static void *
nv30_vertex_state_create(struct pipe_context *pipe, unsigned num_elements,
                         const struct pipe_vertex_element *elements)
{
    struct nv30_vertex_stateobj *so;
    struct translate_key transkey;
    unsigned i;

    assert(num_elements);

    so = MALLOC(sizeof(*so) + sizeof(*so->element) * num_elements);
    if (!so)
        return NULL;
    memcpy(so->pipe, elements, sizeof(*elements) * num_elements);
    so->num_elements = num_elements;
    so->need_conversion = FALSE;

    transkey.nr_elements = 0;
    transkey.output_stride = 0;

    for (i = 0; i < num_elements; i++) {
        const struct pipe_vertex_element *ve = &elements[i];
        const unsigned vbi = ve->vertex_buffer_index;
        enum pipe_format fmt = ve->src_format;

        so->element[i].state = nv30_vtxfmt(pipe->screen, fmt)->hw;
        if (!so->element[i].state) {
            switch (util_format_get_nr_components(fmt)) {
            case 1: fmt = PIPE_FORMAT_R32_FLOAT; break;
            case 2: fmt = PIPE_FORMAT_R32G32_FLOAT; break;
            case 3: fmt = PIPE_FORMAT_R32G32B32_FLOAT; break;
            case 4: fmt = PIPE_FORMAT_R32G32B32A32_FLOAT; break;
            default:
                assert(0);
                return NULL;
            }
            so->element[i].state = nv30_vtxfmt(pipe->screen, fmt)->hw;
            so->need_conversion = TRUE;
        }

        if (1) {
            unsigned j = transkey.nr_elements++;

            transkey.element[j].type = TRANSLATE_ELEMENT_NORMAL;
            transkey.element[j].input_format = ve->src_format;
            transkey.element[j].input_buffer = vbi;
            transkey.element[j].input_offset = ve->src_offset;
            transkey.element[j].instance_divisor = ve->instance_divisor;

            transkey.element[j].output_format = fmt;
            transkey.element[j].output_offset = transkey.output_stride;
            transkey.output_stride += (util_format_get_stride(fmt, 1) + 3) & ~3;
        }
    }

    so->translate = translate_create(&transkey);
    so->vtx_size = transkey.output_stride / 4;
    so->vtx_per_packet_max = NV04_PFIFO_MAX_PACKET_LEN / MAX2(so->vtx_size, 1);
    return so;
}
Exemplo n.º 2
0
struct translate * translate_cache_find(struct translate_cache *cache,
                                        struct translate_key *key)
{
   unsigned hash_key = create_key(key);
   struct translate *translate = (struct translate*)
      cso_hash_find_data_from_template(cache->hash,
                                       hash_key,
                                       key, sizeof(*key));

   if (!translate) {
      /* create/insert */
      translate = translate_create(key);
      cso_hash_insert(cache->hash, hash_key, translate);
   }

   return translate;
}
Exemplo n.º 3
0
static void *
nvfx_vtxelts_state_create(struct pipe_context *pipe,
			  unsigned num_elements,
			  const struct pipe_vertex_element *elements)
{
	struct nvfx_vtxelt_state *cso = CALLOC_STRUCT(nvfx_vtxelt_state);
	struct translate_key transkey;
	unsigned per_vertex_size[16];
	unsigned vb_compacted_index[16];

	if(num_elements > 16)
	{
		_debug_printf("Error: application attempted to use %u vertex elements, but only 16 are supported: ignoring the rest\n", num_elements);
		num_elements = 16;
	}

	memset(per_vertex_size, 0, sizeof(per_vertex_size));
	memcpy(cso->pipe, elements, num_elements * sizeof(elements[0]));
	cso->num_elements = num_elements;
	cso->needs_translate = FALSE;

	transkey.nr_elements = 0;
	transkey.output_stride = 0;

	for(unsigned i = 0; i < num_elements; ++i)
        {
		const struct pipe_vertex_element* ve = &elements[i];
		if(!ve->instance_divisor)
                        per_vertex_size[ve->vertex_buffer_index] += util_format_get_stride(ve->src_format, 1);
        }

        for(unsigned i = 0; i < 16; ++i)
        {
                if(per_vertex_size[i])
                {
                        unsigned idx = cso->num_per_vertex_buffer_infos++;
                        cso->per_vertex_buffer_info[idx].vertex_buffer_index = i;
                        cso->per_vertex_buffer_info[idx].per_vertex_size = per_vertex_size[i];
                        vb_compacted_index[i] = idx;
                }
        }

	for(unsigned i = 0; i < num_elements; ++i)
	{
		const struct pipe_vertex_element* ve = &elements[i];
		unsigned type = nvfx_vertex_formats[ve->src_format];
		unsigned ncomp = util_format_get_nr_components(ve->src_format);

		//if(ve->frequency != PIPE_ELEMENT_FREQUENCY_PER_VERTEX)
		if(ve->instance_divisor)
		{
			struct nvfx_low_frequency_element* lfve;
			cso->vtxfmt[i] = NV30_3D_VTXFMT_TYPE_V32_FLOAT;

			//if(ve->frequency == PIPE_ELEMENT_FREQUENCY_CONSTANT)
			if(0)
				lfve = &cso->constant[cso->num_constant++];
			else
			{
				lfve = &cso->per_instance[cso->num_per_instance++].base;
				((struct nvfx_per_instance_element*)lfve)->instance_divisor = ve->instance_divisor;
			}

                        lfve->idx = i;
                        lfve->vertex_buffer_index = ve->vertex_buffer_index;
                        lfve->src_offset = ve->src_offset;
                        lfve->fetch_rgba_float = util_format_description(ve->src_format)->fetch_rgba_float;
                        lfve->ncomp = ncomp;
		}
		else
		{
			unsigned idx;

			idx = cso->num_per_vertex++;
			cso->per_vertex[idx].idx = i;
			cso->per_vertex[idx].vertex_buffer_index = ve->vertex_buffer_index;
			cso->per_vertex[idx].src_offset = ve->src_offset;

			idx = transkey.nr_elements++;
			transkey.element[idx].input_format = ve->src_format;
			transkey.element[idx].input_buffer = vb_compacted_index[ve->vertex_buffer_index];
			transkey.element[idx].input_offset = ve->src_offset;
			transkey.element[idx].instance_divisor = 0;
			transkey.element[idx].type = TRANSLATE_ELEMENT_NORMAL;
			if(type)
			{
				transkey.element[idx].output_format = ve->src_format;
				cso->vtxfmt[i] = (ncomp << NV30_3D_VTXFMT_SIZE__SHIFT) | type;
			}
			else
			{
				unsigned float32[4] = {PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT};
				transkey.element[idx].output_format = float32[ncomp - 1];
				cso->needs_translate = TRUE;
				cso->vtxfmt[i] = (ncomp << NV30_3D_VTXFMT_SIZE__SHIFT) | NV30_3D_VTXFMT_TYPE_V32_FLOAT;
			}
			transkey.element[idx].output_offset = transkey.output_stride;
			transkey.output_stride += (util_format_get_stride(transkey.element[idx].output_format, 1) + 3) & ~3;
		}
	}

	cso->translate = translate_create(&transkey);
	cso->vertex_length = transkey.output_stride >> 2;
	cso->max_vertices_per_packet = 2047 / MAX2(cso->vertex_length, 1);

	return (void *)cso;
}