bool CubeCollider::raycastALT(const Ray & ray, RaycastHit & hitInfo){

	glm::vec3 position = object->getTransform()->getPosition();
	glm::vec3 dirToCenter = ray.origin - position;
	if(glm::dot(ray.direction, dirToCenter) >= 0){
		//std::cout << "ray is going in a different direction" << std::endl;
		return false;
	}

	transformNormals();

	Plane planes[6];
	for(int i = 0; i < 6; i ++){
		planes[i] = Plane(transformedNormals[i],position + center + (transformedNormals[i] * size * .5f) );
	}

	for(int i = 0; i < 6; i ++){
		bool viable = true;
		Plane plane = planes[i];
		float enter;
		if(plane.raycast(ray, enter)){
			glm::vec3 point = ray.getPoint(enter);
			for(int j = 0; j < 6; j++){
				if(i == j) continue;

				if(glm::dot(planes[i].normal, point - planes[i].point ) >= 0){
					//point is behind plane
				}
				else{
					//point is in front of plane
					viable = false;
					break;
				}
			}
			if(viable){
				hitInfo.point = point;
				hitInfo.distance = enter;
				hitInfo.normal = transformedNormals[i];
				hitInfo.object = object;
				return true;
			}
		}
		else{
			// a ray missed one of the faces
			return false;
		}


	}
	return false;
}
Exemplo n.º 2
0
bool
RecognizerROS<PointT>::respondSrvCall(recognition_srv_definitions::recognize::Request &req,
                            recognition_srv_definitions::recognize::Response &response) const
{
    typename pcl::PointCloud<PointT>::Ptr pRecognizedModels (new pcl::PointCloud<PointT>);
    cv::Mat_<cv::Vec3b> annotated_img;

    ConvertPCLCloud2Image<PointT>(scene_, annotated_img);

    for (size_t j = 0; j < models_verified_.size(); j++)
    {
      std_msgs::String ss_tmp;
      ss_tmp.data = models_verified_[j]->id_;
      response.ids.push_back(ss_tmp);

      Eigen::Matrix4f trans = transforms_verified_[j];
      geometry_msgs::Transform tt;
      tt.translation.x = trans(0,3);
      tt.translation.y = trans(1,3);
      tt.translation.z = trans(2,3);

      Eigen::Matrix3f rotation = trans.block<3,3>(0,0);
      Eigen::Quaternionf q(rotation);
      tt.rotation.x = q.x();
      tt.rotation.y = q.y();
      tt.rotation.z = q.z();
      tt.rotation.w = q.w();
      response.transforms.push_back(tt);

      typename pcl::PointCloud<PointT>::ConstPtr model_cloud = models_verified_[j]->getAssembled ( resolution_ );
      typename pcl::PointCloud<PointT>::Ptr model_aligned (new pcl::PointCloud<PointT>);
      pcl::transformPointCloud (*model_cloud, *model_aligned, transforms_verified_[j]);
      *pRecognizedModels += *model_aligned;
      sensor_msgs::PointCloud2 rec_model;
      pcl::toROSMsg(*model_aligned, rec_model);
      response.models_cloud.push_back(rec_model);

      pcl::PointCloud<pcl::Normal>::ConstPtr normal_cloud = models_verified_[j]->getNormalsAssembled ( resolution_ );

      pcl::PointCloud<pcl::Normal>::Ptr normal_aligned (new pcl::PointCloud<pcl::Normal>);
      transformNormals(*normal_cloud, *normal_aligned, transforms_verified_[j]);

      //ratio of inlier points
      float confidence = 0;
      const float focal_length = 525.f;
      const int img_width = 640;
      const int img_height = 480;

      VisibilityReasoning<pcl::PointXYZRGB> vr (focal_length, img_width, img_height);
      vr.setThresholdTSS (0.01f);
      /*float fsv_ratio =*/ vr.computeFSVWithNormals (scene_, model_aligned, normal_aligned);
      confidence = 1.f - vr.getFSVUsedPoints() / static_cast<float>(model_aligned->points.size());
      response.confidence.push_back(confidence);

      //centroid and BBox
      Eigen::Vector4f centroid;
      pcl::compute3DCentroid(*model_aligned, centroid);
      geometry_msgs::Point32 centroid_msg;
      centroid_msg.x = centroid[0];
      centroid_msg.y = centroid[1];
      centroid_msg.z = centroid[2];
      response.centroid.push_back(centroid_msg);

      Eigen::Vector4f min;
      Eigen::Vector4f max;
      pcl::getMinMax3D (*model_aligned, min, max);

      object_perception_msgs::BBox bbox;
      geometry_msgs::Point32 pt;
      pt.x = min[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
      pt.x = min[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
      pt.x = min[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
      pt.x = min[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
      pt.x = max[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
      pt.x = max[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
      pt.x = max[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
      pt.x = max[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
      response.bbox.push_back(bbox);

      const float cx = static_cast<float> (img_width) / 2.f; //- 0.5f;
      const float cy = static_cast<float> (img_height) / 2.f; // - 0.5f;

      int min_u, min_v, max_u, max_v;
      min_u = img_width;
      min_v = img_height;
      max_u = max_v = 0;

      for(size_t m_pt_id=0; m_pt_id < model_aligned->points.size(); m_pt_id++)
      {
          const float x = model_aligned->points[m_pt_id].x;
          const float y = model_aligned->points[m_pt_id].y;
          const float z = model_aligned->points[m_pt_id].z;
          const int u = static_cast<int> (focal_length * x / z + cx);
          const int v = static_cast<int> (focal_length * y / z + cy);

          if (u >= img_width || v >= img_width || u < 0 || v < 0)
            continue;

          if(u < min_u)
              min_u = u;

          if(v < min_v)
              min_v = v;

          if(u > max_u)
              max_u = u;

          if(v > max_v)
              max_v = v;
      }

      cv::Point text_start;
      text_start.x = min_u;
      text_start.y = std::max(0, min_v - 10);
      cv::putText(annotated_img, models_verified_[j]->id_, text_start, cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(255,0,255), 1, CV_AA);
      cv::rectangle(annotated_img, cv::Point(min_u, min_v), cv::Point(max_u, max_v), cv::Scalar( 0, 255, 255 ), 2);
    }

    sensor_msgs::PointCloud2 recognizedModelsRos;
    pcl::toROSMsg (*pRecognizedModels, recognizedModelsRos);
    recognizedModelsRos.header.frame_id = req.cloud.header.frame_id;
    vis_pc_pub_.publish(recognizedModelsRos);

    sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", annotated_img).toImageMsg();
    image_pub_.publish(msg);

    return true;
}
void
NMBasedCloudIntegration<PointT>::collectInfo ()
{
  size_t total_point_count = 0;
  for(size_t i = 0; i < input_clouds_.size(); i++)
    total_point_count += (indices_.empty() || indices_[i].empty()) ? input_clouds_[i]->size() : indices_[i].size();
  VLOG(1) << "Allocating memory for point information of " << total_point_count << "points. ";
  big_cloud_info_.resize(total_point_count);


  std::vector<pcl::PointCloud<PointT> > input_clouds_aligned (input_clouds_.size());
  std::vector<pcl::PointCloud<pcl::Normal> > input_normals_aligned (input_clouds_.size());

#pragma omp parallel for schedule(dynamic)
  for(size_t i=0; i < input_clouds_.size(); i++)
  {
      pcl::transformPointCloud(*input_clouds_[i], input_clouds_aligned[i], transformations_to_global_[i]);
      transformNormals(*input_normals_[i], input_normals_aligned[i], transformations_to_global_[i]);
  }

  size_t point_count = 0;
  for(size_t i=0; i < input_clouds_.size(); i++)
  {
    const pcl::PointCloud<PointT> &cloud_aligned = input_clouds_aligned[i];
    const pcl::PointCloud<pcl::Normal> &normals_aligned = input_normals_aligned[i];

    size_t kept_new_pts = 0;
    if (indices_.empty() || indices_[i].empty())
    {
      for(size_t jj=0; jj<cloud_aligned.points.size(); jj++)
      {
        if ( !pcl::isFinite(cloud_aligned.points[jj]) || !pcl::isFinite(normals_aligned.points[jj]) )
          continue;

        PointInfo &pt = big_cloud_info_[point_count + kept_new_pts];
        pt.pt = cloud_aligned.points[jj];
        pt.normal = normals_aligned.points[jj];
        pt.sigma_lateral = pt_properties_[i][jj][0];
        pt.sigma_axial = pt_properties_[i][jj][1];
        pt.distance_to_depth_discontinuity = pt_properties_[i][jj][2];
        pt.pt_idx = jj;
        kept_new_pts++;
      }
    }
    else
    {
      for(int idx : indices_[i])
      {
        if ( !pcl::isFinite(cloud_aligned.points[idx]) || !pcl::isFinite(normals_aligned.points[idx]) )
           continue;

        PointInfo &pt = big_cloud_info_[point_count + kept_new_pts];
        pt.pt = cloud_aligned.points[idx];
        pt.normal = normals_aligned.points[ idx ];
        pt.sigma_lateral = pt_properties_[i][idx][0];
        pt.sigma_axial = pt_properties_[i][idx][1];
        pt.distance_to_depth_discontinuity = pt_properties_[i][idx][2];
        pt.pt_idx = idx;
        kept_new_pts++;
      }
    }

    // compute and store remaining information
#pragma omp parallel for schedule (dynamic) firstprivate(i, point_count, kept_new_pts)
    for(size_t jj=0; jj<kept_new_pts; jj++)
    {
      PointInfo &pt = big_cloud_info_ [point_count + jj];
      pt.origin = i;

      Eigen::Matrix3f sigma = Eigen::Matrix3f::Zero(), sigma_aligned = Eigen::Matrix3f::Zero();
      sigma(0,0) = pt.sigma_lateral;
      sigma(1,1) = pt.sigma_lateral;
      sigma(2,2) = pt.sigma_axial;

      const Eigen::Matrix4f &tf = transformations_to_global_[ i ];
      Eigen::Matrix3f rotation = tf.block<3,3>(0,0); // or inverse?
      sigma_aligned = rotation * sigma * rotation.transpose();
      double det = sigma_aligned.determinant();

//      if( std::isfinite(det) && det>0)
//          pt.probability = 1 / sqrt(2 * M_PI * det);
//      else
//          pt.probability = std::numeric_limits<float>::min();

      if( std::isfinite(det) && det>0)
          pt.weight = det;
      else
          pt.weight = std::numeric_limits<float>::max();
    }

    point_count += kept_new_pts;
  }

  big_cloud_info_.resize(point_count);
}
bool WingedEdgeBuilder::buildWShape(WShape& shape, IndexedFaceSet& ifs)
{
	unsigned int vsize = ifs.vsize();
	unsigned int nsize = ifs.nsize();
	//soc unused - unsigned	tsize = ifs.tsize();

	const real *vertices = ifs.vertices();
	const real *normals = ifs.normals();
	const real *texCoords = ifs.texCoords();

	real *new_vertices;
	real *new_normals;

	new_vertices = new real[vsize];
	new_normals = new real[nsize];

	// transform coordinates from local to world system
	if (_current_matrix) {
		transformVertices(vertices, vsize, *_current_matrix, new_vertices);
		transformNormals(normals, nsize, *_current_matrix, new_normals);
	}
	else {
		memcpy(new_vertices, vertices, vsize * sizeof(*new_vertices));
		memcpy(new_normals, normals, nsize * sizeof(*new_normals));
	}

	const IndexedFaceSet::TRIANGLES_STYLE *faceStyle = ifs.trianglesStyle();

	vector<FrsMaterial> frs_materials;
	if (ifs.msize()) {
		const FrsMaterial *const *mats = ifs.frs_materials();
		for (unsigned i = 0; i < ifs.msize(); ++i)
			frs_materials.push_back(*(mats[i]));
		shape.setFrsMaterials(frs_materials);
	}

#if 0
	const FrsMaterial *mat = (ifs.frs_material());
	if (mat)
		shape.setFrsMaterial(*mat);
	else if (_current_frs_material)
		shape.setFrsMaterial(*_current_frs_material);
#endif
	const IndexedFaceSet::FaceEdgeMark *faceEdgeMarks = ifs.faceEdgeMarks();

	// sets the current WShape to shape
	_current_wshape = &shape;

	// create a WVertex for each vertex
	buildWVertices(shape, new_vertices, vsize);

	const unsigned int *vindices = ifs.vindices();
	const unsigned int *nindices = ifs.nindices();
	const unsigned int *tindices = NULL;
	if (ifs.tsize()) {
		tindices = ifs.tindices();
	}

	const unsigned int *mindices = NULL;
	if (ifs.msize())
		mindices = ifs.mindices();
	const unsigned int *numVertexPerFace = ifs.numVertexPerFaces();
	const unsigned int numfaces = ifs.numFaces();

	for (unsigned int index = 0; index < numfaces; index++) {
		switch (faceStyle[index]) {
			case IndexedFaceSet::TRIANGLE_STRIP:
				buildTriangleStrip(new_vertices, new_normals, frs_materials, texCoords, faceEdgeMarks, vindices,
				                   nindices, mindices, tindices, numVertexPerFace[index]);
				break;
			case IndexedFaceSet::TRIANGLE_FAN:
				buildTriangleFan(new_vertices, new_normals, frs_materials, texCoords, faceEdgeMarks, vindices,
				                 nindices, mindices, tindices, numVertexPerFace[index]);
				break;
			case IndexedFaceSet::TRIANGLES:
				buildTriangles(new_vertices, new_normals, frs_materials, texCoords, faceEdgeMarks, vindices,
				               nindices, mindices, tindices, numVertexPerFace[index]);
				break;
		}
		vindices += numVertexPerFace[index];
		nindices += numVertexPerFace[index];
		if (mindices)
			mindices += numVertexPerFace[index];
		if (tindices)
			tindices += numVertexPerFace[index];
		faceEdgeMarks++;
	}

	delete[] new_vertices;
	delete[] new_normals;

	if (shape.GetFaceList().size() == 0) // this may happen due to degenerate triangles
		return false;

	// compute bbox
	shape.ComputeBBox();
	// compute mean edge size:
	shape.ComputeMeanEdgeSize();

	// Parse the built winged-edge shape to update post-flags
	set<Vec3r> normalsSet;
	vector<WVertex *>& wvertices = shape.getVertexList();
	for (vector<WVertex *>::iterator wv = wvertices.begin(), wvend = wvertices.end(); wv != wvend; ++wv) {
		if ((*wv)->isBoundary())
			continue;
		if ((*wv)->GetEdges().size() == 0) // This means that the WVertex has no incoming edges... (12-Sep-2011 T.K.)
			continue;
		normalsSet.clear();
		WVertex::face_iterator fit = (*wv)->faces_begin();
		WVertex::face_iterator fitend = (*wv)->faces_end();
		for (; fit != fitend; ++fit) {
			WFace *face = *fit;
			normalsSet.insert(face->GetVertexNormal(*wv));
			if (normalsSet.size() != 1) {
				break;
			}
		}
		if (normalsSet.size() != 1) {
			(*wv)->setSmooth(false);
		}
	}

	// Adds the new WShape to the WingedEdge structure
	_winged_edge->addWShape(&shape);

	return true;
}
Exemplo n.º 5
0
	void yaw(Angle angle){
		const Mat4 rotation = Mat4::rotation(Axis::y, angle);
		transformNormals(rotation);
	}
Exemplo n.º 6
0
	void pitch(Angle angle){
		const Mat4 rotation = Mat4::rotation(getU().normalize(), angle);
		transformNormals(rotation);
	}
void CubeCollider::onConnect(){
	transformNormals();
}
Exemplo n.º 8
0
void
Recognizer<PointT>::hypothesisVerification ()
{
    std::vector<typename pcl::PointCloud<PointT>::ConstPtr> aligned_models (models_.size ());
    std::vector<pcl::PointCloud<pcl::Normal>::ConstPtr> aligned_model_normals (models_.size ());

    model_or_plane_is_verified_.clear();
    planes_.clear();

    if(models_.empty())
    {
        std::cout << "No generated models to verify!" << std::endl;
        return;
    }

#pragma omp parallel for schedule(dynamic)
    for(size_t i=0; i<models_.size(); i++)
    {
        typename pcl::PointCloud<PointT>::Ptr aligned_model_tmp (new pcl::PointCloud<PointT>);
        pcl::PointCloud<pcl::Normal>::Ptr aligned_normal_tmp (new pcl::PointCloud<pcl::Normal>);
        ConstPointTPtr model_cloud = models_[i]->getAssembled ( param_.resolution_mm_model_assembly_ );
        pcl::transformPointCloud (*model_cloud, *aligned_model_tmp, transforms_[i]);
        aligned_models[i] = aligned_model_tmp;
        pcl::PointCloud<pcl::Normal>::ConstPtr normal_cloud_const = models_[i]->getNormalsAssembled (hv_algorithm_->getResolution());
        transformNormals(*normal_cloud_const, *aligned_normal_tmp, transforms_[i]);
        aligned_model_normals[i] = aligned_normal_tmp;
    }


    boost::shared_ptr<GHV<PointT, PointT> > hv_algorithm_ghv;
    if( hv_algorithm_ )
        hv_algorithm_ghv = boost::dynamic_pointer_cast<GHV<PointT, PointT>> (hv_algorithm_);

    hv_algorithm_->setOcclusionCloud (scene_);
    hv_algorithm_->setSceneCloud (scene_);
    hv_algorithm_->addModels (aligned_models, true);

    if (hv_algorithm_->getRequiresNormals ())
        hv_algorithm_->addNormalsClouds (aligned_model_normals);

    if( hv_algorithm_ghv ) {
        hv_algorithm_ghv->setRequiresNormals(false);
        hv_algorithm_ghv->setNormalsForClutterTerm(scene_normals_);

        if( hv_algorithm_ghv->param_.add_planes_ ) {
            if( hv_algorithm_ghv->param_.plane_method_ == 0 ) {
                MultiPlaneSegmentation<PointT> mps;
                mps.setInputCloud( scene_ );
                mps.setMinPlaneInliers( hv_algorithm_ghv->param_.min_plane_inliers_ );
                mps.setResolution( hv_algorithm_ghv->param_.resolution_ );
                mps.setNormals( scene_normals_ );
                mps.setMergePlanes( true );
                mps.segment();
                planes_ = mps.getModels();
            }
            else {
                typename ClusterNormalsToPlanesPCL<PointT>::Parameter p_param;
                p_param.inlDistSmooth = 0.05f;
                p_param.minPoints = hv_algorithm_ghv->param_.min_plane_inliers_;
                p_param.inlDist = hv_algorithm_ghv->param_.plane_inlier_distance_;
                p_param.thrAngle = hv_algorithm_ghv->param_.plane_thrAngle_;
                p_param.K_ = hv_algorithm_ghv->param_.knn_plane_clustering_search_;
                p_param.normal_computation_method_ = param_.normal_computation_method_;
                ClusterNormalsToPlanesPCL<PointT> pest(p_param);
                pest.compute(scene_, *scene_normals_, planes_);
            }

            hv_algorithm_ghv->addPlanarModels(planes_);
        }

    }

    hv_algorithm_->verify ();
    hv_algorithm_->getMask (model_or_plane_is_verified_);
}