Exemplo n.º 1
0
float NNClassifier::classifyBB(const Mat& img, Rect* bb) {
	NormalizedPatch patch;

	tldExtractNormalizedPatchRect(img, bb, patch.values);
	return classifyPatch(&patch);

}
Exemplo n.º 2
0
    //Do this when current trajectory is valid
    void TLD::learn() {
        if (!learningEnabled || !valid || !detectorEnabled) {
            learning = false;
            return;
        }

        learning = true;

        DetectionResult* detectionResult = detectorCascade->detectionResult;

        if (!detectionResult->containsValidData)
        { detectorCascade->detect(currImg); }

        //This is the positive patch
        NormalizedPatch patch;
        tldExtractNormalizedPatchRect(currImg, currBB, patch.values);

        float* overlap = new float[detectorCascade->numWindows] {};
        tldOverlapRect(detectorCascade->windows, detectorCascade->numWindows, currBB, overlap);

        //Add all bounding boxes with high overlap
        vector<pair<int, float> > positiveIndices;
        vector<int> negativeIndices;
        vector<int> negativeIndicesForNN;

        //First: Find overlapping positive and negative patches

        for (int i = 0; i < detectorCascade->numWindows; i++) {
            if (overlap[i] > 0.7) {
                positiveIndices.push_back(pair<int, float>(i, overlap[i]));
            }

            if (overlap[i] < 0.2) {
                if (!detectorCascade->ensembleClassifier->enabled || detectionResult->posteriors[i] > 0.5) { //Should be 0.5 according to the paper
                    negativeIndices.push_back(i);
                }

                if (!detectorCascade->ensembleClassifier->enabled || detectionResult->posteriors[i] > 0.5) {
                    negativeIndicesForNN.push_back(i);
                }
            }
        }

        sort(positiveIndices.begin(), positiveIndices.end(), tldSortByOverlapDesc);

        vector<NormalizedPatch> patches;

        patch.positive = 1;
        patches.push_back(patch);
        //TODO: Flip

        size_t numIterations = std::min<size_t>(positiveIndices.size(), 10); //Take at most 10 bounding boxes (sorted by overlap)

        for (size_t i = 0; i < negativeIndices.size(); i++) {
            int idx = negativeIndices.at(i);
            //TODO: Somewhere here image warping might be possible
            detectorCascade->ensembleClassifier->learn(&detectorCascade->windows[TLD_WINDOW_SIZE * idx], false, &detectionResult->featureVectors[detectorCascade->numTrees * idx]);
        }

        //TODO: Randomization might be a good idea
        for (int i = 0; i < numIterations; i++) {
            int idx = positiveIndices.at(i).first;
            //TODO: Somewhere here image warping might be possible
            detectorCascade->ensembleClassifier->learn(&detectorCascade->windows[TLD_WINDOW_SIZE * idx], true, &detectionResult->featureVectors[detectorCascade->numTrees * idx]);
        }

        for (size_t i = 0; i < negativeIndicesForNN.size(); i++) {
            int idx = negativeIndicesForNN.at(i);

            NormalizedPatch patch;
            tldExtractNormalizedPatchBB(currImg, &detectorCascade->windows[TLD_WINDOW_SIZE * idx], patch.values);
            patch.positive = 0;
            patches.push_back(patch);
        }

        detectorCascade->nnClassifier->learn(patches);

        delete[] overlap;
    }
Exemplo n.º 3
0
    void TLD::initialLearning() {
        learning = true; //This is just for display purposes

        DetectionResult* detectionResult = detectorCascade->detectionResult;

        detectorCascade->detect(currImg);

        //This is the positive patch
        NormalizedPatch initPatch;
        tldExtractNormalizedPatchRect(currImg, currBB, initPatch.values);
        initPatch.positive = 1;

        float initVar = tldCalcVariance(initPatch.values, TLD_PATCH_SIZE * TLD_PATCH_SIZE);
        detectorCascade->varianceFilter->minVar = initVar / 2;

        float* overlap = new float[detectorCascade->numWindows] {};
        tldOverlapRect(detectorCascade->windows, detectorCascade->numWindows, currBB, overlap);

        //Add all bounding boxes with high overlap
        vector< pair<int, float> > positiveIndices;
        vector<int> negativeIndices;

        //First: Find overlapping positive and negative patches
        for (int i = 0; i < detectorCascade->numWindows; i++) {
            if (overlap[i] > 0.7) {
                positiveIndices.push_back(pair<int, float>(i, overlap[i]));
            }

            if (overlap[i] < 0.2) {
                float variance = detectionResult->variances[i];

                if (!detectorCascade->varianceFilter->enabled || variance > detectorCascade->varianceFilter->minVar) { //TODO: This check is unnecessary if minVar would be set before calling detect.
                    negativeIndices.push_back(i);
                }
            }
        }

        sort(positiveIndices.begin(), positiveIndices.end(), tldSortByOverlapDesc);

        vector<NormalizedPatch> patches;

        patches.push_back(initPatch); //Add first patch to patch list

        size_t numIterations = std::min<size_t>(positiveIndices.size(), 10); //Take at most 10 bounding boxes (sorted by overlap)

        for (int i = 0; i < numIterations; i++) {
            int idx = positiveIndices.at(i).first;
            //Learn this bounding box
            //TODO: Somewhere here image warping might be possible
            detectorCascade->ensembleClassifier->learn(&detectorCascade->windows[TLD_WINDOW_SIZE * idx], true, &detectionResult->featureVectors[detectorCascade->numTrees * idx]);
        }

        std::shuffle(negativeIndices.begin(), negativeIndices.end(), *rng);

        //Choose 100 random patches for negative examples
        for (size_t i = 0; i < std::min<size_t>(100, negativeIndices.size()); i++) {
            int idx = negativeIndices.at(i);

            NormalizedPatch patch;
            tldExtractNormalizedPatchBB(currImg, &detectorCascade->windows[TLD_WINDOW_SIZE * idx], patch.values);
            patch.positive = 0;
            patches.push_back(patch);
        }

        detectorCascade->nnClassifier->learn(patches);
        delete[] overlap;
    }
Exemplo n.º 4
0
//Do this when current trajectory is valid
void TLD::learn()
{
    if(!learningEnabled || !valid || !detectorEnabled)
    {
        learning = false;
        return;
    }

    learning = true;

    DetectionResult *detectionResult = detectorCascade->detectionResult;

    if(!detectionResult->containsValidData)
    {
#ifndef USE_HTLD
		detectorCascade->detect(currImg);
#else
		detectorCascade->detect(currImg, 
								hTLDMaster->getTLDObject(tldObjId)->getFastDetStr(),
								false);
#endif
    }

    //This is the positive patch
    NormalizedPatch patch;
    tldExtractNormalizedPatchRect(currImg, currBB, patch.values);

    float *overlap = new float[detectorCascade->numWindows];
    tldOverlapRect(detectorCascade->windows, detectorCascade->numWindows, currBB, overlap);

    //Add all bounding boxes with high overlap

    vector<std::pair<int, float> > positiveIndices;
    vector<int> negativeIndices;
    vector<int> negativeIndicesForNN;

    //First: Find overlapping positive and negative patches

    for(int i = 0; i < detectorCascade->numWindows; i++)
    {
        if(overlap[i] > 0.6)
        {
            positiveIndices.push_back(std::pair<int, float>(i, overlap[i]));
        }

        if(overlap[i] < 0.2)
        {
            if(!detectorCascade->ensembleClassifier->enabled || detectionResult->posteriors[i] > 0.5)   //Should be 0.5 according to the paper
            {
                negativeIndices.push_back(i);
				negativeIndicesForNN.push_back(i);
            }
        }
    }

    sort(positiveIndices.begin(), positiveIndices.end(), tldSortByOverlapDesc);

    vector<NormalizedPatch> patches;

    patch.positive = 1;
    patches.push_back(patch);
    //TODO: Flip


    int numIterations = std::min<size_t>(positiveIndices.size(), 10); //Take at most 10 bounding boxes (sorted by overlap)

    for(size_t i = 0; i < negativeIndices.size(); i++)
    {
        int idx = negativeIndices.at(i);
        //TODO: Somewhere here image warping might be possible
        detectorCascade->ensembleClassifier->learn(&detectorCascade->windows[TLD_WINDOW_SIZE * idx], false, &detectionResult->featureVectors[detectorCascade->numTrees * idx]);
    }
	
	//***********************************************************************************
	//**************Warping Positive Patches & Traininng the Classifier...***************
	//***********************************************************************************
	int bbW;
	int bbH;
	std::vector<int> indices(numIterations);
	for(int i = 0; i<numIterations; i++)
		indices[i] = positiveIndices.at(i).first;
	bbHull(detectorCascade->windowOffsets, 
		   indices, 
		   currImg.cols, 
		   hull);
	bbW = hull[2] - hull[0] + 1;
	bbH = hull[3] - hull[1] + 1;
	cv::Rect roi(hull[0], hull[1], bbW, bbH);
#ifdef USE_HTLD
	//Move Blurred Image to CPU...
	cudaMemcpy((void*)imBlurred->data,
			   (void*)memMgr->getDevBlurredCurFrame(),
			   sizeof(Npp8u) * currImg.rows * currImg.cols,
			   cudaMemcpyDeviceToHost);
#else
	gaussianFilter->apply(currImg,
						  *imBlurred);
#endif
	cv::Mat noise(bbH, bbW, CV_64FC1);
	cv::Mat result(bbH, bbW, CV_8UC1);
	//TODO: Make All Patch Related Params Configurable...
	for(int i = 0; i < 20; i++) { //Here 20 is equal to # of Warped-Images...
		if(i > 0) {
			//TODO: GPU is a Better Prospect for This Sort of Operations(Next Step for Parallelization)???!!!!
			extractPatch(*imBlurred,
						 hull,
						 bbW,
						 bbH,
						 (unsigned char)0,
						 rng,
						 5.0,
						 20.0,
						 0.02,
						 0.02,
						 noise,
						 result);
			result.copyTo((*ppHolder)(roi));
		}//End of if-Block...
		for(int j = 0; j<numIterations; j++) {
			int idx = positiveIndices.at(j).first;
			detectorCascade->ensembleClassifier->calcFeatureVectorPatch(ppHolder->data, 
				                                                        idx, 
																		&detectionResult->featureVectors[detectorCascade->numTrees * idx]);
			detectorCascade->ensembleClassifier->learn(&detectorCascade->windows[TLD_WINDOW_SIZE * idx], 
													   true, 
													   &detectionResult->featureVectors[detectorCascade->numTrees * idx]);
		}
    }

    for(size_t i = 0; i < negativeIndicesForNN.size(); i++)
    {
        int idx = negativeIndicesForNN.at(i);

        NormalizedPatch patch;
        tldExtractNormalizedPatchBB(currImg, &detectorCascade->windows[TLD_WINDOW_SIZE * idx], patch.values);
        patch.positive = 0;
        patches.push_back(patch);
    }

    detectorCascade->nnClassifier->learn(patches);

    //cout << "NN has now " << detectorCascade->nnClassifier->truePositives->size() << " positives and " << detectorCascade->nnClassifier->falsePositives->size() << " negatives.\n";
    delete[] overlap;
}