add the data to the trainingSet and testSet
        for(UINT k=0; k<K; k++){
            UINT numTrainingExamples = (UINT) floor( Float(classData[k].getSize()) / 100.0 * Float(trainingSizePercentage) );

            //Add the data to the training and test sets
            for(UINT i=0; i<numTrainingExamples; i++){
                trainingSet.addSample( data[ classData[k][i] ].getClassLabel(), data[ classData[k][i] ].getSample() );
            }
            for(UINT i=numTrainingExamples; i<classData[k].getSize(); i++){
                testSet.addSample( data[ classData[k][i] ].getClassLabel(), data[ classData[k][i] ].getSample() );
            }
        }
    }else{

        const UINT numTrainingExamples = (UINT) floor( Float(totalNumSamples) / 100.0 * Float(trainingSizePercentage) );

        //Create the random partion indexs
        UINT randomIndex = 0;
        Vector< UINT > indexs( totalNumSamples );
        for(UINT i=0; i<totalNumSamples; i++) indexs[i] = i;
        std::random_shuffle(indexs.begin(), indexs.end());
        
        //Reserve the memory
        trainingSet.reserve( numTrainingExamples );
        testSet.reserve( totalNumSamples-numTrainingExamples );

        //Add the data to the training and test sets
        for(UINT i=0; i<numTrainingExamples; i++){
            trainingSet.addSample( data[ indexs[i] ].getClassLabel(), data[ indexs[i] ].getSample() );
        }
        for(UINT i=numTrainingExamples; i<totalNumSamples; i++){
            testSet.addSample( data[ indexs[i] ].getClassLabel(), data[ indexs[i] ].getSample() );
        }
    }

    //Overwrite the training data in this instance with the training data of the trainingSet
    *this = trainingSet;

    //Sort the class labels in this dataset
    sortClassLabels();

    //Sort the class labels of the test dataset
    testSet.sortClassLabels();

	return testSet;
}
Exemplo n.º 17
0
string predictDigits(Mat &originalImage) {
	string numbers = "";
	Mat clon = originalImage.clone();

	// Read the model from the XML file and create the neural network.
	CvANN_MLP nnetwork;
	CvFileStorage* storage = cvOpenFileStorage(
			"/home/andersson/Escritorio/Temporales/neural_network.xml", 0,
			CV_STORAGE_READ);
	CvFileNode *n = cvGetFileNodeByName(storage, 0, "DigitOCR");
	nnetwork.read(storage, n);
	cvReleaseFileStorage(&storage);

	int rows = originalImage.rows;
	int cols = originalImage.cols;

	int lx = 0;
	int ty = 0;
	int by = 0;
	int rx = 0;
	int flag = 0;
	int currentColumn = 1;
	bool temp = false;

	while (!temp) {
		/* Left X */
		for (int i = currentColumn; i < cols; i++) {
			for (int j = 1; j < rows; j++) {
				if (i != (cols - 1)) {
					if (originalImage.at<uchar> (j, i) == 0) {
						lx = i;
						flag = 1;
						break;
					}
				} else {
					temp = true;
					break;
				}
			}

			if (!temp) {
				if (flag == 1) {
					flag = 0;
					break;
				}
			} else {
				break;
			}
		}

		if (temp) {
			continue;
		}

		/* Right X */
		int tempNum;
		for (int i = lx; i < cols; i++) {
			tempNum = 0;
			for (int j = 1; j < rows; j++) {
				if (originalImage.at<uchar> (j, i) == 0) {
					tempNum += 1;
				}
			}

			if (tempNum == 0) {
				rx = (i - 1);
				break;
			}
		}

		currentColumn = rx + 1;

		/* Top Y */
		for (int i = 1; i < rows; i++) {
			for (int j = lx; j <= rx; j++) {
				if (originalImage.at<uchar> (i, j) == 0) {
					ty = i;
					flag = 1;
					break;
				}
			}

			if (flag == 1) {
				flag = 0;
				break;
			}
		}

		/* Bottom Y */
		for (int i = (rows - 1); i >= 1; i--) {
			for (int j = lx; j <= rx; j++) {
				if (originalImage.at<uchar> (i, j) == 0) {
					by = i;
					flag = 1;
					break;
				}
			}

			if (flag == 1) {
				flag = 0;
				break;
			}
		}

		int width = rx - lx;
		int height = by - ty;

		// Cropping image
		Mat crop(originalImage, Rect(lx, ty, width, height));

		// Cloning image
		Mat splittedImage;
		splittedImage = crop.clone();

		//		imwrite("/home/andersson/Escritorio/Temporales/splitted.png",
		//				splittedImage);

		// Processing image
		Mat output;
		cv::GaussianBlur(splittedImage, output, cv::Size(5, 5), 0);
		cv::threshold(output, output, 50, ATTRIBUTES - 1, 0);
		cv::Mat scaledDownImage(ROWCOLUMN, ROWCOLUMN, CV_8U, cv::Scalar(0));
		scaleDownImage(output, scaledDownImage);

		int pixelValueArray[ATTRIBUTES];
		cv::Mat testSet(1, ATTRIBUTES, CV_32F);
		// Mat to Pixel Value Array
		convertToPixelValueArray(scaledDownImage, pixelValueArray);

		// Pixel Value Array to Mat CV_32F
		cv::Mat classificationResult(1, CLASSES, CV_32F);
		for (int i = 0; i <= ATTRIBUTES; i++) {
			testSet.at<float> (0, i) = pixelValueArray[i];
		}

		// Predicting the number
		nnetwork.predict(testSet, classificationResult);

		// Selecting the correct response
		int maxIndex = 0;
		float value = 0.0f;
		float maxValue = classificationResult.at<float> (0, 0);
		for (int index = 1; index < CLASSES; index++) {
			value = classificationResult.at<float> (0, index);
			if (value > maxValue) {
				maxValue = value;
				maxIndex = index;
			}
		}

		printf("Class result: %d\n", maxIndex);
		numbers = numbers + convertIntToString(maxIndex);

		Scalar colorRect = Scalar(0.0, 0.0, 255.0);
		rectangle(clon, Point(lx, ty), Point(rx, by), colorRect, 1, 8, 0);
		namedWindow("Clon", CV_WINDOW_NORMAL);
		imshow("Clon", clon);
		waitKey(0);

		namedWindow("Test", CV_WINDOW_NORMAL);
		imshow("Test", splittedImage);
		waitKey(0);
	}

	imwrite("/home/andersson/Escritorio/Temporales/clon.png", clon);

	return numbers;
}
Exemplo n.º 18
0
int main(int argc, char **argv) {
   OptionParser opts;

   string mapFile,trainFile,testFile;

   int factor = 1;
   double step;

   opts.addOption(new StringOption("map", 
            "--map <filename>                 : map file",
            "../input/grid.bmp", mapFile, false));
   opts.addOption(new StringOption("evidence", 
            "--test evidence <filename>            : evidence file",
            "", testFile, true));

   opts.addOption(new DoubleOption("step",
            "--step <double>                   : inference interval",
            1.0, step, true));

   opts.parse(argc,argv);

   JetColorMap jet;
   RGBTRIPLE black = {0,0,0};
   RGBTRIPLE white = {255,255,255};
   RGBTRIPLE red;
   red.R = 255;
   red.G = 0;
   red.B = 0;
   RGBTRIPLE blue;
   blue.R = 0;
   blue.G = 0;
   blue.B = 255;
   RGBTRIPLE green;
   green.R = 0;
   green.G = 255;
   green.B = 0; 
   RGBTRIPLE initialColor;
   initialColor.R = 111; 
   initialColor.G = 49;
   initialColor.B = 152;
   RGBTRIPLE currentColor;
   currentColor.R = 181;
   currentColor.G = 165;
   currentColor.B = 213;
   RGBTRIPLE magenta;
   magenta.R = 255;
   magenta.G = 0;
   magenta.B = 255;
   RGBTRIPLE cyan;
   cyan.R = 0;
   cyan.G = 255;
   cyan.B = 255;
   RGBTRIPLE yellow;
   yellow.R = 255;
   yellow.G = 255;
   yellow.B = 0;

   BMPFile bmpFile(mapFile);
   Grid grid(bmpFile, black);

   
   Evidence testSet(testFile, grid, factor);
 //  Evidence trainSet(trainFile, grid, factor);

   pair<int, int> dims = grid.dims();
   
   cout << " Speed Feature"<<endl;
   vector<double> speedTable(VEL_DIM,0.0);
   speedTable.at(1) = 0.75;
   DisVecSeqFeature speedfeat(speedTable);

   vector<int> dimensions;
   dimensions.push_back(dims.first);
   dimensions.push_back(dims.second);
   dimensions.push_back(VEL_DIM);
   
   /* ****************************************
	*      INITIALIZE MARKOV DECESION PROCESS 
	*      BASED MODEL PARAMETERS
	* ****************************************/
   vector<double> p_weights(NUMPOSFEAT,-0.0);
   p_weights.at(0) = -2.23; //-2.23 for PPP forecast
   p_weights.at(1) = -6.2;
   p_weights.at(2) = -0.35;
   p_weights.at(3) = -2.73;
   p_weights.at(4) = -0.92;
   p_weights.at(5) = -0.26;
   vector<double> r_PosWeights(NUMPOSFEAT+NUMROBFEAT, -0.0);
   r_PosWeights.at(0) = -3.83;
   r_PosWeights.at(1) = -8.36;
   r_PosWeights.at(2) = -2.65;
   r_PosWeights.at(3) = -5.43;
   r_PosWeights.at(4) = -3.15;
   r_PosWeights.at(5) = -3.30;
   //r_PosWeights.at(6) =  0.60;
   //r_PosWeights.at(7) =  0.45;
   vector<double> nr_PosWeights(NUMPOSFEAT+NUMROBFEAT, -0.0);
   nr_PosWeights.at(0) = -4.51;
   nr_PosWeights.at(1) = -6.2;
   nr_PosWeights.at(2) = -0.35;
   nr_PosWeights.at(3) = -2.73;
   nr_PosWeights.at(4) = -0.93;
   nr_PosWeights.at(5) = -0.28;
   //nr_PosWeights.at(6) = -0.50;
   //nr_PosWeights.at(7) = -0.286;
   vector<double> r_SeqWeights(VEL_DIM, -0.0);
   r_SeqWeights.at(0) = 0.59;
   r_SeqWeights.at(1) = -0.83;
   vector<double> nr_SeqWeights(VEL_DIM, -0.0);
   nr_SeqWeights.at(0) = -1.21;
   nr_SeqWeights.at(1) = 0.49;

   Parameters p(p_weights);
   Parameters r_Pos(r_PosWeights);
   Parameters nr_Pos(nr_PosWeights);
   Parameters r_Seq(r_SeqWeights);
   Parameters nr_Seq(nr_SeqWeights);

   /* ****************************************
	*      INITIALIZE LINEAR QUADRATIC CONTROL 
	*      BASED MODEL PARAMETERS
	* ****************************************/
   M_6 A;
   A.setZero();
   A(0,0) = 1;
   A(1,1) = 1;
   A(4,2) = -1;
   A(5,3) = -1;
   M_6_2 B;
   B<<1,0,
	  0,1,
	  1,0,
	  0,1,
	  1,0,
	  0,1;
   M_6 costM;
   ifstream infile("../params/nonrob2000.dat");
   for(int row=0;row<costM.rows();row++){
	   for(int col=0;col<costM.cols();col++){
		   double temp;
		   infile>>temp;
		   costM(row,col) = temp;
	   }
   }
   infile.close();
   M_6 sigma;
   sigma<<0.001,0,0,0,0,0,
	      0,0.001,0,0,0,0,
		  0,0,0.005,0,0,0,
		  0,0,0,0.005,0,0,
		  0,0,0,0,0.005,0,
		  0,0,0,0,0,0.005;


   /* ****************************************
	*      DECLARATION OF INFERENCE ENGINES    
	* ****************************************/
   OrderedWaveInferenceEngine pp(InferenceEngine::GRID8);
   DisSeqOrderInferEngine mdpr(InferenceEngine::GRID8);
   DisSeqOrderInferEngine mdpnr(InferenceEngine::GRID8);
   ContinuousState cState;
   LQControlInference lq(A,B,sigma,costM,cState);
   lq.valueInference();


   IntentRecognizer IR(grid,p,r_Pos,r_Seq,nr_Pos,nr_Seq,
			   speedfeat,pp,mdpr,mdpnr,lq);

   cout << testSet.size() <<" Examples"<<endl;

   for (int i=0; i < testSet.size(); i++) {

      vector<pair<int, int> > & traj = testSet.at(i);
	  vector<double> & vels = testSet.at_v(i);
      vector<double> times = testSet.getTimes(i); 
	  pair<int,int> & botinGrid = testSet.at_bot(i);
	  vector<pair<double,double> > & obs = 
		  testSet.at_raw(i);
      vector<double> & rawTimes = testSet.at_rawTime(i);

      IR.combineForecast(traj,vels,obs,times,rawTimes,
				  botinGrid,i,step);
      
   }
}
Exemplo n.º 19
0
int main(int argc, char **argv) {
   OptionParser opts;

   string mapFile, evidFile;

   int factor;

   opts.addOption(new StringOption("map", 
            "--map <filename>                 : map file",
            "../input/grid.bmp", mapFile, false));

   opts.addOption(new StringOption("evidence", 
            "--evidence <filename>            : evidence file",
            "", evidFile, true));

   opts.addOption(new IntOption("factor",
            "--factor <int>                   : scaling factor",
            1, factor, true));

   opts.parse(argc,argv);
   JetColorMap jet;
   RGBTRIPLE black = {0,0,0};

   RGBTRIPLE white = {255,255,255};

   RGBTRIPLE red;
   red.R = 255;
   red.G = 0;
   red.B = 0;

   RGBTRIPLE blue;
   blue.R = 0;
   blue.G = 0;
   blue.B = 255;

   RGBTRIPLE green;
   green.R = 0;
   green.G = 255;
   green.B = 0; 

   RGBTRIPLE initialColor;
   initialColor.R = 111; 
   initialColor.G = 49;
   initialColor.B = 152;
//   initialColor.G = 152;
//   initialColor.B = 49;


   RGBTRIPLE currentColor;
   currentColor.R = 181;
   currentColor.G = 165;
   currentColor.B = 213;
//   currentColor.G = 213;
//   currentColor.B = 165;


   RGBTRIPLE magenta;
   magenta.R = 255;
   magenta.G = 0;
   magenta.B = 255;

   RGBTRIPLE cyan;
   cyan.R = 0;
   cyan.G = 255;
   cyan.B = 255;

   RGBTRIPLE yellow;
   yellow.R = 255;
   yellow.G = 255;
   yellow.B = 0;

   BMPFile bmpFile(mapFile);

   Grid grid(bmpFile, black);

   
   Evidence testSet(evidFile, grid, factor);
 /* 
   if (1) { 
	   evid.split(trainSet, testSet, 0.8);
   }else{
	   evid.deterministicsplit(trainSet, testSet);
   }*/

#if 0 
   cout << "Creating Markov Model"<<endl;
   MarkovModel markmodel(grid, trainSet);

   double totalObj = 0.0;

   for (int i=0; i < testSet.size(); i++) {
      vector<pair<int, int> > path = testSet.at(i);
      cout << "Calling eval"<<endl;
      double obj = markmodel.eval(path);
      cout << "OBJ: "<<i<<" "<<obj<<endl;
	
      totalObj += obj;
   }

   cout << "TOTAL OBJ: "<<totalObj<<endl;

   cout << "AVERAGE OBJ: "<<totalObj/testSet.size()<<endl;
   return 0;
#endif
   vector<PosFeature> features;

   cout << "Constant Feature"<<endl;

   ConstantFeature constFeat(grid);
   features.push_back(constFeat);

   cout << "Obstacle Feature"<<endl;

   ObstacleFeature obsFeat(grid);
   features.push_back(obsFeat);

   for (int i=1; i < 5; i++) {
      cout << "Blur Feature "<<i<<endl;
      ObstacleBlurFeature blurFeat(grid, 5*i);
      features.push_back(blurFeat);
   }

   cout << "Creating feature array"<<endl;
   FeatureArray featArray2(features);

   cout << "Creating lower resolution feature array"<<endl;
   FeatureArray featArray(featArray2, factor);

   pair<int, int> dims = grid.dims();
   pair<int, int> lowDims((int)ceil((float)dims.first/factor),
         (int)ceil((float)dims.second/factor));

   vector<double> weights(features.size(), -0.0);
   weights.at(1) = -6.2;
   //for (int i=2; i < weights.size(); i++)
   //   weights.at(i) = -1.0;
   weights.at(0) = -2.23;//-2.23
   weights.at(2) = -0.35;
   weights.at(3) = -2.73;
   weights.at(4) = -0.92;
   weights.at(5) = -0.26;
   Parameters params(weights);

   OrderedWaveInferenceEngine engine(InferenceEngine::GRID8);

   vector<vector<double> > prior(dims.first,vector<double> (dims.second,0.0));
/*
   double divide = 1.0;
   vector<double> radiusWeight;
   for (int i=0; i < 20; i++) {
      radiusWeight.push_back(1.0/divide);
      divide*=2;
   }
   generatePrior(grid, trainSet, priorOrig, radiusWeight, factor);
 
   reducePrior(priorOrig, prior, factor);
*/

   vector<vector<vector<double> > > partition, backpartition;

   int time0 = time(0);

   BMPFile gridView(dims.first, dims.second);



   RewardMap rewards(featArray, params); 

   vector<double> sums(params.size(),0.00001);
      
   vector<vector<double> > occupancy;

   Predictor predictor(grid, rewards, engine); 
   
   predictor.setPrior(prior);


   cout << testSet.size() <<" Examples"<<endl;

   for (int i=0; i < testSet.size(); i++) {

      int index = 0;


      vector<pair<int, int> > traj = testSet.at(i);
      vector<double> times = testSet.getTimes(i); 
      pair<int, int> initial = traj.front();
	  pair<int,int> & botinGrid = testSet.at_bot(i); 
	  pair<double,double>& botinPoint = testSet.at_rbot(i);
	  pair<double,double>& end = testSet.at_raw(i).back();

      predictor.setStart(initial); 

      double thresh = -20.0;
	  double startTime = times.front();

      char buf[1024];
      sprintf(buf, "../output/pppredict%03d.dat", i);
      ofstream file(buf);

      for (double tick = startTime; index < traj.size(); tick+=0.4) {

         for ( ; index < traj.size() && times.at(index) < tick; index++); 

         if (index == traj.size() ) break;
 
         cout << "Evidence: "<<i<<"  timestep: "<<tick
            <<"   index: "<<index<<endl;
         predictor.predict(traj.at(index), occupancy);

         cout << "SIZE: "<<prior.size()<<endl;
		 vector<vector<double> >  pos 
            = predictor.getPosterior();

         gridView.addBelief(pos, -30.0, 0.0,jet);

         grid.addObstacles(gridView, black);
         gridView.addLabel(botinGrid,green);
         vector<pair<int, int> > subTraj;

         subTraj.insert(subTraj.end(), traj.begin(), traj.begin()+index);

         gridView.addVector(subTraj, red, factor);

         sprintf(buf, "../compare/pp%03d-%03f.bmp", i, tick-startTime); 
         gridView.write(buf);
		 //pair<double,double> values = predictor.check(traj.back());
		 double cost = 0.0;
		 for(int itr = 0;itr<index;itr++)
		   cost +=rewards.at(traj[itr].first,traj[itr].second);

		 cout<<i<<" Normalizer: "<<predictor.getNormalizer(traj.back())<<
			 " path cost: "<<cost<<" Probability:  "<<cost+predictor.getNormalizer(traj.back())<<endl;

         vector<vector<vector<double> > > timeOcc 
            = predictor.getTimeOccupancy();

		 vector<vector<double > > posterior  = predictor.getPosterior();
		 double maxV = -HUGE_VAL;
		 pair<int,int> predestGrid;
		 pair<double,double> predestPoint;

         for (int ii=0; ii< dims.first; ii++) { 
            for (int jj=0; jj < dims.second; jj++) {
			   if(posterior[ii][jj]>maxV){
				   predestGrid.first = ii;
				   predestGrid.second = jj;
			   }
               maxV  = max(maxV, posterior.at(ii).at(jj));
            }
         }
		 predestPoint = grid.grid2Real(predestGrid.first,predestGrid.second);
		 double dist = sqrt((end.first-predestPoint.first)*(end.first-predestPoint.first)
			 +(end.second-predestPoint.second)*(end.second-predestPoint.second));

		 double logloss = entropy(posterior);

		 cout<<"final belief: "<<posterior.at(traj.back().first).at(traj.back().second)
			 <<" max: "<<maxV
			 <<" logloss: "<<logloss<<endl; 
		 cout<<botinGrid.first<<" "<<botinGrid.second
			 <<" "<<predestGrid.first<<" "<<predestGrid.second<<endl;
		 file<<tick-startTime
			 <<" "<<logloss
			 <<" "<<posterior.at(botinGrid.first).at(botinGrid.second)
			 <<" "<<posterior.at(traj.back().first).at(traj.back().second)
			 <<" "<<maxV<<" "<<dist<<endl;

      } 
      file.close();
   }

}