Exemplo n.º 1
0
/**
 * cpuidle_idle_call - the main idle loop
 *
 * NOTE: no locks or semaphores should be used here
 * return non-zero on failure
 */
int cpuidle_idle_call(void)
{
	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
	struct cpuidle_driver *drv = cpuidle_get_driver();
	struct cpuidle_state *target_state;
	int next_state, entered_state;

	if (off)
		return -ENODEV;

	if (!initialized)
		return -ENODEV;

	/* check if the device is ready */
	if (!dev || !dev->enabled)
		return -EBUSY;

#if 0
	/* shows regressions, re-enable for 2.6.29 */
	/*
	 * run any timers that can be run now, at this point
	 * before calculating the idle duration etc.
	 */
	hrtimer_peek_ahead_timers();
#endif

	/* ask the governor for the next state */
	next_state = cpuidle_curr_governor->select(drv, dev);
	if (need_resched()) {
		local_irq_enable();
		return 0;
	}

	target_state = &drv->states[next_state];

	trace_power_start(POWER_CSTATE, next_state, dev->cpu);
	trace_cpu_idle(next_state, dev->cpu);

	entered_state = target_state->enter(dev, drv, next_state);

	trace_power_end(dev->cpu);
	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);

	if (entered_state >= 0) {
		/* Update cpuidle counters */
		/* This can be moved to within driver enter routine
		 * but that results in multiple copies of same code.
		 */
		dev->states_usage[entered_state].time +=
				(unsigned long long)dev->last_residency;
		dev->states_usage[entered_state].usage++;
	}

	/* give the governor an opportunity to reflect on the outcome */
	if (cpuidle_curr_governor->reflect)
		cpuidle_curr_governor->reflect(dev, entered_state);

	return 0;
}
Exemplo n.º 2
0
/**
 * cpuidle_idle_call - the main idle loop
 *
 * NOTE: no locks or semaphores should be used here
 */
static void cpuidle_idle_call(void)
{
	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
	struct cpuidle_state *target_state;
	int next_state;

	/* check if the device is ready */
	if (!dev || !dev->enabled) {
		if (pm_idle_old)
			pm_idle_old();
		else
#if defined(CONFIG_ARCH_HAS_DEFAULT_IDLE)
			default_idle();
#else
			local_irq_enable();
#endif
		return;
	}

#if 0
	/* shows regressions, re-enable for 2.6.29 */
	/*
	 * run any timers that can be run now, at this point
	 * before calculating the idle duration etc.
	 */
	hrtimer_peek_ahead_timers();
#endif
	  
	/* ask the governor for the next state */
	next_state = cpuidle_curr_governor->select(dev);
	if (need_resched()) {
		local_irq_enable();
		return;
	}

	target_state = &dev->states[next_state];

	/* enter the state and update stats */
	dev->last_state = target_state;
	
	trace_power_start(POWER_CSTATE, next_state, dev->cpu);
	trace_cpu_idle(next_state, dev->cpu);
	
	dev->last_residency = target_state->enter(dev, target_state);
	
	trace_power_end(dev->cpu);
	trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
	
	if (dev->last_state)
		target_state = dev->last_state;

	target_state->time += (unsigned long long)dev->last_residency;
	target_state->usage++;

	/* give the governor an opportunity to reflect on the outcome */
	if (cpuidle_curr_governor->reflect)
		cpuidle_curr_governor->reflect(dev);
}
Exemplo n.º 3
0
/**
 * cpuidle_idle_call - the main idle loop
 *
 * NOTE: no locks or semaphores should be used here
 * return non-zero on failure
 */
int cpuidle_idle_call(void)
{
	struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
	struct cpuidle_state *target_state;
	int next_state;

	if (off)
		return -ENODEV;

	if (!initialized)
		return -ENODEV;

	/* check if the device is ready */
	if (!dev || !dev->enabled)
		return -EBUSY;

#if 0
	/* shows regressions, re-enable for 2.6.29 */
	/*
	 * run any timers that can be run now, at this point
	 * before calculating the idle duration etc.
	 */
	hrtimer_peek_ahead_timers();
#endif

	/* ask the governor for the next state */
	next_state = cpuidle_curr_governor->select(dev);
	if (need_resched()) {
		local_irq_enable();
		return 0;
	}

	target_state = &dev->states[next_state];

	/* enter the state and update stats */
	dev->last_state = target_state;

	RCU_NONIDLE(
		trace_power_start(POWER_CSTATE, next_state, dev->cpu);
		trace_cpu_idle(next_state, dev->cpu)
	);

	dev->last_residency = target_state->enter(dev, target_state);

	RCU_NONIDLE(
		trace_power_end(dev->cpu);
		trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu);
	);
Exemplo n.º 4
0
/**
 * cpuidle_idle_call - the main idle loop
 *
 * NOTE: no locks or semaphores should be used here
 */
static void cpuidle_idle_call(void)
{
	struct cpuidle_device *dev = __get_cpu_var(cpuidle_devices);
	struct cpuidle_state *target_state;
	int next_state;

	/* check if the device is ready */
	if (!dev || !dev->enabled) {
		if (pm_idle_old)
			pm_idle_old();
		else
#if defined(CONFIG_ARCH_HAS_DEFAULT_IDLE)
			default_idle();
#else
			local_irq_enable();
#endif
		return;
	}

#if 0
	/* shows regressions, re-enable for 2.6.29 */
	/*
	 * run any timers that can be run now, at this point
	 * before calculating the idle duration etc.
	 */
	hrtimer_peek_ahead_timers();
#endif

	/*
	 * Call the device's prepare function before calling the
	 * governor's select function.  ->prepare gives the device's
	 * cpuidle driver a chance to update any dynamic information
	 * of its cpuidle states for the current idle period, e.g.
	 * state availability, latencies, residencies, etc.
	 */
	if (dev->prepare)
		dev->prepare(dev);

	/* ask the governor for the next state */
	next_state = cpuidle_curr_governor->select(dev);
	if (need_resched()) {
		local_irq_enable();
		return;
	}

	target_state = &dev->states[next_state];

	/* enter the state and update stats */
	dev->last_state = target_state;
	dev->last_residency = target_state->enter(dev, target_state);
	if (dev->last_state)
		target_state = dev->last_state;

	target_state->time += (unsigned long long)dev->last_residency;
	target_state->usage++;

	/* give the governor an opportunity to reflect on the outcome */
	if (cpuidle_curr_governor->reflect)
		cpuidle_curr_governor->reflect(dev);
	trace_power_end(0);
}