Exemplo n.º 1
0
void instrument_WrTmp_Mux0X(IRStmt* st, IRSB* sb_out)
{
    IRTemp tmp = st->Ist.WrTmp.tmp;
    IRExpr* data = st->Ist.WrTmp.data;
    IRExpr* cond = data->Iex.Mux0X.cond;
    IRExpr* expr0 = data->Iex.Mux0X.expr0;
    IRExpr* exprX = data->Iex.Mux0X.exprX;
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, expr0));
    IRDirty* di;

    tl_assert(cond->tag == Iex_RdTmp);
    tl_assert(isIRAtom(expr0));
    tl_assert(isIRAtom(exprX));
    tl_assert(typeOfIRTemp(sb_out->tyenv, tmp) == typeOfIRExpr(sb_out->tyenv, expr0));
    tl_assert(typeOfIRTemp(sb_out->tyenv, tmp) == typeOfIRExpr(sb_out->tyenv, exprX));

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_WrTmp_Mux0X",
                           VG_(fnptr_to_fnentry)(helper_instrument_WrTmp_Mux0X),
                           mkIRExprVec_5(mkIRExpr_HWord(tmp),
                                         assignNew_HWord(sb_out, cond),
                                         mkIRExpr_HWord((expr0->tag == Iex_RdTmp) ? expr0->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord((exprX->tag == Iex_RdTmp) ? exprX->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(size))
                            );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 2
0
void instrument_WrTmp_Binop(IRStmt* st, IRSB* sb_out)
{
    IRTemp tmp = st->Ist.WrTmp.tmp;
    IRExpr* data = st->Ist.WrTmp.data;
    IROp op = data->Iex.Binop.op;
    IRExpr* arg1 = data->Iex.Binop.arg1;
    IRExpr* arg2 = data->Iex.Binop.arg2;
    UInt arg1_value = 0, arg2_value = 0;
    IRExpr* expr = IRExpr_Binop(op, arg1, arg2);
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, expr));
    IRDirty* di;

    // we don't care about floating point and SIMD operations
    if (op > Iop_AddF64)
        return;

    tl_assert(isIRAtom(arg1));
    tl_assert(isIRAtom(arg2));
    tl_assert(typeOfIRTemp(sb_out->tyenv, tmp) == typeOfIRExpr(sb_out->tyenv, expr));

    if (arg1->tag == Iex_Const)
    {
        switch (arg1->Iex.Const.con->tag)
        {
            case Ico_U1: arg1_value = arg1->Iex.Const.con->Ico.U1; break;
            case Ico_U8: arg1_value = arg1->Iex.Const.con->Ico.U8; break;
            case Ico_U16: arg1_value = arg1->Iex.Const.con->Ico.U16; break;
            case Ico_U32: arg1_value = arg1->Iex.Const.con->Ico.U32; break;
            case Ico_U64: arg1_value = arg1->Iex.Const.con->Ico.U64; break;
            default: VG_(tool_panic)("instrument_WrTmp_Binop");
        }
    }
    if (arg2->tag == Iex_Const)
    {
        switch (arg2->Iex.Const.con->tag)
        {
            case Ico_U1: arg2_value = arg2->Iex.Const.con->Ico.U1; break;
            case Ico_U8: arg2_value = arg2->Iex.Const.con->Ico.U8; break;
            case Ico_U16: arg2_value = arg2->Iex.Const.con->Ico.U16; break;
            case Ico_U32: arg2_value = arg2->Iex.Const.con->Ico.U32; break;
            case Ico_U64: arg2_value = arg2->Iex.Const.con->Ico.U64; break;
            default: VG_(tool_panic)("instrument_WrTmp_Binop");
        }
    }

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_WrTmp_Binop",
                           VG_(fnptr_to_fnentry)(helper_instrument_WrTmp_Binop),
                           mkIRExprVec_7(mkIRExpr_HWord(tmp),
                                         mkIRExpr_HWord((arg1->tag == Iex_RdTmp) ? arg1->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord((arg2->tag == Iex_RdTmp) ? arg2->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(op),
                                         mkIRExpr_HWord(size),
                                         (arg1->tag == Iex_RdTmp) ? assignNew_HWord(sb_out, arg1) : mkIRExpr_HWord(arg1_value),
                                         (arg2->tag == Iex_RdTmp) ? assignNew_HWord(sb_out, arg2) : mkIRExpr_HWord(arg2_value))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 3
0
static void
store_aux(IRSB *irsb, IREndness endian, IRExpr *addr, IRExpr *data)
{
   if (typeOfIRExpr(irsb->tyenv, data) == Ity_D64) {
      /* The insn selectors do not support writing a DFP value to memory.
         So we need to fix it here by reinterpreting the DFP value as an
         integer and storing that. */
      data = unop(Iop_ReinterpD64asI64, data);
   }
   if (typeOfIRExpr(irsb->tyenv, data) == Ity_I1) {
      /* We cannot store a single bit. So we store it in a 32-bit container.
         See also load_aux. */
      data = unop(Iop_1Uto32, data);
   }
   stmt(irsb, IRStmt_Store(endian, addr, data));
}
Exemplo n.º 4
0
static IRExpr* assignNew_HWord(IRSB* sb_out, IRExpr* expr)
{
    IRTemp tmp = newIRTemp(sb_out->tyenv, Ity_I32);

    switch (typeOfIRExpr(sb_out->tyenv, expr))
    {
        case Ity_I1:
            addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, IRExpr_Unop(Iop_1Uto32, expr)));
            break;
        case Ity_I8:
            addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, IRExpr_Unop(Iop_8Uto32, expr)));
            break;
        case Ity_I16:
            addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, IRExpr_Unop(Iop_16Uto32, expr)));
            break;
        case Ity_I32:
            addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, expr));
            break;
        case Ity_I64:
            addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, IRExpr_Unop(Iop_64to32, expr)));
            break;
        default:
            VG_(tool_panic)("assignNew_HWord");
   }

    return IRExpr_RdTmp(tmp);
}
Exemplo n.º 5
0
/* Converts an IRExpr into 1 or 2 "flat" expressions of type Long */
static void packToI64 ( IRSB* sb, IRExpr* e, IRExpr* res[2], IROp irop) {
  res[1]=NULL;  // won't be used at all
  IRTemp tmp64;
  switch (typeOfIRExpr(sb->tyenv,e)) {
    case Ity_I1:   res[0]= IRExpr_Unop(Iop_1Uto64,e);  break;
    case Ity_I8:   res[0]= IRExpr_Unop(Iop_8Uto64,e);  break;
    case Ity_I16:  res[0]= IRExpr_Unop(Iop_16Uto64,e); break;
    case Ity_I32:  res[0]= IRExpr_Unop(Iop_32Uto64,e); break;
    case Ity_F32:  e = IRExpr_Unop(Iop_ReinterpF32asI32,e);
                   res[0]= IRExpr_Unop(Iop_32Uto64,e);  break;
    case Ity_I64:  res[0]= e; return;
    case Ity_F64:  res[0]= IRExpr_Unop(Iop_ReinterpF64asI64,e); break;
    case Ity_V128:   /* 128-bit SIMD */
        //tmp64 = newIRTemp(sb->tyenv, Ity_I64);
        //addStmtToIRSB(sb, IRStmt_WrTmp(tmp64, IRExpr_Unop(Iop_V128to64,e)));
        //res[0]= IRExpr_Unop(Iop_64to32,   IRExpr_RdTmp(tmp64) );
        //res[1]= IRExpr_Unop(Iop_64HIto32, IRExpr_RdTmp(tmp64) );
    	res[0]= IRExpr_Unop(Iop_V128to64,   e );
    	if (dropV128HiPart(irop)) break;
    	res[1]= IRExpr_Unop(Iop_V128HIto64, e );
    	break;

    case Ity_I128:   /* 128-bit scalar */
    case Ity_INVALID:
    default: VG_(tool_panic)("COJAC cannot packToI64..."); break;
  }
  IRTemp myArg = newIRTemp(sb->tyenv, Ity_I64);
  addStmtToIRSB(sb, IRStmt_WrTmp(myArg, res[0]));
  res[0]=IRExpr_RdTmp(myArg);  // now that's a "flat" expression
  if (res[1]==NULL) return;  // ... else it was 128-bit SIMD
  IRTemp myArg2 = newIRTemp(sb->tyenv, Ity_I64);
  addStmtToIRSB(sb, IRStmt_WrTmp(myArg2, res[1]));
  res[1]=IRExpr_RdTmp(myArg2);   // now that's a "flat" expression
}
Exemplo n.º 6
0
/* Converts an IRExpr into 1 or 2 "flat" expressions of type Int */
static void packToI32 ( IRSB* sb, IRExpr* e, IRExpr* res[2]) {
  //IRType eType = Ity_I32;
  IRTemp tmp64;
  res[1]=NULL;
  switch (typeOfIRExpr(sb->tyenv,e)) {
    case Ity_I1:   res[0]= IRExpr_Unop(Iop_1Uto32,e);  break;
    case Ity_I8:   res[0]= IRExpr_Unop(Iop_8Uto32,e);  break;
    case Ity_I16:  res[0]= IRExpr_Unop(Iop_16Uto32,e); break;
    case Ity_I32:  res[0]= e; return;
    case Ity_F32:  res[0]= IRExpr_Unop(Iop_ReinterpF32asI32,e); break;
    case Ity_I64:
      res[0]= IRExpr_Unop(Iop_64to32, e);
      res[1]= IRExpr_Unop(Iop_64HIto32, e);
      break;
    case Ity_F64:
      tmp64 = newIRTemp(sb->tyenv, Ity_I64);
      addStmtToIRSB(sb, IRStmt_WrTmp(tmp64, IRExpr_Unop(Iop_ReinterpF64asI64,e)));
      res[0]= IRExpr_Unop(Iop_64to32,   IRExpr_RdTmp(tmp64) );
      res[1]= IRExpr_Unop(Iop_64HIto32, IRExpr_RdTmp(tmp64) );
      break;
    case Ity_V128:   /* 128-bit SIMD */
    case Ity_I128:   /* 128-bit scalar */
    case Ity_INVALID:
    default: VG_(tool_panic)("COJAC cannot packToI32..."); break;
  }
  IRTemp myArg = newIRTemp(sb->tyenv, Ity_I32);
  addStmtToIRSB(sb, IRStmt_WrTmp(myArg, res[0]));
  res[0]=IRExpr_RdTmp(myArg);    // now that's a "flat" expression
  if (res[1]==NULL) return;
  IRTemp myArg2 = newIRTemp(sb->tyenv, Ity_I32);
  addStmtToIRSB(sb, IRStmt_WrTmp(myArg2, res[1]));
  res[1]=IRExpr_RdTmp(myArg2);   // now that's a "flat" expression
}
Exemplo n.º 7
0
/*
    Bind the given expression to a new temporary, and return the temporary.
    This effectively converts an arbitrary expression into an IRAtom.
*/
static IRExpr* assignNew(IRSB* sb_out, IRExpr* expr)
{
    IRTemp tmp = newIRTemp(sb_out->tyenv, typeOfIRExpr(sb_out->tyenv, expr));

    addStmtToIRSB(sb_out, IRStmt_WrTmp(tmp, expr));

    return IRExpr_RdTmp(tmp);
}
Exemplo n.º 8
0
Exp  *arm_translate_get( IRExpr *expr, IRSB *irbb, vector<Stmt *> *irout )
{
  int offset = expr->Iex.Get.offset;

  assert(typeOfIRExpr(irbb->tyenv, expr) == Ity_I32);

  return translate_get_reg_32(offset);
}
Exemplo n.º 9
0
static IRAtom* assignNew ( IRSB* sb, IRExpr* e )
{
   IRTemp   t;
   IRType   ty = typeOfIRExpr(sb->tyenv, e);

   t = newIRTemp(sb->tyenv, ty);
   assign(sb, t, e);
   return mkexpr(t);
}
Exemplo n.º 10
0
/* DO NOT CALL THIS DIRECTLY ! */
static ARMAMode3* iselIntExpr_AMode3_wrk ( ISelEnv* env, IRExpr* e )
{   
    IRType ty = typeOfIRExpr(env->type_env,e);
    vassert(ty == Ity_I32);

    // ARMam3_RI,       /* Reg +/- Imm8 */
    // ARMam3_RR,       /* Reg +/- Reg */

    return NULL; 
}
Exemplo n.º 11
0
Stmt *arm_translate_put( IRStmt *stmt, IRSB *irbb, vector<Stmt *> *irout )
{
  int offset = stmt->Ist.Put.offset;

  Exp *data = translate_expr(stmt->Ist.Put.data, irbb, irout);

  assert(typeOfIRExpr(irbb->tyenv, stmt->Ist.Put.data) == Ity_I32);

  return translate_put_reg_32(offset, data, irbb);
}
Exemplo n.º 12
0
void instrument_CAS_double_element(IRStmt* st, IRSB* sb_out)
{
    IRCAS* cas = st->Ist.CAS.details;
    IRTemp oldHi = cas->oldHi, oldLo = cas->oldLo;
    IREndness end = cas->end;
    IRExpr* addr = cas->addr;
    IRExpr *expdHi = cas->expdHi, *expdLo = cas->expdLo;
    IRExpr *dataHi = cas->dataHi, *dataLo = cas->dataLo;
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, dataLo));
    IROp op;
    IRExpr *expr, *expr2;
    IRDirty* di;

    tl_assert(isIRAtom(addr));
    tl_assert(end == Iend_LE); // we assume endianness is little endian
    tl_assert(isIRAtom(dataLo));
    tl_assert(isIRAtom(dataHi));
    if (addr->tag == Iex_Const) tl_assert(addr->Iex.Const.con->tag == Ico_U32);
    tl_assert(typeOfIRExpr(sb_out->tyenv, addr) == typeOfIRExpr(sb_out->tyenv, dataLo));

    switch (size)
    {
        case 8: op = Iop_CasCmpEQ8; break;
        case 16: op = Iop_CasCmpEQ16; break;
        case 32: op = Iop_CasCmpEQ32; break;
        default: VG_(tool_panic)("instrument_CAS_double_element");
    }

    expr = assignNew(sb_out, IRExpr_Binop(op, IRExpr_RdTmp(oldLo), expdLo)); // statement has to be flat
    expr2 = assignNew(sb_out, IRExpr_Binop(op, IRExpr_RdTmp(oldHi), expdHi)); // statement has to be flat

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_CAS_double_element",
                           VG_(fnptr_to_fnentry)(helper_instrument_CAS_double_element),
                           mkIRExprVec_6((addr->tag == Iex_RdTmp) ? assignNew_HWord(sb_out, addr) : mkIRExpr_HWord(addr->Iex.Const.con->Ico.U32),
                                         mkIRExpr_HWord((dataLo->tag == Iex_RdTmp) ? dataLo->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord((dataHi->tag == Iex_RdTmp) ? dataHi->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(size),
                                         assignNew_HWord(sb_out, expr),
                                         assignNew_HWord(sb_out, expr2))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 13
0
/* DO NOT CALL THIS DIRECTLY ! */
static ARMAMode2* iselIntExpr_AMode2 ( ISelEnv* env, IRExpr* e )
{   
    IRType ty = typeOfIRExpr(env->type_env,e);
    vassert(ty == Ity_I32);

    // ARMam2_RI,      /* Reg +/- Imm12 */
    // ARMam2_RR,       /* Reg +/- Reg */
    // ARMam2_RRS,       /* Reg +/- (Reg << Imm5) */

    return NULL; 
}
Exemplo n.º 14
0
void instrument_WrTmp_Unop(IRStmt* st, IRSB* sb_out)
{
    IRTemp tmp = st->Ist.WrTmp.tmp;
    IRExpr* data = st->Ist.WrTmp.data;
    IROp op = data->Iex.Unop.op;
    IRExpr* arg = data->Iex.Unop.arg;
    IRExpr* expr = IRExpr_Unop(op, arg);
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, expr));
    IRDirty* di;

    tl_assert(isIRAtom(arg));
    tl_assert(typeOfIRTemp(sb_out->tyenv, tmp) == typeOfIRExpr(sb_out->tyenv, expr));

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_WrTmp_Unop",
                           VG_(fnptr_to_fnentry)(helper_instrument_WrTmp_Unop),
                           mkIRExprVec_4(mkIRExpr_HWord(tmp),
                                         mkIRExpr_HWord((arg->tag == Iex_RdTmp) ? arg->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(op),
                                         mkIRExpr_HWord(size))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 15
0
void instrument_Put(IRStmt* st, IRSB* sb_out)
{
    Int offset = st->Ist.Put.offset;
    IRExpr* data = st->Ist.Put.data;
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, data));
    IRDirty* di;

    tl_assert(isIRAtom(data));
    // the data transfer type is the type of data

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_Put",
                           VG_(fnptr_to_fnentry)(helper_instrument_Put),
                           mkIRExprVec_3(mkIRExpr_HWord(offset),
                                         mkIRExpr_HWord((data->tag == Iex_RdTmp) ? data->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(size))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 16
0
/* Store a value to memory. If a value requires more than 8 bytes a series
   of 8-byte stores will be generated. */
static __inline__ void
store(IRSB *irsb, IREndness endian, HWord haddr, IRExpr *data)
{
   IROp high, low;
   IRExpr *addr, *next_addr;

   if (VEX_HOST_WORDSIZE == 8) {
      addr = mkU64(haddr);
      next_addr = binop(Iop_Add64, addr, mkU64(8));
   } else if (VEX_HOST_WORDSIZE == 4) {
      addr = mkU32(haddr);
      next_addr = binop(Iop_Add32, addr, mkU32(8));
   } else {
      vpanic("invalid #bytes for address");
   }

   IRType type = typeOfIRExpr(irsb->tyenv, data);

   vassert(type == Ity_I1 || sizeofIRType(type) <= 16);

   switch (type) {
   case Ity_I128: high = Iop_128HIto64;   low = Iop_128to64;     goto store128;
   case Ity_F128: high = Iop_F128HItoF64; low = Iop_F128LOtoF64; goto store128;
   case Ity_D128: high = Iop_D128HItoD64; low = Iop_D128LOtoD64; goto store128;

   store128:
     /* Two stores of 64 bit each. */
      if (endian == Iend_BE) {
         /* The more significant bits are at the lower address. */
         store_aux(irsb, endian, addr, unop(high, data));
         store_aux(irsb, endian, next_addr, unop(low, data));
      } else {
         /* The more significant bits are at the higher address. */
         store_aux(irsb, endian, addr, unop(low, data));
         store_aux(irsb, endian, next_addr, unop(high, data));
      }
      return;

   default:
      store_aux(irsb, endian, addr, data);
      return;
   }
}
Exemplo n.º 17
0
void instrument_Store(IRStmt* st, IRSB* sb_out)
{
    IRExpr* addr = st->Ist.Store.addr;
    IRExpr* data = st->Ist.Store.data;
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, st->Ist.Store.data));
    IRDirty* di;

    tl_assert(isIRAtom(addr));
    tl_assert(isIRAtom(data));
    if (addr->tag == Iex_Const) tl_assert(addr->Iex.Const.con->tag == Ico_U32);
    // the data transfer type is the type of data

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_Store",
                           VG_(fnptr_to_fnentry)(helper_instrument_Store),
                           mkIRExprVec_3((addr->tag == Iex_RdTmp) ? assignNew_HWord(sb_out, addr) : mkIRExpr_HWord(addr->Iex.Const.con->Ico.U32),
                                         mkIRExpr_HWord((data->tag == Iex_RdTmp) ? data->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(size))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 18
0
static Int pushArg ( ISelEnv* env, IRExpr* arg )
{
    IRType arg_ty = typeOfIRExpr(env->type_env, arg);
    if (arg_ty == Ity_I32) {
	
	// CAB: This right?
	addInstr(env, ARMInstr_StoreW( GET_SP_REG(), iselIntExpr_AMode2(env, arg) ) );
	return 1;
    }

#if 0 
   else 
   if (arg_ty == Ity_I64) {
      HReg rHi, rLo;
      iselInt64Expr(&rHi, &rLo, env, arg);
      addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));
      addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));
      return 2;
   }
#endif
   ppIRExpr(arg);
   vpanic("pushArg(arm): can't handle arg of this type");
}
Exemplo n.º 19
0
void instrument_LLSC_Store_Conditional(IRStmt* st, IRSB* sb_out)
{
    IRTemp result = st->Ist.LLSC.result;
    IRExpr* addr = st->Ist.LLSC.addr;
    IRExpr* storedata = st->Ist.LLSC.storedata;
    Int size = sizeofIRType_bits(typeOfIRExpr(sb_out->tyenv, storedata));
    IRExpr* result_expr = IRExpr_RdTmp(result);
    IRDirty* di;

    tl_assert(isIRAtom(addr));
    tl_assert(isIRAtom(storedata));
    if (addr->tag == Iex_Const) tl_assert(addr->Iex.Const.con->tag == Ico_U32);
    // the data transfer type is the type of storedata

    di = unsafeIRDirty_0_N(0,
                           "helper_instrument_LLSC_Store_Conditional",
                           VG_(fnptr_to_fnentry)(helper_instrument_LLSC_Store_Conditional),
                           mkIRExprVec_4((addr->tag == Iex_RdTmp) ? assignNew_HWord(sb_out, addr) : mkIRExpr_HWord(addr->Iex.Const.con->Ico.U32),
                                         mkIRExpr_HWord((storedata->tag == Iex_RdTmp) ? storedata->Iex.RdTmp.tmp : IRTemp_INVALID),
                                         mkIRExpr_HWord(size),
                                         assignNew_HWord(sb_out, result_expr))
                           );
    addStmtToIRSB(sb_out, IRStmt_Dirty(di));
}
Exemplo n.º 20
0
/* DO NOT CALL THIS DIRECTLY ! */
static ARMAMode1* iselIntExpr_AMode1_wrk ( ISelEnv* env, IRExpr* e )
{
    IRType ty = typeOfIRExpr(env->type_env,e);
    vassert(ty == Ity_I32);
 
    // ARMam1_I12A,    /* Imm12A: extended (rotated) immedate */
    // ARMam1_ShlI,    /* ShlI  reg  Imm5 */
    // ARMam1_ShrI,    /* ShrI  reg  Imm5 */
    // ARMam1_SarI,    /* SarI  reg  Imm5 */
    // ARMam1_ShlR,    /* ShlR  reg  reg */
    // ARMam1_ShrR,    /* ShrR  reg  reg */
    // ARMam1_SarR,    /* SarR  reg  reg */

    // ALU ops:
    /*
      ARMalu_And, ARMalu_Orr, ARMalu_Eor, ARMalu_Bic, // Logic
      ARMalu_Sub, ARMalu_Rsb, ARMalu_Add, ARMalu_Adc, ARMalu_Sbc, ARMalu_Rsc,  // Arith
      ARMalu_Tst, ARMalu_Teq, ARMalu_Cmp, ARMalu_Cmn,  // test
      ARMalu_Mov, ARMalu_Mvn  // Move
    */


    return NULL; 
}
Exemplo n.º 21
0
static
IRSB* drd_instrument(VgCallbackClosure* const closure,
                     IRSB* const bb_in,
                     VexGuestLayout* const layout,
                     VexGuestExtents* const vge, 
                     IRType const gWordTy,
                     IRType const hWordTy)
{
  IRDirty* di;
  Int      i;
  IRSB*    bb;
  IRExpr** argv;
  Bool     instrument = True;
  Bool     bus_locked = False;

  /* Set up BB */
  bb           = emptyIRSB();
  bb->tyenv    = deepCopyIRTypeEnv(bb_in->tyenv);
  bb->next     = deepCopyIRExpr(bb_in->next);
  bb->jumpkind = bb_in->jumpkind;

  for (i = 0; i < bb_in->stmts_used; i++)
  {
    IRStmt* const st = bb_in->stmts[i];
    tl_assert(st);
    if (st->tag == Ist_NoOp)
      continue;

    switch (st->tag)
    {
    /* Note: the code for not instrumenting the code in .plt          */
    /* sections is only necessary on CentOS 3.0 x86 (kernel 2.4.21    */
    /* + glibc 2.3.2 + NPTL 0.60 + binutils 2.14.90.0.4).             */
    /* This is because on this platform dynamic library symbols are   */
    /* relocated in another way than by later binutils versions. The  */
    /* linker e.g. does not generate .got.plt sections on CentOS 3.0. */
    case Ist_IMark:
      instrument = VG_(seginfo_sect_kind)(NULL, 0, st->Ist.IMark.addr)
        != Vg_SectPLT;
      addStmtToIRSB(bb, st);
      break;

    case Ist_MBE:
      switch (st->Ist.MBE.event)
      {
      case Imbe_Fence:
        break; /* not interesting */
      case Imbe_BusLock:
      case Imbe_SnoopedStoreBegin:
        tl_assert(! bus_locked);
        bus_locked = True;
        break;
      case Imbe_BusUnlock:
      case Imbe_SnoopedStoreEnd:
        tl_assert(bus_locked);
        bus_locked = False;
        break;
      default:
        tl_assert(0);
      }
      addStmtToIRSB(bb, st);
      break;

    case Ist_Store:
      if (instrument && ! bus_locked)
      {
        instrument_store(bb,
                         st->Ist.Store.addr,
                         sizeofIRType(typeOfIRExpr(bb->tyenv,
                                                   st->Ist.Store.data)));
      }
      addStmtToIRSB(bb, st);
      break;

    case Ist_WrTmp:
      if (instrument)
      {
        const IRExpr* const data = st->Ist.WrTmp.data;
        if (data->tag == Iex_Load)
        {
          instrument_load(bb,
                          data->Iex.Load.addr,
                          sizeofIRType(data->Iex.Load.ty));
        }
      }
      addStmtToIRSB(bb, st);
      break;

    case Ist_Dirty:
      if (instrument)
      {
        IRDirty* d = st->Ist.Dirty.details;
        IREffect const mFx = d->mFx;
        switch (mFx) {
        case Ifx_None:
          break;
        case Ifx_Read:
        case Ifx_Write:
        case Ifx_Modify:
          tl_assert(d->mAddr);
          tl_assert(d->mSize > 0);
          argv = mkIRExprVec_2(d->mAddr, mkIRExpr_HWord(d->mSize));
          if (mFx == Ifx_Read || mFx == Ifx_Modify) {
            di = unsafeIRDirty_0_N(
                                   /*regparms*/2,
                                   "drd_trace_load",
                                   VG_(fnptr_to_fnentry)(drd_trace_load),
                                   argv);
            addStmtToIRSB(bb, IRStmt_Dirty(di));
          }
          if ((mFx == Ifx_Write || mFx == Ifx_Modify)
              && ! bus_locked)
          {
            di = unsafeIRDirty_0_N(
                                   /*regparms*/2,
                                   "drd_trace_store",
                                   VG_(fnptr_to_fnentry)(drd_trace_store),
                                   argv);
            addStmtToIRSB(bb, IRStmt_Dirty(di));
          }
          break;
        default:
          tl_assert(0);
        }
      }
      addStmtToIRSB(bb, st);
      break;

    default:
      addStmtToIRSB(bb, st);
      break;
    }
  }

  tl_assert(! bus_locked);

  return bb;
}
Exemplo n.º 22
0
static
void collectStatementInfo(IRTypeEnv* tyenv, IRBB* bbOut, IRStmt* st,
                          Addr* instrAddr, UInt* instrLen,
                          IRExpr** loadAddrExpr, IRExpr** storeAddrExpr,
                          UInt* dataSize, IRType hWordTy)
{
    CLG_ASSERT(isFlatIRStmt(st));

    switch (st->tag) {
    case Ist_NoOp:
        break;

    case Ist_AbiHint:
        /* ABI hints aren't interesting.  Ignore. */
        break;

    case Ist_IMark:
        /* st->Ist.IMark.addr is a 64-bit int.  ULong_to_Ptr casts this
           to the host's native pointer type; if that is 32 bits then it
           discards the upper 32 bits.  If we are cachegrinding on a
           32-bit host then we are also ensured that the guest word size
           is 32 bits, due to the assertion in cg_instrument that the
           host and guest word sizes must be the same.  Hence
           st->Ist.IMark.addr will have been derived from a 32-bit guest
           code address and truncation of it is safe.  I believe this
           assignment should be correct for both 32- and 64-bit
           machines. */
        *instrAddr = (Addr)ULong_to_Ptr(st->Ist.IMark.addr);
        *instrLen =        st->Ist.IMark.len;
        break;

    case Ist_Tmp: {
        IRExpr* data = st->Ist.Tmp.data;
        if (data->tag == Iex_Load) {
            IRExpr* aexpr = data->Iex.Load.addr;
            CLG_ASSERT( isIRAtom(aexpr) );
            // Note also, endianness info is ignored.  I guess that's not
            // interesting.
            // XXX: repe cmpsb does two loads... the first one is ignored here!
            //tl_assert( NULL == *loadAddrExpr );          // XXX: ???
            *loadAddrExpr = aexpr;
            *dataSize = sizeofIRType(data->Iex.Load.ty);
        }
        break;
    }

    case Ist_Store: {
        IRExpr* data  = st->Ist.Store.data;
        IRExpr* aexpr = st->Ist.Store.addr;
        CLG_ASSERT( isIRAtom(aexpr) );
        if ( NULL == *storeAddrExpr ) {
            /* this is a kludge: ignore all except the first store from
               an instruction. */
            *storeAddrExpr = aexpr;
            *dataSize = sizeofIRType(typeOfIRExpr(tyenv, data));
        }
        break;
    }

    case Ist_Dirty: {
        IRDirty* d = st->Ist.Dirty.details;
        if (d->mFx != Ifx_None) {
            /* This dirty helper accesses memory.  Collect the
               details. */
            CLG_ASSERT(d->mAddr != NULL);
            CLG_ASSERT(d->mSize != 0);
            *dataSize = d->mSize;
            if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
                *loadAddrExpr = d->mAddr;
            if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
                *storeAddrExpr = d->mAddr;
        } else {
            CLG_ASSERT(d->mAddr == NULL);
            CLG_ASSERT(d->mSize == 0);
        }
        break;
    }

    case Ist_Put:
    case Ist_PutI:
    case Ist_MFence:
    case Ist_Exit:
        break;

    default:
        VG_(printf)("\n");
        ppIRStmt(st);
        VG_(printf)("\n");
        VG_(tool_panic)("Callgrind: unhandled IRStmt");
    }
}
Exemplo n.º 23
0
static
IRBB* cg_instrument ( IRBB* bbIn, VexGuestLayout* layout, 
                      Addr64 orig_addr_noredir, VexGuestExtents* vge,
                      IRType gWordTy, IRType hWordTy )
{
   Int        i, isize;
   IRStmt*    st;
   Addr64     cia; /* address of current insn */
   CgState    cgs;
   IRTypeEnv* tyenv = bbIn->tyenv;
   InstrInfo* curr_inode = NULL;

   if (gWordTy != hWordTy) {
      /* We don't currently support this case. */
      VG_(tool_panic)("host/guest word size mismatch");
   }

   /* Set up BB, including copying of the where-next stuff. */
   cgs.bbOut           = emptyIRBB();
   cgs.bbOut->tyenv    = dopyIRTypeEnv(tyenv);
   tl_assert( isIRAtom(bbIn->next) );
   cgs.bbOut->next     = dopyIRExpr(bbIn->next);
   cgs.bbOut->jumpkind = bbIn->jumpkind;

   // Copy verbatim any IR preamble preceding the first IMark
   i = 0;
   while (i < bbIn->stmts_used && bbIn->stmts[i]->tag != Ist_IMark) {
      addStmtToIRBB( cgs.bbOut, bbIn->stmts[i] );
      i++;
   }

   // Get the first statement, and initial cia from it
   tl_assert(bbIn->stmts_used > 0);
   tl_assert(i < bbIn->stmts_used);
   st = bbIn->stmts[i];
   tl_assert(Ist_IMark == st->tag);
   cia = st->Ist.IMark.addr;

   // Set up running state and get block info
   cgs.events_used = 0;
   cgs.bbInfo      = get_BB_info(bbIn, (Addr)orig_addr_noredir);
   cgs.bbInfo_i    = 0;

   if (DEBUG_CG)
      VG_(printf)("\n\n---------- cg_instrument ----------\n");

   // Traverse the block, initialising inodes, adding events and flushing as
   // necessary.
   for (/*use current i*/; i < bbIn->stmts_used; i++) {

      st = bbIn->stmts[i];
      tl_assert(isFlatIRStmt(st));

      switch (st->tag) {
         case Ist_NoOp:
         case Ist_AbiHint:
         case Ist_Put:
         case Ist_PutI:
         case Ist_MFence:
            break;

         case Ist_IMark:
            cia   = st->Ist.IMark.addr;
            isize = st->Ist.IMark.len;

            // If Vex fails to decode an instruction, the size will be zero.
            // Pretend otherwise.
            if (isize == 0) isize = VG_MIN_INSTR_SZB;

            // Sanity-check size.
            tl_assert( (VG_MIN_INSTR_SZB <= isize && isize <= VG_MAX_INSTR_SZB)
                     || VG_CLREQ_SZB == isize );

            // Get space for and init the inode, record it as the current one.
            // Subsequent Dr/Dw/Dm events from the same instruction will 
            // also use it.
            curr_inode = setup_InstrInfo(&cgs, cia, isize);

            addEvent_Ir( &cgs, curr_inode );
            break;

         case Ist_Tmp: {
            IRExpr* data = st->Ist.Tmp.data;
            if (data->tag == Iex_Load) {
               IRExpr* aexpr = data->Iex.Load.addr;
               // Note also, endianness info is ignored.  I guess
               // that's not interesting.
               addEvent_Dr( &cgs, curr_inode, sizeofIRType(data->Iex.Load.ty), 
                                  aexpr );
            }
            break;
         }

         case Ist_Store: {
            IRExpr* data  = st->Ist.Store.data;
            IRExpr* aexpr = st->Ist.Store.addr;
            addEvent_Dw( &cgs, curr_inode, 
                         sizeofIRType(typeOfIRExpr(tyenv, data)), aexpr );
            break;
         }

         case Ist_Dirty: {
            Int      dataSize;
            IRDirty* d = st->Ist.Dirty.details;
            if (d->mFx != Ifx_None) {
               /* This dirty helper accesses memory.  Collect the details. */
               tl_assert(d->mAddr != NULL);
               tl_assert(d->mSize != 0);
               dataSize = d->mSize;
               // Large (eg. 28B, 108B, 512B on x86) data-sized
               // instructions will be done inaccurately, but they're
               // very rare and this avoids errors from hitting more
               // than two cache lines in the simulation.
               if (dataSize > MIN_LINE_SIZE)
                  dataSize = MIN_LINE_SIZE;
               if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
                  addEvent_Dr( &cgs, curr_inode, dataSize, d->mAddr );
               if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
                  addEvent_Dw( &cgs, curr_inode, dataSize, d->mAddr );
            } else {
               tl_assert(d->mAddr == NULL);
               tl_assert(d->mSize == 0);
            }
            break;
         }

         case Ist_Exit:
            /* We may never reach the next statement, so need to flush
               all outstanding transactions now. */
            flushEvents( &cgs );
            break;

         default:
            tl_assert(0);
            break;
      }

      /* Copy the original statement */
      addStmtToIRBB( cgs.bbOut, st );

      if (DEBUG_CG) {
         ppIRStmt(st);
         VG_(printf)("\n");
      }
   }

   /* At the end of the bb.  Flush outstandings. */
   flushEvents( &cgs );

   /* done.  stay sane ... */
   tl_assert(cgs.bbInfo_i == cgs.bbInfo->n_instrs);

   if (DEBUG_CG) {
      VG_(printf)( "goto {");
      ppIRJumpKind(bbIn->jumpkind);
      VG_(printf)( "} ");
      ppIRExpr( bbIn->next );
      VG_(printf)( "}\n");
   }

   return cgs.bbOut;
}
Exemplo n.º 24
0
static
IRSB* lk_instrument ( VgCallbackClosure* closure,
                      IRSB* sbIn,
                      VexGuestLayout* layout,
                      VexGuestExtents* vge,
                      VexArchInfo* archinfo_host,
                      IRType gWordTy, IRType hWordTy )
{
   IRDirty*   di;
   Int        i;
   IRSB*      sbOut;
   HChar      fnname[100];
   IRTypeEnv* tyenv = sbIn->tyenv;
   Addr       iaddr = 0, dst;
   UInt       ilen = 0;
   Bool       condition_inverted = False;

   if (gWordTy != hWordTy) {
      /* We don't currently support this case. */
      VG_(tool_panic)("host/guest word size mismatch");
   }

   /* Set up SB */
   sbOut = deepCopyIRSBExceptStmts(sbIn);

   // Copy verbatim any IR preamble preceding the first IMark
   i = 0;
   while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {
      addStmtToIRSB( sbOut, sbIn->stmts[i] );
      i++;
   }

   if (clo_basic_counts) {
      /* Count this superblock. */
      di = unsafeIRDirty_0_N( 0, "add_one_SB_entered",
                                 VG_(fnptr_to_fnentry)( &add_one_SB_entered ),
                                 mkIRExprVec_0() );
      addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
   }

   if (clo_trace_sbs) {
      /* Print this superblock's address. */
      di = unsafeIRDirty_0_N(
              0, "trace_superblock",
              VG_(fnptr_to_fnentry)( &trace_superblock ),
              mkIRExprVec_1( mkIRExpr_HWord( vge->base[0] ) )
           );
      addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
   }

   if (clo_trace_mem) {
      events_used = 0;
   }

   for (/*use current i*/; i < sbIn->stmts_used; i++) {
      IRStmt* st = sbIn->stmts[i];
      if (!st || st->tag == Ist_NoOp) continue;

      if (clo_basic_counts) {
         /* Count one VEX statement. */
         di = unsafeIRDirty_0_N( 0, "add_one_IRStmt",
                                    VG_(fnptr_to_fnentry)( &add_one_IRStmt ),
                                    mkIRExprVec_0() );
         addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
      }

      switch (st->tag) {
         case Ist_NoOp:
         case Ist_AbiHint:
         case Ist_Put:
         case Ist_PutI:
         case Ist_MBE:
            addStmtToIRSB( sbOut, st );
            break;

         case Ist_IMark:
            if (clo_basic_counts) {
               /* Needed to be able to check for inverted condition in Ist_Exit */
               iaddr = st->Ist.IMark.addr;
               ilen  = st->Ist.IMark.len;

               /* Count guest instruction. */
               di = unsafeIRDirty_0_N( 0, "add_one_guest_instr",
                                          VG_(fnptr_to_fnentry)( &add_one_guest_instr ),
                                          mkIRExprVec_0() );
               addStmtToIRSB( sbOut, IRStmt_Dirty(di) );

               /* An unconditional branch to a known destination in the
                * guest's instructions can be represented, in the IRSB to
                * instrument, by the VEX statements that are the
                * translation of that known destination. This feature is
                * called 'SB chasing' and can be influenced by command
                * line option --vex-guest-chase-thresh.
                *
                * To get an accurate count of the calls to a specific
                * function, taking SB chasing into account, we need to
                * check for each guest instruction (Ist_IMark) if it is
                * the entry point of a function.
                */
               tl_assert(clo_fnname);
               tl_assert(clo_fnname[0]);
               if (VG_(get_fnname_if_entry)(st->Ist.IMark.addr,
                                            fnname, sizeof(fnname))
                   && 0 == VG_(strcmp)(fnname, clo_fnname)) {
                  di = unsafeIRDirty_0_N(
                          0, "add_one_func_call",
                             VG_(fnptr_to_fnentry)( &add_one_func_call ),
                             mkIRExprVec_0() );
                  addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
               }
            }
            if (clo_trace_mem) {
               // WARNING: do not remove this function call, even if you
               // aren't interested in instruction reads.  See the comment
               // above the function itself for more detail.
               addEvent_Ir( sbOut, mkIRExpr_HWord( (HWord)st->Ist.IMark.addr ),
                            st->Ist.IMark.len );
            }
            addStmtToIRSB( sbOut, st );
            break;

         case Ist_WrTmp:
            // Add a call to trace_load() if --trace-mem=yes.
            if (clo_trace_mem) {
               IRExpr* data = st->Ist.WrTmp.data;
               if (data->tag == Iex_Load) {
                  addEvent_Dr( sbOut, data->Iex.Load.addr,
                               sizeofIRType(data->Iex.Load.ty) );
               }
            }
            if (clo_detailed_counts) {
               IRExpr* expr = st->Ist.WrTmp.data;
               IRType  type = typeOfIRExpr(sbOut->tyenv, expr);
               tl_assert(type != Ity_INVALID);
               switch (expr->tag) {
                  case Iex_Load:
                    instrument_detail( sbOut, OpLoad, type, NULL/*guard*/ );
                     break;
                  case Iex_Unop:
                  case Iex_Binop:
                  case Iex_Triop:
                  case Iex_Qop:
                  case Iex_ITE:
                     instrument_detail( sbOut, OpAlu, type, NULL/*guard*/ );
                     break;
                  default:
                     break;
               }
            }
            addStmtToIRSB( sbOut, st );
            break;

         case Ist_Store: {
            IRExpr* data = st->Ist.Store.data;
            IRType  type = typeOfIRExpr(tyenv, data);
            tl_assert(type != Ity_INVALID);
            if (clo_trace_mem) {
               addEvent_Dw( sbOut, st->Ist.Store.addr,
                            sizeofIRType(type) );
            }
            if (clo_detailed_counts) {
               instrument_detail( sbOut, OpStore, type, NULL/*guard*/ );
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_StoreG: {
            IRStoreG* sg   = st->Ist.StoreG.details;
            IRExpr*   data = sg->data;
            IRType    type = typeOfIRExpr(tyenv, data);
            tl_assert(type != Ity_INVALID);
            if (clo_trace_mem) {
               addEvent_Dw_guarded( sbOut, sg->addr,
                                    sizeofIRType(type), sg->guard );
            }
            if (clo_detailed_counts) {
               instrument_detail( sbOut, OpStore, type, sg->guard );
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_LoadG: {
            IRLoadG* lg       = st->Ist.LoadG.details;
            IRType   type     = Ity_INVALID; /* loaded type */
            IRType   typeWide = Ity_INVALID; /* after implicit widening */
            typeOfIRLoadGOp(lg->cvt, &typeWide, &type);
            tl_assert(type != Ity_INVALID);
            if (clo_trace_mem) {
               addEvent_Dr_guarded( sbOut, lg->addr,
                                    sizeofIRType(type), lg->guard );
            }
            if (clo_detailed_counts) {
               instrument_detail( sbOut, OpLoad, type, lg->guard );
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_Dirty: {
            if (clo_trace_mem) {
               Int      dsize;
               IRDirty* d = st->Ist.Dirty.details;
               if (d->mFx != Ifx_None) {
                  // This dirty helper accesses memory.  Collect the details.
                  tl_assert(d->mAddr != NULL);
                  tl_assert(d->mSize != 0);
                  dsize = d->mSize;
                  if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
                     addEvent_Dr( sbOut, d->mAddr, dsize );
                  if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
                     addEvent_Dw( sbOut, d->mAddr, dsize );
               } else {
                  tl_assert(d->mAddr == NULL);
                  tl_assert(d->mSize == 0);
               }
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_CAS: {
            /* We treat it as a read and a write of the location.  I
               think that is the same behaviour as it was before IRCAS
               was introduced, since prior to that point, the Vex
               front ends would translate a lock-prefixed instruction
               into a (normal) read followed by a (normal) write. */
            Int    dataSize;
            IRType dataTy;
            IRCAS* cas = st->Ist.CAS.details;
            tl_assert(cas->addr != NULL);
            tl_assert(cas->dataLo != NULL);
            dataTy   = typeOfIRExpr(tyenv, cas->dataLo);
            dataSize = sizeofIRType(dataTy);
            if (cas->dataHi != NULL)
               dataSize *= 2; /* since it's a doubleword-CAS */
            if (clo_trace_mem) {
               addEvent_Dr( sbOut, cas->addr, dataSize );
               addEvent_Dw( sbOut, cas->addr, dataSize );
            }
            if (clo_detailed_counts) {
               instrument_detail( sbOut, OpLoad, dataTy, NULL/*guard*/ );
               if (cas->dataHi != NULL) /* dcas */
                  instrument_detail( sbOut, OpLoad, dataTy, NULL/*guard*/ );
               instrument_detail( sbOut, OpStore, dataTy, NULL/*guard*/ );
               if (cas->dataHi != NULL) /* dcas */
                  instrument_detail( sbOut, OpStore, dataTy, NULL/*guard*/ );
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_LLSC: {
            IRType dataTy;
            if (st->Ist.LLSC.storedata == NULL) {
               /* LL */
               dataTy = typeOfIRTemp(tyenv, st->Ist.LLSC.result);
               if (clo_trace_mem) {
                  addEvent_Dr( sbOut, st->Ist.LLSC.addr,
                                      sizeofIRType(dataTy) );
                  /* flush events before LL, helps SC to succeed */
                  flushEvents(sbOut);
	       }
               if (clo_detailed_counts)
                  instrument_detail( sbOut, OpLoad, dataTy, NULL/*guard*/ );
            } else {
               /* SC */
               dataTy = typeOfIRExpr(tyenv, st->Ist.LLSC.storedata);
               if (clo_trace_mem)
                  addEvent_Dw( sbOut, st->Ist.LLSC.addr,
                                      sizeofIRType(dataTy) );
               if (clo_detailed_counts)
                  instrument_detail( sbOut, OpStore, dataTy, NULL/*guard*/ );
            }
            addStmtToIRSB( sbOut, st );
            break;
         }

         case Ist_Exit:
            if (clo_basic_counts) {
               // The condition of a branch was inverted by VEX if a taken
               // branch is in fact a fall trough according to client address
               tl_assert(iaddr != 0);
               dst = (sizeof(Addr) == 4) ? st->Ist.Exit.dst->Ico.U32 :
                                           st->Ist.Exit.dst->Ico.U64;
               condition_inverted = (dst == iaddr + ilen);

               /* Count Jcc */
               if (!condition_inverted)
                  di = unsafeIRDirty_0_N( 0, "add_one_Jcc",
                                          VG_(fnptr_to_fnentry)( &add_one_Jcc ),
                                          mkIRExprVec_0() );
               else
                  di = unsafeIRDirty_0_N( 0, "add_one_inverted_Jcc",
                                          VG_(fnptr_to_fnentry)(
                                             &add_one_inverted_Jcc ),
                                          mkIRExprVec_0() );

               addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
            }
            if (clo_trace_mem) {
               flushEvents(sbOut);
            }

            addStmtToIRSB( sbOut, st );      // Original statement

            if (clo_basic_counts) {
               /* Count non-taken Jcc */
               if (!condition_inverted)
                  di = unsafeIRDirty_0_N( 0, "add_one_Jcc_untaken",
                                          VG_(fnptr_to_fnentry)(
                                             &add_one_Jcc_untaken ),
                                          mkIRExprVec_0() );
               else
                  di = unsafeIRDirty_0_N( 0, "add_one_inverted_Jcc_untaken",
                                          VG_(fnptr_to_fnentry)(
                                             &add_one_inverted_Jcc_untaken ),
                                          mkIRExprVec_0() );

               addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
            }
            break;

         default:
            ppIRStmt(st);
            tl_assert(0);
      }
   }

   if (clo_basic_counts) {
      /* Count this basic block. */
      di = unsafeIRDirty_0_N( 0, "add_one_SB_completed",
                                 VG_(fnptr_to_fnentry)( &add_one_SB_completed ),
                                 mkIRExprVec_0() );
      addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
   }

   if (clo_trace_mem) {
      /* At the end of the sbIn.  Flush outstandings. */
      flushEvents(sbOut);
   }

   return sbOut;
}
Exemplo n.º 25
0
/* Instrumentation before a conditional jump or at the end
 * of each original instruction.
 * Fills the InstrInfo struct if not seen before
 */
static
void endOfInstr(IRBB* bbOut, InstrInfo* ii, Bool bb_seen_before,
                UInt instr_offset, UInt instrLen, UInt dataSize,
                UInt* cost_offset, Bool instrIssued,
                IRExpr* loadAddrExpr, IRExpr* storeAddrExpr)
{
    IRType    wordTy;
    EventSet* es;

    // Stay sane ...
    CLG_ASSERT(sizeof(HWord) == sizeof(void*));
    if (sizeof(HWord) == 4) {
        wordTy = Ity_I32;
    } else if (sizeof(HWord) == 8) {
        wordTy = Ity_I64;
    } else {
        VG_(tool_panic)("endOfInstr: strange word size");
    }

    if (loadAddrExpr)
        CLG_ASSERT(wordTy == typeOfIRExpr(bbOut->tyenv, loadAddrExpr));
    if (storeAddrExpr)
        CLG_ASSERT(wordTy == typeOfIRExpr(bbOut->tyenv, storeAddrExpr));

    // Large (eg. 28B, 108B, 512B on x86) data-sized instructions will be
    // done inaccurately, but they're very rare and this avoids errors from
    // hitting more than two cache lines in the simulation.
    if (dataSize > MIN_LINE_SIZE) dataSize = MIN_LINE_SIZE;

    /* returns 0 if simulator needs no instrumentation */
    es = insert_simcall(bbOut, ii, dataSize, instrIssued,
                        loadAddrExpr, storeAddrExpr);

    CLG_DEBUG(5, "  Instr +%2d (Size %d, DSize %d): ESet %s (Size %d)\n",
              instr_offset, instrLen, dataSize,
              es ? es->name : (Char*)"(no instrumentation)",
              es ? es->size : 0);

    if (bb_seen_before) {
        CLG_DEBUG(5, "   before: Instr +%2d (Size %d, DSize %d)\n",
                  ii->instr_offset, ii->instr_size, ii->data_size);

        CLG_ASSERT(ii->instr_offset == instr_offset);
        CLG_ASSERT(ii->instr_size == instrLen);
        CLG_ASSERT(ii->cost_offset == *cost_offset);
        CLG_ASSERT(ii->eventset == es);

        /* Only check size if data size >0.
        * This is needed: e.g. for rep or cmov x86 instructions, the same InstrInfo
        * is used both for 2 simulator calls: for the pure instruction fetch and
               * separately for an memory access (which may not happen depending on flags).
        * If checked always, this triggers an assertion failure on retranslation.
        */
        if (dataSize>0) CLG_ASSERT(ii->data_size == dataSize);

    }
    else {
        ii->instr_offset = instr_offset;
        ii->instr_size = instrLen;
        ii->cost_offset = *cost_offset;
        ii->eventset = es;

        /* data size only relevant if >0 */
        if (dataSize > 0) ii->data_size = dataSize;


        CLG_(stat).distinct_instrs++;
    }

    *cost_offset += es ? es->size : 0;

}
Exemplo n.º 26
0
static
IRSB* el_instrument ( VgCallbackClosure* closure,
                      IRSB* sbIn,
                      VexGuestLayout* layout,
                      VexGuestExtents* vge,
                      IRType gWordTy, IRType hWordTy )
{
    IRDirty*   di;
    Int        i;
    IRSB*      sbOut;
    Char       fnname[100];
    IRType     type;
    IRTypeEnv* tyenv = sbIn->tyenv;
    Addr       iaddr = 0, dst;
    UInt       ilen = 0;
    Bool       condition_inverted = False;

    if (gWordTy != hWordTy) {
        /* We don't currently support this case. */
        VG_(tool_panic)("host/guest word size mismatch");
    }

    /* Set up SB */
    sbOut = deepCopyIRSBExceptStmts(sbIn);

    // Copy verbatim any IR preamble preceding the first IMark
    i = 0;
    while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {
        addStmtToIRSB( sbOut, sbIn->stmts[i] );
        i++;
    }

    events_used = 0;


    for (/*use current i*/; i < sbIn->stmts_used; i++) {
        IRStmt* st = sbIn->stmts[i];
        if (!st || st->tag == Ist_NoOp) continue;



        switch (st->tag) {
        case Ist_NoOp:
        case Ist_AbiHint:
        case Ist_Put:
        case Ist_PutI:
        case Ist_MBE:
            addStmtToIRSB( sbOut, st );
            break;

        case Ist_IMark:

            // Store the last seen address
            lastAddress = st->Ist.IMark.addr;

            addEvent_Ir( sbOut, mkIRExpr_HWord( (HWord)st->Ist.IMark.addr ),
                         st->Ist.IMark.len );

            VG_(get_filename)(lastAddress, (char*) g_buff1, kBuffSize);

            if(VG_(strcmp)(g_buff1, clo_filename) == 0) {
                shouldInterpret = 1;
                ppIRStmt(st);
                VG_(printf)("\n");
            } else {
                shouldInterpret = 0;
            }

            addStmtToIRSB( sbOut, st );
            break;

        case Ist_WrTmp:
            // Add a call to trace_load() if --trace-mem=yes.
        {
            if(shouldInterpret) {
                IRExpr* data = st->Ist.WrTmp.data;
                if (data->tag == Iex_Load) {
                    addEvent_Dr( sbOut, data->Iex.Load.addr,
                                 sizeofIRType(data->Iex.Load.ty) );
                }

            }
            addStmtToIRSB( sbOut, st );
            break;
        }
        case Ist_Store:
        {
            if(shouldInterpret) {
                IRExpr* data  = st->Ist.Store.data;
                addEvent_Dw( sbOut, st->Ist.Store.addr,
                             sizeofIRType(typeOfIRExpr(tyenv, data)) );


            }
            addStmtToIRSB( sbOut, st );
            break;
        }
        case Ist_Dirty:
        {

            if(shouldInterpret) {
                Int      dsize;
                IRDirty* d = st->Ist.Dirty.details;
                if (d->mFx != Ifx_None) {
                    // This dirty helper accesses memory.  Collect the details.
                    tl_assert(d->mAddr != NULL);
                    tl_assert(d->mSize != 0);
                    dsize = d->mSize;
                    if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
                        addEvent_Dr( sbOut, d->mAddr, dsize );
                    if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
                        addEvent_Dw( sbOut, d->mAddr, dsize );
                } else {
                    tl_assert(d->mAddr == NULL);
                    tl_assert(d->mSize == 0);
                }
            }

            addStmtToIRSB( sbOut, st );
            break;
        }

        case Ist_CAS: {
            if(shouldInterpret) {
                Int    dataSize;
                IRType dataTy;
                IRCAS* cas = st->Ist.CAS.details;
                tl_assert(cas->addr != NULL);
                tl_assert(cas->dataLo != NULL);
                dataTy   = typeOfIRExpr(tyenv, cas->dataLo);
                dataSize = sizeofIRType(dataTy);
                if (cas->dataHi != NULL)
                    dataSize *= 2; /* since it's a doubleword-CAS */

                addEvent_Dr( sbOut, cas->addr, dataSize );
                addEvent_Dw( sbOut, cas->addr, dataSize );

            }
            addStmtToIRSB( sbOut, st );
            break;
        }

        case Ist_LLSC: {
            if(shouldInterpret) {
                IRType dataTy;
                if (st->Ist.LLSC.storedata == NULL) {
                    /* LL */
                    dataTy = typeOfIRTemp(tyenv, st->Ist.LLSC.result);

                    addEvent_Dr( sbOut, st->Ist.LLSC.addr,
                                 sizeofIRType(dataTy) );

                } else {
                    /* SC */
                    dataTy = typeOfIRExpr(tyenv, st->Ist.LLSC.storedata);

                    addEvent_Dw( sbOut, st->Ist.LLSC.addr,
                                 sizeofIRType(dataTy) );

                }
            }
            addStmtToIRSB( sbOut, st );
            break;
        }

        case Ist_Exit:
            if(shouldInterpret) {

            }

            flushEvents(sbOut);
            addStmtToIRSB( sbOut, st );      // Original statement
            break;

        default:
            tl_assert(0);
        }
    }


    /* At the end of the sbIn.  Flush outstandings. */
    flushEvents(sbOut);


    return sbOut;
}
Exemplo n.º 27
0
// Instrumentation for the end of each original instruction.
static
void instrumentInstr(IRBB* bbOut, instr_info* i_node, Bool bbSeenBefore,
                     UInt instrAddr, UInt instrLen, UInt dataSize,
                     IRExpr* loadAddrExpr, IRExpr* storeAddrExpr)
{
   IRDirty* di;
   IRExpr  *arg1, *arg2, *arg3, **argv;
   Int      argc;
   Char*    helperName;
   void*    helperAddr;
   IRType   wordTy;

   // Stay sane ...
   tl_assert(sizeof(HWord) == sizeof(void*));
   if (sizeof(HWord) == 4) {
      wordTy = Ity_I32;
   } else
   if (sizeof(HWord) == 8) {
      wordTy = Ity_I64;
   } else {
      VG_(tool_panic)("instrumentInstr: strange word size");
   }

   if (loadAddrExpr) 
      tl_assert(wordTy == typeOfIRExpr(bbOut->tyenv, loadAddrExpr));
   if (storeAddrExpr) 
      tl_assert(wordTy == typeOfIRExpr(bbOut->tyenv, storeAddrExpr));


   // Nb: instrLen will be zero if Vex failed to decode it.
   tl_assert( 0 == instrLen ||
              (instrLen >= VG_MIN_INSTR_SZB && 
               instrLen <= VG_MAX_INSTR_SZB) );

   // Large (eg. 28B, 108B, 512B on x86) data-sized instructions will be
   // done inaccurately, but they're very rare and this avoids errors from
   // hitting more than two cache lines in the simulation.
   if (dataSize > MIN_LINE_SIZE) dataSize = MIN_LINE_SIZE;

   // Setup 1st arg: instr_info node's address
   // Believed to be 64-bit clean
   do_details(i_node, bbSeenBefore, instrAddr, instrLen, dataSize );
   arg1 = mkIRExpr_HWord( (HWord)i_node );

   if (!loadAddrExpr && !storeAddrExpr) {
      // no load/store
      tl_assert(0 == dataSize);
      helperName = "log_1I_0D_cache_access";
      helperAddr = &log_1I_0D_cache_access;
      argc = 1;
      argv = mkIRExprVec_1(arg1);

   } else if (loadAddrExpr && !storeAddrExpr) {
      // load
      tl_assert( isIRAtom(loadAddrExpr) );
      helperName = "log_1I_1Dr_cache_access";
      helperAddr = &log_1I_1Dr_cache_access;
      argc = 2;
      arg2 = loadAddrExpr;
      argv = mkIRExprVec_2(arg1, arg2);

   } else if (!loadAddrExpr && storeAddrExpr) {
      // store
      tl_assert( isIRAtom(storeAddrExpr) );
      helperName = "log_1I_1Dw_cache_access";
      helperAddr = &log_1I_1Dw_cache_access;
      argc = 2;
      arg2 = storeAddrExpr;
      argv = mkIRExprVec_2(arg1, arg2);
 
   } else {
      tl_assert( loadAddrExpr && storeAddrExpr );
      tl_assert( isIRAtom(loadAddrExpr) );
      tl_assert( isIRAtom(storeAddrExpr) );

      if ( loadStoreAddrsMatch(loadAddrExpr, storeAddrExpr) ) {
         // modify
         helperName = "log_1I_1Dr_cache_access";
         helperAddr = &log_1I_1Dr_cache_access;
         argc = 2;
         arg2 = loadAddrExpr;
         argv = mkIRExprVec_2(arg1, arg2);

      } else {
         // load/store
         helperName = "log_1I_2D_cache_access";
         helperAddr = &log_1I_2D_cache_access;
         argc = 3;
         arg2 = loadAddrExpr;
         arg3 = storeAddrExpr;
         argv = mkIRExprVec_3(arg1, arg2, arg3);
      }
   }

   // Add call to the instrumentation function
   di = unsafeIRDirty_0_N( argc, helperName, helperAddr, argv);
   addStmtToIRBB( bbOut, IRStmt_Dirty(di) );
}
Exemplo n.º 28
0
static 
Bool handleOneStatement(IRTypeEnv* tyenv, IRBB* bbOut, IRStmt* st, IRStmt* st2,
                        Addr* instrAddr, UInt* instrLen,
                        IRExpr** loadAddrExpr, IRExpr** storeAddrExpr,
                        UInt* dataSize)
{
   tl_assert(isFlatIRStmt(st));

   switch (st->tag) {
   case Ist_NoOp:
   case Ist_AbiHint:
   case Ist_Put:
   case Ist_PutI:
   case Ist_MFence:
      break;

   case Ist_Exit: {
      // This is a conditional jump.  Most of the time, we want to add the
      // instrumentation before it, to ensure it gets executed.  Eg, (1) if
      // this conditional jump is just before an IMark:
      //
      //   t108 = Not1(t107)
      //   [add instrumentation here]
      //   if (t108) goto {Boring} 0x3A96637D:I32
      //   ------ IMark(0x3A966370, 7) ------
      //
      // or (2) if this conditional jump is the last thing before the
      // block-ending unconditional jump:
      //
      //   t111 = Not1(t110)
      //   [add instrumentation here]
      //   if (t111) goto {Boring} 0x3A96637D:I32
      //   goto {Boring} 0x3A966370:I32
      //
      // One case (3) where we want the instrumentation after the conditional
      // jump is when the conditional jump is for an x86 REP instruction:
      //
      //   ------ IMark(0x3A967F13, 2) ------
      //   t1 = GET:I32(4)
      //   t6 = CmpEQ32(t1,0x0:I32) 
      //   if (t6) goto {Boring} 0x3A967F15:I32    # ignore this cond jmp
      //   t7 = Sub32(t1,0x1:I32)
      //   PUT(4) = t7
      //   ...
      //   t56 = Not1(t55)
      //   [add instrumentation here]
      //   if (t56) goto {Boring} 0x3A967F15:I32
      //
      // Therefore, we return true if the next statement is an IMark, or if
      // there is no next statement (which matches case (2), as the final
      // unconditional jump is not represented in the IRStmt list).
      //
      // Note that this approach won't do in the long run for supporting
      // PPC, but it's good enough for x86/AMD64 for the 3.0.X series.
      if (NULL == st2 || Ist_IMark == st2->tag)
         return True;
      else
         return False;
   }

   case Ist_IMark:
      /* st->Ist.IMark.addr is a 64-bit int.  ULong_to_Ptr casts this
         to the host's native pointer type; if that is 32 bits then it
         discards the upper 32 bits.  If we are cachegrinding on a
         32-bit host then we are also ensured that the guest word size
         is 32 bits, due to the assertion in cg_instrument that the
         host and guest word sizes must be the same.  Hence
         st->Ist.IMark.addr will have been derived from a 32-bit guest
         code address and truncation of it is safe.  I believe this
         assignment should be correct for both 32- and 64-bit
         machines. */
      *instrAddr = (Addr)ULong_to_Ptr(st->Ist.IMark.addr);
      *instrLen =        st->Ist.IMark.len;
      break;

   case Ist_Tmp: {
      IRExpr* data = st->Ist.Tmp.data;
      if (data->tag == Iex_Load) {
         IRExpr* aexpr = data->Iex.Load.addr;
         tl_assert( isIRAtom(aexpr) );
         // Note also, endianness info is ignored.  I guess that's not
         // interesting.
         // XXX: repe cmpsb does two loads... the first one is ignored here!
         //tl_assert( NULL == *loadAddrExpr );          // XXX: ???
         *loadAddrExpr = aexpr;
         *dataSize = sizeofIRType(data->Iex.Load.ty);
      }
      break;
   }
      
   case Ist_Store: {
      IRExpr* data  = st->Ist.Store.data;
      IRExpr* aexpr = st->Ist.Store.addr;
      tl_assert( isIRAtom(aexpr) );
      tl_assert( NULL == *storeAddrExpr );          // XXX: ???
      *storeAddrExpr = aexpr;
      *dataSize = sizeofIRType(typeOfIRExpr(tyenv, data));
      break;
   }
   
   case Ist_Dirty: {
      IRDirty* d = st->Ist.Dirty.details;
      if (d->mFx != Ifx_None) {
         /* This dirty helper accesses memory.  Collect the
            details. */
         tl_assert(d->mAddr != NULL);
         tl_assert(d->mSize != 0);
         *dataSize = d->mSize;
         if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
            *loadAddrExpr = d->mAddr;
         if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
            *storeAddrExpr = d->mAddr;
      } else {
         tl_assert(d->mAddr == NULL);
         tl_assert(d->mSize == 0);
      }
      break;
   }

   default:
      VG_(printf)("\n");
      ppIRStmt(st);
      VG_(printf)("\n");
      VG_(tool_panic)("Cachegrind: unhandled IRStmt");
   }

   return False;
}
Exemplo n.º 29
0
static
IRSB* sh_instrument ( VgCallbackClosure* closure,
                      IRSB* sbIn,
                      VexGuestLayout* layout, 
                      VexGuestExtents* vge,
                      IRType gWordTy, IRType hWordTy )
{
    IRDirty*   di;
    Int        i;
    IRSB*      sbOut;
    IRType     type;
    IRTypeEnv* tyenv = sbIn->tyenv;
    IRStmt*    imarkst;
    char *fnname = global_fnname;
    if (gWordTy != hWordTy) {
        /* We don't currently support this case. */
        VG_(tool_panic)("host/guest word size mismatch");
    }

    /* Set up SB */
    sbOut = deepCopyIRSBExceptStmts(sbIn);

    // Copy verbatim any IR preamble preceding the first IMark
    i = 0;
    while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {
        addStmtToIRSB( sbOut, sbIn->stmts[i] );
        i++;
    }
    if (clo_trace_mem) {
       events_used = 0;
    }
    for (/*use current i*/; i < sbIn->stmts_used; i++) {
        IRStmt* st = sbIn->stmts[i];
        if (!st || st->tag == Ist_NoOp) continue;

        /* Prettyprint All IR statements Starting from main
           that valgrind has generated */
        /*if(clo_trace_mem){
            ppIRStmt(st);
            VG_(printf)("\n");
        }
        */

        switch (st->tag) {
           case Ist_NoOp:
           case Ist_AbiHint:
           case Ist_PutI:
           case Ist_MBE:
              break;
           case Ist_Put:
              if(clo_trace_mem){
                  Int reg_no = st->Ist.Put.offset;
                  if(reg_no == layout->offset_SP || reg_no == 20){
                     IRExpr* data = st->Ist.Put.data;
                     if(data->tag == Iex_RdTmp){
                        /* Add registerwrite instrumentation to IRSBout */
                        addEvent_RegW( sbOut, fnname, reg_no, data);
                      }
                  }
              }
              addStmtToIRSB( sbOut, st );
              break;

           case Ist_IMark:
              imarkst = st;
              if (VG_(get_fnname_if_entry)(
                                            st->Ist.IMark.addr, 
                                            fnname, 100)){
                   //VG_(printf)("-- %s --\n",fnname);
                   if(0 == VG_(strcmp)(fnname, "main")) {
                      di = unsafeIRDirty_0_N( 
                              0, "trace_debug", 
                                 VG_(fnptr_to_fnentry)(trace_debug), 
                                 mkIRExprVec_0() );
                      addStmtToIRSB( sbOut, IRStmt_Dirty(di) );
                      //VG_(printf)("SP:%d\n",layout->offset_SP);
                      clo_trace_mem = True;
                  }
                  if(clo_trace_mem){
                       addEvent_FnEntry(sbOut, fnname);
                  }
               }
              if (clo_trace_mem) {
                 // WARNING: do not remove this function call, even if you
                 // aren't interested in instruction reads.  See the comment
                 // above the function itself for more detail.
                 addEvent_Ir( sbOut, mkIRExpr_HWord( (HWord)st->Ist.IMark.addr ),
                              st->Ist.IMark.len );
              }
              addStmtToIRSB( sbOut, st );
              break;

           case Ist_WrTmp:
              // Add a call to trace_load() if --trace-mem=yes.
              if (clo_trace_mem) {
                 IRExpr* data = st->Ist.WrTmp.data;
                 if (data->tag == Iex_Load) {
                    addEvent_Dr( sbOut, fnname, data->Iex.Load.addr,
                                 sizeofIRType(data->Iex.Load.ty) );
                 }
              }
              addStmtToIRSB( sbOut, st );
              break;

           case Ist_Store:
              if (clo_trace_mem) {
                 IRExpr* data  = st->Ist.Store.data;
                 addEvent_Dw( sbOut, fnname, st->Ist.Store.addr,
                              sizeofIRType(typeOfIRExpr(tyenv, data)) );
              }
              addStmtToIRSB( sbOut, st );
              break;

           case Ist_Dirty: {
              if (clo_trace_mem) {
                 Int      dsize;
                 IRDirty* d = st->Ist.Dirty.details;
                 if (d->mFx != Ifx_None) {
                    // This dirty helper accesses memory.  Collect the details.
                    tl_assert(d->mAddr != NULL);
                    tl_assert(d->mSize != 0);
                    dsize = d->mSize;
                    if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)
                       addEvent_Dr( sbOut, fnname, d->mAddr, dsize );
                    if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)
                       addEvent_Dw( sbOut, fnname, d->mAddr, dsize );
                 } else {
                    tl_assert(d->mAddr == NULL);
                    tl_assert(d->mSize == 0);
                 }
              }
              addStmtToIRSB( sbOut, st );
              break;
           }

           case Ist_CAS: {
              /* We treat it as a read and a write of the location.  I
                 think that is the same behaviour as it was before IRCAS
                 was introduced, since prior to that point, the Vex
                 front ends would translate a lock-prefixed instruction
                 into a (normal) read followed by a (normal) write. */
              Int    dataSize;
              IRType dataTy;
              IRCAS* cas = st->Ist.CAS.details;
              tl_assert(cas->addr != NULL);
              tl_assert(cas->dataLo != NULL);
              dataTy   = typeOfIRExpr(tyenv, cas->dataLo);
              dataSize = sizeofIRType(dataTy);
              if (clo_trace_mem) {
                 addEvent_Dr( sbOut, fnname, cas->addr, dataSize );
                 addEvent_Dw( sbOut, fnname, cas->addr, dataSize );
              }
              addStmtToIRSB( sbOut, st );
              break;
           }

           case Ist_LLSC: {
              IRType dataTy;
              if (st->Ist.LLSC.storedata == NULL) {
                 /* LL */
                 dataTy = typeOfIRTemp(tyenv, st->Ist.LLSC.result);
                 if (clo_trace_mem)
                    addEvent_Dr( sbOut, fnname, st->Ist.LLSC.addr,
                                        sizeofIRType(dataTy) );
              } else {
                 /* SC */
                 dataTy = typeOfIRExpr(tyenv, st->Ist.LLSC.storedata);
                 if (clo_trace_mem)
                    addEvent_Dw( sbOut, fnname, st->Ist.LLSC.addr,
                                        sizeofIRType(dataTy) );
              }
              addStmtToIRSB( sbOut, st );
              break;
           }

           case Ist_Exit:
              if (clo_trace_mem) {
                 flushEvents(sbOut);
              }

              addStmtToIRSB( sbOut, st );      // Original statement
              break;

           default:
              tl_assert(0);
        }
    }
    if(clo_trace_mem){
        if(sbIn->jumpkind == Ijk_Ret){
            VG_(get_fnname)(imarkst->Ist.IMark.addr, 
                                            fnname, 100);
            addEvent_FnExit(sbOut,fnname);
        }
    }
    if (clo_trace_mem) {
        /* At the end of the sbIn.  Flush outstandings. */
        flushEvents(sbOut);
    }
    return sbOut;
}
Exemplo n.º 30
0
//-----------------------------------------------------------------
static IRSB* oa_instrument (VgCallbackClosure* closure,
                            IRSB*              sbIn,
                            VexGuestLayout*    layout,
                            VexGuestExtents*   vge,
                            IRType             gWordTy,
                            IRType             hWordTy ) {
  Int        i;
  IRSB*      sbOut;
  IRType     type;
  Addr64     cia; /* address of current insn */
  IRStmt*    st;

  if (gWordTy != hWordTy) {
    VG_(tool_panic)("host/guest word size mismatch"); // currently unsupported
  }
  thisWordWidth=gWordTy;
  //if (gWordTy != Ity_I32) ppIRType(gWordTy);
  /* Set up SB */
  sbOut = deepCopyIRSBExceptStmts(sbIn);

  // Copy verbatim any IR preamble preceding the first IMark
  i = 0;
  while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) {
    addStmtToIRSB( sbOut, sbIn->stmts[i] );
    i++;
  }
  st = sbIn->stmts[i];
  cia   = st->Ist.IMark.addr;

  for (/*use current i*/; i < sbIn->stmts_used; i++) {
    st = sbIn->stmts[i];
    if (!st || st->tag == Ist_NoOp) continue;
    IRExpr* expr;

    switch (st->tag) {
      case Ist_IMark:
        cia   = st->Ist.IMark.addr;  break;
      case Ist_WrTmp:
        // Add a call to trace_load() if --trace-mem=yes.
        expr = st->Ist.WrTmp.data;
        type = typeOfIRExpr(sbOut->tyenv, expr);
        tl_assert(type != Ity_INVALID);
        switch (expr->tag) {
          case Iex_Unop:
              instrument_Unop( sbOut, st, cia );         break;
          case Iex_Binop:
              instrument_Binop( sbOut, st, type, cia );  break;
          case Iex_Triop:
              instrument_Triop( sbOut, st, cia );        break;
          case Iex_Qop:
            //instrument_Qop( sbOut, expr, type );     break;
          case Iex_Mux0X:
            //instrument_Muxop( sbOut, expr, type );   break;
          default: break;
        } // switch
        break;
      default: break;
    } // switch
    addStmtToIRSB( sbOut, st );
  } // for
  return sbOut;
}