Exemplo n.º 1
0
void env_rotate_scene(Render *re, float mat[4][4], int do_rotate)
{
	GroupObject *go;
	ObjectRen *obr;
	ObjectInstanceRen *obi;
	LampRen *lar = NULL;
	HaloRen *har = NULL;
	float imat[3][3], mat_inverse[4][4], smat[4][4], tmat[4][4], cmat[3][3], tmpmat[4][4];
	int a;
	
	if (do_rotate == 0) {
		invert_m4_m4(tmat, mat);
		copy_m3_m4(imat, tmat);
		
		copy_m4_m4(mat_inverse, mat);
	}
	else {
		copy_m4_m4(tmat, mat);
		copy_m3_m4(imat, mat);
		
		invert_m4_m4(mat_inverse, tmat);
	}

	for (obi = re->instancetable.first; obi; obi = obi->next) {
		/* append or set matrix depending on dupli */
		if (obi->flag & R_DUPLI_TRANSFORMED) {
			copy_m4_m4(tmpmat, obi->mat);
			mul_m4_m4m4(obi->mat, tmat, tmpmat);
		}
		else if (do_rotate == 1)
			copy_m4_m4(obi->mat, tmat);
		else
			unit_m4(obi->mat);

		copy_m3_m4(cmat, obi->mat);
		invert_m3_m3(obi->nmat, cmat);
		transpose_m3(obi->nmat);

		/* indicate the renderer has to use transform matrices */
		if (do_rotate == 0)
			obi->flag &= ~R_ENV_TRANSFORMED;
		else {
			obi->flag |= R_ENV_TRANSFORMED;
			copy_m4_m4(obi->imat, mat_inverse);
		}
	}
	

	for (obr = re->objecttable.first; obr; obr = obr->next) {
		for (a = 0; a < obr->tothalo; a++) {
			if ((a & 255) == 0) har = obr->bloha[a >> 8];
			else har++;
		
			mul_m4_v3(tmat, har->co);
		}

		/* imat_ren is needed for correct texture coordinates */
		mul_m4_m4m4(obr->ob->imat_ren, re->viewmat, obr->ob->obmat);
		invert_m4(obr->ob->imat_ren);
	}
Exemplo n.º 2
0
/* Meta object density, brute force for now 
 * (might be good enough anyway, don't need huge number of metaobs to model volumetric objects */
static float metadensity(Object *ob, const float co[3])
{
	float mat[4][4], imat[4][4], dens = 0.f;
	MetaBall *mb = (MetaBall *)ob->data;
	MetaElem *ml;
	
	/* transform co to meta-element */
	float tco[3] = {co[0], co[1], co[2]};
	mult_m4_m4m4(mat, R.viewmat, ob->obmat);
	invert_m4_m4(imat, mat);
	mul_m4_v3(imat, tco);
	
	for (ml = mb->elems.first; ml; ml = ml->next) {
		float bmat[3][3], dist2;
		
		/* element rotation transform */
		float tp[3] = {ml->x - tco[0], ml->y - tco[1], ml->z - tco[2]};
		quat_to_mat3(bmat, ml->quat);
		transpose_m3(bmat); /* rot.only, so inverse == transpose */
		mul_m3_v3(bmat, tp);

		/* MB_BALL default */
		switch (ml->type) {
			case MB_ELIPSOID:
				tp[0] /= ml->expx, tp[1] /= ml->expy, tp[2] /= ml->expz;
				break;
			case MB_CUBE:
				tp[2] = (tp[2] > ml->expz) ? (tp[2] - ml->expz) : ((tp[2] < -ml->expz) ? (tp[2] + ml->expz) : 0.f);
			/* no break, xy as plane */
			case MB_PLANE:
				tp[1] = (tp[1] > ml->expy) ? (tp[1] - ml->expy) : ((tp[1] < -ml->expy) ? (tp[1] + ml->expy) : 0.f);
			/* no break, x as tube */
			case MB_TUBE:
				tp[0] = (tp[0] > ml->expx) ? (tp[0] - ml->expx) : ((tp[0] < -ml->expx) ? (tp[0] + ml->expx) : 0.f);
		}

		/* ml->rad2 is not set */
		dist2 = 1.0f - (dot_v3v3(tp, tp) / (ml->rad * ml->rad));
		if (dist2 > 0.f)
			dens += (ml->flag & MB_NEGATIVE) ? -ml->s * dist2 * dist2 * dist2 : ml->s * dist2 * dist2 * dist2;
	}
	
	dens -= mb->thresh;
	return (dens < 0.f) ? 0.f : dens;
}
Exemplo n.º 3
0
static void rigid_add_half_edge_to_rhs(LaplacianSystem *sys, EditVert *v1, EditVert *v2, float w)
{
	/* formula (8) */
	float Rsum[3][3], rhs[3];

	if (sys->vpinned[v1->tmp.l])
		return;

	add_m3_m3m3(Rsum, sys->rigid.R[v1->tmp.l], sys->rigid.R[v2->tmp.l]);
	transpose_m3(Rsum);

	sub_v3_v3v3(rhs, sys->rigid.origco[v1->tmp.l], sys->rigid.origco[v2->tmp.l]);
	mul_m3_v3(Rsum, rhs);
	mul_v3_fl(rhs, 0.5f);
	mul_v3_fl(rhs, w);

	add_v3_v3(sys->rigid.rhs[v1->tmp.l], rhs);
}
Exemplo n.º 4
0
/* called from within the core BKE_pose_where_is loop, all animsystems and constraints
 * were executed & assigned. Now as last we do an IK pass */
static void execute_posetree(struct Scene *scene, Object *ob, PoseTree *tree)
{
	float R_parmat[3][3], identity[3][3];
	float iR_parmat[3][3];
	float R_bonemat[3][3];
	float goalrot[3][3], goalpos[3];
	float rootmat[4][4], imat[4][4];
	float goal[4][4], goalinv[4][4];
	float irest_basis[3][3], full_basis[3][3];
	float end_pose[4][4], world_pose[4][4];
	float length, basis[3][3], rest_basis[3][3], start[3], *ikstretch = NULL;
	float resultinf = 0.0f;
	int a, flag, hasstretch = 0, resultblend = 0;
	bPoseChannel *pchan;
	IK_Segment *seg, *parent, **iktree, *iktarget;
	IK_Solver *solver;
	PoseTarget *target;
	bKinematicConstraint *data, *poleangledata = NULL;
	Bone *bone;

	if (tree->totchannel == 0)
		return;

	iktree = MEM_mallocN(sizeof(void *) * tree->totchannel, "ik tree");

	for (a = 0; a < tree->totchannel; a++) {
		pchan = tree->pchan[a];
		bone = pchan->bone;

		/* set DoF flag */
		flag = 0;
		if (!(pchan->ikflag & BONE_IK_NO_XDOF) && !(pchan->ikflag & BONE_IK_NO_XDOF_TEMP))
			flag |= IK_XDOF;
		if (!(pchan->ikflag & BONE_IK_NO_YDOF) && !(pchan->ikflag & BONE_IK_NO_YDOF_TEMP))
			flag |= IK_YDOF;
		if (!(pchan->ikflag & BONE_IK_NO_ZDOF) && !(pchan->ikflag & BONE_IK_NO_ZDOF_TEMP))
			flag |= IK_ZDOF;

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			flag |= IK_TRANS_YDOF;
			hasstretch = 1;
		}

		seg = iktree[a] = IK_CreateSegment(flag);

		/* find parent */
		if (a == 0)
			parent = NULL;
		else
			parent = iktree[tree->parent[a]];

		IK_SetParent(seg, parent);

		/* get the matrix that transforms from prevbone into this bone */
		copy_m3_m4(R_bonemat, pchan->pose_mat);

		/* gather transformations for this IK segment */

		if (pchan->parent)
			copy_m3_m4(R_parmat, pchan->parent->pose_mat);
		else
			unit_m3(R_parmat);

		/* bone offset */
		if (pchan->parent && (a > 0))
			sub_v3_v3v3(start, pchan->pose_head, pchan->parent->pose_tail);
		else
			/* only root bone (a = 0) has no parent */
			start[0] = start[1] = start[2] = 0.0f;

		/* change length based on bone size */
		length = bone->length * len_v3(R_bonemat[1]);

		/* compute rest basis and its inverse */
		copy_m3_m3(rest_basis, bone->bone_mat);
		copy_m3_m3(irest_basis, bone->bone_mat);
		transpose_m3(irest_basis);

		/* compute basis with rest_basis removed */
		invert_m3_m3(iR_parmat, R_parmat);
		mul_m3_m3m3(full_basis, iR_parmat, R_bonemat);
		mul_m3_m3m3(basis, irest_basis, full_basis);

		/* basis must be pure rotation */
		normalize_m3(basis);

		/* transform offset into local bone space */
		normalize_m3(iR_parmat);
		mul_m3_v3(iR_parmat, start);

		IK_SetTransform(seg, start, rest_basis, basis, length);

		if (pchan->ikflag & BONE_IK_XLIMIT)
			IK_SetLimit(seg, IK_X, pchan->limitmin[0], pchan->limitmax[0]);
		if (pchan->ikflag & BONE_IK_YLIMIT)
			IK_SetLimit(seg, IK_Y, pchan->limitmin[1], pchan->limitmax[1]);
		if (pchan->ikflag & BONE_IK_ZLIMIT)
			IK_SetLimit(seg, IK_Z, pchan->limitmin[2], pchan->limitmax[2]);

		IK_SetStiffness(seg, IK_X, pchan->stiffness[0]);
		IK_SetStiffness(seg, IK_Y, pchan->stiffness[1]);
		IK_SetStiffness(seg, IK_Z, pchan->stiffness[2]);

		if (tree->stretch && (pchan->ikstretch > 0.0f)) {
			const float ikstretch = pchan->ikstretch * pchan->ikstretch;
			/* this function does its own clamping */
			IK_SetStiffness(seg, IK_TRANS_Y, 1.0f - ikstretch);
			IK_SetLimit(seg, IK_TRANS_Y, IK_STRETCH_STIFF_MIN, IK_STRETCH_STIFF_MAX);
		}
	}

	solver = IK_CreateSolver(iktree[0]);

	/* set solver goals */

	/* first set the goal inverse transform, assuming the root of tree was done ok! */
	pchan = tree->pchan[0];
	if (pchan->parent) {
		/* transform goal by parent mat, so this rotation is not part of the
		 * segment's basis. otherwise rotation limits do not work on the
		 * local transform of the segment itself. */
		copy_m4_m4(rootmat, pchan->parent->pose_mat);
		/* However, we do not want to get (i.e. reverse) parent's scale, as it generates [#31008]
		 * kind of nasty bugs... */
		normalize_m4(rootmat);
	}
	else
		unit_m4(rootmat);
	copy_v3_v3(rootmat[3], pchan->pose_head);

	mul_m4_m4m4(imat, ob->obmat, rootmat);
	invert_m4_m4(goalinv, imat);

	for (target = tree->targets.first; target; target = target->next) {
		float polepos[3];
		int poleconstrain = 0;

		data = (bKinematicConstraint *)target->con->data;

		/* 1.0=ctime, we pass on object for auto-ik (owner-type here is object, even though
		 * strictly speaking, it is a posechannel)
		 */
		BKE_constraint_target_matrix_get(scene, target->con, 0, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

		/* and set and transform goal */
		mul_m4_m4m4(goal, goalinv, rootmat);

		copy_v3_v3(goalpos, goal[3]);
		copy_m3_m4(goalrot, goal);
		normalize_m3(goalrot);

		/* same for pole vector target */
		if (data->poletar) {
			BKE_constraint_target_matrix_get(scene, target->con, 1, CONSTRAINT_OBTYPE_OBJECT, ob, rootmat, 1.0);

			if (data->flag & CONSTRAINT_IK_SETANGLE) {
				/* don't solve IK when we are setting the pole angle */
				break;
			}
			else {
				mul_m4_m4m4(goal, goalinv, rootmat);
				copy_v3_v3(polepos, goal[3]);
				poleconstrain = 1;

				/* for pole targets, we blend the result of the ik solver
				 * instead of the target position, otherwise we can't get
				 * a smooth transition */
				resultblend = 1;
				resultinf = target->con->enforce;

				if (data->flag & CONSTRAINT_IK_GETANGLE) {
					poleangledata = data;
					data->flag &= ~CONSTRAINT_IK_GETANGLE;
				}
			}
		}

		/* do we need blending? */
		if (!resultblend && target->con->enforce != 1.0f) {
			float q1[4], q2[4], q[4];
			float fac = target->con->enforce;
			float mfac = 1.0f - fac;

			pchan = tree->pchan[target->tip];

			/* end effector in world space */
			copy_m4_m4(end_pose, pchan->pose_mat);
			copy_v3_v3(end_pose[3], pchan->pose_tail);
			mul_serie_m4(world_pose, goalinv, ob->obmat, end_pose, NULL, NULL, NULL, NULL, NULL);

			/* blend position */
			goalpos[0] = fac * goalpos[0] + mfac * world_pose[3][0];
			goalpos[1] = fac * goalpos[1] + mfac * world_pose[3][1];
			goalpos[2] = fac * goalpos[2] + mfac * world_pose[3][2];

			/* blend rotation */
			mat3_to_quat(q1, goalrot);
			mat4_to_quat(q2, world_pose);
			interp_qt_qtqt(q, q1, q2, mfac);
			quat_to_mat3(goalrot, q);
		}

		iktarget = iktree[target->tip];

		if ((data->flag & CONSTRAINT_IK_POS) && data->weight != 0.0f) {
			if (poleconstrain)
				IK_SolverSetPoleVectorConstraint(solver, iktarget, goalpos,
				                                 polepos, data->poleangle, (poleangledata == data));
			IK_SolverAddGoal(solver, iktarget, goalpos, data->weight);
		}
		if ((data->flag & CONSTRAINT_IK_ROT) && (data->orientweight != 0.0f))
			if ((data->flag & CONSTRAINT_IK_AUTO) == 0)
				IK_SolverAddGoalOrientation(solver, iktarget, goalrot,
				                            data->orientweight);
	}

	/* solve */
	IK_Solve(solver, 0.0f, tree->iterations);

	if (poleangledata)
		poleangledata->poleangle = IK_SolverGetPoleAngle(solver);

	IK_FreeSolver(solver);

	/* gather basis changes */
	tree->basis_change = MEM_mallocN(sizeof(float[3][3]) * tree->totchannel, "ik basis change");
	if (hasstretch)
		ikstretch = MEM_mallocN(sizeof(float) * tree->totchannel, "ik stretch");

	for (a = 0; a < tree->totchannel; a++) {
		IK_GetBasisChange(iktree[a], tree->basis_change[a]);

		if (hasstretch) {
			/* have to compensate for scaling received from parent */
			float parentstretch, stretch;

			pchan = tree->pchan[a];
			parentstretch = (tree->parent[a] >= 0) ? ikstretch[tree->parent[a]] : 1.0f;

			if (tree->stretch && (pchan->ikstretch > 0.0f)) {
				float trans[3], length;

				IK_GetTranslationChange(iktree[a], trans);
				length = pchan->bone->length * len_v3(pchan->pose_mat[1]);

				ikstretch[a] = (length == 0.0f) ? 1.0f : (trans[1] + length) / length;
			}
			else
				ikstretch[a] = 1.0;

			stretch = (parentstretch == 0.0f) ? 1.0f : ikstretch[a] / parentstretch;

			mul_v3_fl(tree->basis_change[a][0], stretch);
			mul_v3_fl(tree->basis_change[a][1], stretch);
			mul_v3_fl(tree->basis_change[a][2], stretch);
		}

		if (resultblend && resultinf != 1.0f) {
			unit_m3(identity);
			blend_m3_m3m3(tree->basis_change[a], identity,
			              tree->basis_change[a], resultinf);
		}

		IK_FreeSegment(iktree[a]);
	}

	MEM_freeN(iktree);
	if (ikstretch) MEM_freeN(ikstretch);
}
Exemplo n.º 5
0
PyObject* BL_ArmatureChannel::py_attr_get_joint_rotation(void *self_v, const struct KX_PYATTRIBUTE_DEF *attrdef)
{
	bPoseChannel* pchan = static_cast<bPoseChannel*>(self_v);
	// decompose the pose matrix in euler rotation
	float rest_mat[3][3];
	float pose_mat[3][3];
	float joint_mat[3][3];
	float joints[3];
	float norm;
	double sa, ca;
	// get rotation in armature space
	copy_m3_m4(pose_mat, pchan->pose_mat);
	normalize_m3(pose_mat);
	if (pchan->parent) {
		// bone has a parent, compute the rest pose of the bone taking actual pose of parent
		mult_m3_m3m4(rest_mat, pchan->parent->pose_mat, pchan->bone->bone_mat);
		normalize_m3(rest_mat);
	} else {
		// otherwise, the bone matrix in armature space is the rest pose
		copy_m3_m4(rest_mat, pchan->bone->arm_mat);
	}
	// remove the rest pose to get the joint movement
	transpose_m3(rest_mat);
	mul_m3_m3m3(joint_mat, rest_mat, pose_mat);		
	joints[0] = joints[1] = joints[2] = 0.f;
	// returns a 3 element list that gives corresponding joint
	int flag = 0;
	if (!(pchan->ikflag & BONE_IK_NO_XDOF))
		flag |= 1;
	if (!(pchan->ikflag & BONE_IK_NO_YDOF))
		flag |= 2;
	if (!(pchan->ikflag & BONE_IK_NO_ZDOF))
		flag |= 4;
	switch (flag) {
	case 0:	// fixed joint
		break;
	case 1:	// X only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[1] = joints[2] = 0.f;
		break;
	case 2:	// Y only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[2] = 0.f;
		break;
	case 3:	// X+Y
		mat3_to_eulO( joints, EULER_ORDER_ZYX,joint_mat);
		joints[2] = 0.f;
		break;
	case 4:	// Z only
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = joints[1] = 0.f;
		break;
	case 5:	// X+Z
		// decompose this as an equivalent rotation vector in X/Z plane
		joints[0] = joint_mat[1][2];
		joints[2] = -joint_mat[1][0];
		norm = normalize_v3(joints);
		if (norm < FLT_EPSILON) {
			norm = (joint_mat[1][1] < 0.f) ? M_PI : 0.f;
		} else {
			norm = acos(joint_mat[1][1]);
		}
		mul_v3_fl(joints, norm);
		break;
	case 6:	// Y+Z
		mat3_to_eulO( joints, EULER_ORDER_XYZ,joint_mat);
		joints[0] = 0.f;
		break;
	case 7: // X+Y+Z
		// equivalent axis
		joints[0] = (joint_mat[1][2]-joint_mat[2][1])*0.5f;
		joints[1] = (joint_mat[2][0]-joint_mat[0][2])*0.5f;
		joints[2] = (joint_mat[0][1]-joint_mat[1][0])*0.5f;
		sa = len_v3(joints);
		ca = (joint_mat[0][0]+joint_mat[1][1]+joint_mat[1][1]-1.0f)*0.5f;
		if (sa > FLT_EPSILON) {
			norm = atan2(sa,ca)/sa;
		} else {
			if (ca < 0.0) {
				norm = M_PI;
				mul_v3_fl(joints,0.f);
				if (joint_mat[0][0] > 0.f) {
					joints[0] = 1.0f;
				} else if (joint_mat[1][1] > 0.f) {
					joints[1] = 1.0f;
				} else {
					joints[2] = 1.0f;
				}
			} else {
				norm = 0.0;
			}
		}
		mul_v3_fl(joints,norm);
		break;
	}
	return Vector_CreatePyObject(joints, 3, Py_NEW, NULL);
}