Exemplo n.º 1
0
/**
 * kvm_mips_build_exception() - Assemble first level guest exception handler.
 * @addr:	Address to start writing code.
 * @handler:	Address of common handler (within range of @addr).
 *
 * Assemble exception vector code for guest execution. The generated vector will
 * branch to the common exception handler generated by kvm_mips_build_exit().
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_exception(void *addr, void *handler)
{
	u32 *p = addr;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Save guest k1 into scratch register */
	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);

	/* Get the VCPU pointer from the VCPU scratch register */
	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));

	/* Save guest k0 into VCPU structure */
	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);

	/* Branch to the common handler */
	uasm_il_b(&p, &r, label_exit_common);
	 uasm_i_nop(&p);

	uasm_l_exit_common(&l, handler);
	uasm_resolve_relocs(relocs, labels);

	return p;
}
Exemplo n.º 2
0
static void __cpuinit build_r4000_tlb_modify_handler(void)
{
	u32 *p = handle_tlbm;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(handle_tlbm, 0, sizeof(handle_tlbm));
	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
	if (m4kc_tlbp_war())
		build_tlb_probe_entry(&p);
	/* Present and writable bits set, set accessed and dirty bits. */
	build_make_write(&p, &r, K0, K1);
	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);

	uasm_l_nopage_tlbm(&l, p);
	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
	uasm_i_nop(&p);

	if ((p - handle_tlbm) > FASTPATH_SIZE)
		panic("TLB modify handler fastpath space exceeded");

	uasm_resolve_relocs(relocs, labels);
	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
		 (unsigned int)(p - handle_tlbm));

	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
}
Exemplo n.º 3
0
static void __cpuinit build_r3000_tlb_modify_handler(void)
{
	u32 *p = handle_tlbm;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(handle_tlbm, 0, sizeof(handle_tlbm));
	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	build_r3000_tlbchange_handler_head(&p, K0, K1);
	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
	uasm_i_nop(&p); /* load delay */
	build_make_write(&p, &r, K0, K1);
	build_r3000_pte_reload_tlbwi(&p, K0, K1);

	uasm_l_nopage_tlbm(&l, p);
	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
	uasm_i_nop(&p);

	if ((p - handle_tlbm) > FASTPATH_SIZE)
		panic("TLB modify handler fastpath space exceeded");

	uasm_resolve_relocs(relocs, labels);
	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
		 (unsigned int)(p - handle_tlbm));

	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
}
Exemplo n.º 4
0
/**
 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
 * resuming the guest or returning to the host depending on the return value.
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_ret_from_exit(void *addr)
{
	u32 *p = addr;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Return from handler Make sure interrupts are disabled */
	uasm_i_di(&p, ZERO);
	uasm_i_ehb(&p);

	/*
	 * XXXKYMA: k0/k1 could have been blown away if we processed
	 * an exception while we were handling the exception from the
	 * guest, reload k1
	 */

	uasm_i_move(&p, K1, S1);
	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));

	/*
	 * Check return value, should tell us if we are returning to the
	 * host (handle I/O etc)or resuming the guest
	 */
	uasm_i_andi(&p, T0, V0, RESUME_HOST);
	uasm_il_bnez(&p, &r, T0, label_return_to_host);
	 uasm_i_nop(&p);

	p = kvm_mips_build_ret_to_guest(p);

	uasm_l_return_to_host(&l, p);
	p = kvm_mips_build_ret_to_host(p);

	uasm_resolve_relocs(relocs, labels);

	return p;
}
Exemplo n.º 5
0
static void __cpuinit build_r4000_tlb_load_handler(void)
{
	u32 *p = handle_tlbl;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(handle_tlbl, 0, sizeof(handle_tlbl));
	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	if (bcm1250_m3_war()) {
		UASM_i_MFC0(&p, K0, C0_BADVADDR);
		UASM_i_MFC0(&p, K1, C0_ENTRYHI);
		uasm_i_xor(&p, K0, K0, K1);
		UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
		uasm_il_bnez(&p, &r, K0, label_leave);
		/* No need for uasm_i_nop */
	}

	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
	if (m4kc_tlbp_war())
		build_tlb_probe_entry(&p);
	build_make_valid(&p, &r, K0, K1);
	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);

	uasm_l_nopage_tlbl(&l, p);
	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
	uasm_i_nop(&p);

	if ((p - handle_tlbl) > FASTPATH_SIZE)
		panic("TLB load handler fastpath space exceeded");

	uasm_resolve_relocs(relocs, labels);
	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
		 (unsigned int)(p - handle_tlbl));

	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
}
Exemplo n.º 6
0
/**
 * kvm_mips_build_exit() - Assemble common guest exit handler.
 * @addr:	Address to start writing code.
 *
 * Assemble the generic guest exit handling code. This is called by the
 * exception vectors (generated by kvm_mips_build_exception()), and calls
 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
 * depending on the return value.
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_exit(void *addr)
{
	u32 *p = addr;
	unsigned int i;
	struct uasm_label labels[3];
	struct uasm_reloc relocs[3];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/*
	 * Generic Guest exception handler. We end up here when the guest
	 * does something that causes a trap to kernel mode.
	 *
	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
	 * structure, and k1 into the scratch_tmp register).
	 *
	 * The k1 register will already contain the kvm_vcpu_arch pointer.
	 */

	/* Start saving Guest context to VCPU */
	for (i = 0; i < 32; ++i) {
		/* Guest k0/k1 saved later */
		if (i == K0 || i == K1)
			continue;
		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
	}

#ifndef CONFIG_CPU_MIPSR6
	/* We need to save hi/lo and restore them on the way out */
	uasm_i_mfhi(&p, T0);
	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);

	uasm_i_mflo(&p, T0);
	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
#endif

	/* Finally save guest k1 to VCPU */
	uasm_i_ehb(&p);
	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);

	/* Now that context has been saved, we can use other registers */

	/* Restore vcpu */
	UASM_i_MFC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
	uasm_i_move(&p, S1, A1);

	/* Restore run (vcpu->run) */
	UASM_i_LW(&p, A0, offsetof(struct kvm_vcpu, run), A1);
	/* Save pointer to run in s0, will be saved by the compiler */
	uasm_i_move(&p, S0, A0);

	/*
	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
	 * the exception
	 */
	UASM_i_MFC0(&p, K0, C0_EPC);
	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);

	UASM_i_MFC0(&p, K0, C0_BADVADDR);
	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
		  K1);

	uasm_i_mfc0(&p, K0, C0_CAUSE);
	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);

	/* Now restore the host state just enough to run the handlers */

	/* Switch EBASE to the one used by Linux */
	/* load up the host EBASE */
	uasm_i_mfc0(&p, V0, C0_STATUS);

	uasm_i_lui(&p, AT, ST0_BEV >> 16);
	uasm_i_or(&p, K0, V0, AT);

	uasm_i_mtc0(&p, K0, C0_STATUS);
	uasm_i_ehb(&p);

	UASM_i_LA_mostly(&p, K0, (long)&ebase);
	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
	build_set_exc_base(&p, K0);

	if (raw_cpu_has_fpu) {
		/*
		 * If FPU is enabled, save FCR31 and clear it so that later
		 * ctc1's don't trigger FPE for pending exceptions.
		 */
		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
		uasm_i_and(&p, V1, V0, AT);
		uasm_il_beqz(&p, &r, V1, label_fpu_1);
		 uasm_i_nop(&p);
		uasm_i_cfc1(&p, T0, 31);
		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
			  K1);
		uasm_i_ctc1(&p, ZERO, 31);
		uasm_l_fpu_1(&l, p);
	}

	if (cpu_has_msa) {
		/*
		 * If MSA is enabled, save MSACSR and clear it so that later
		 * instructions don't trigger MSAFPE for pending exceptions.
		 */
		uasm_i_mfc0(&p, T0, C0_CONFIG5);
		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
		uasm_il_beqz(&p, &r, T0, label_msa_1);
		 uasm_i_nop(&p);
		uasm_i_cfcmsa(&p, T0, MSA_CSR);
		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
			  K1);
		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
		uasm_l_msa_1(&l, p);
	}

	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
	uasm_i_and(&p, V0, V0, AT);
	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
	uasm_i_or(&p, V0, V0, AT);
	uasm_i_mtc0(&p, V0, C0_STATUS);
	uasm_i_ehb(&p);

	/* Load up host GP */
	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);

	/* Need a stack before we can jump to "C" */
	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);

	/* Saved host state */
	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));

	/*
	 * XXXKYMA do we need to load the host ASID, maybe not because the
	 * kernel entries are marked GLOBAL, need to verify
	 */

	/* Restore host scratch registers, as we'll have clobbered them */
	kvm_mips_build_restore_scratch(&p, K0, SP);

	/* Restore RDHWR access */
	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
	uasm_i_mtc0(&p, K0, C0_HWRENA);

	/* Jump to handler */
	/*
	 * XXXKYMA: not sure if this is safe, how large is the stack??
	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
	 * with this in the kernel
	 */
	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
	uasm_i_jalr(&p, RA, T9);
	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);

	uasm_resolve_relocs(relocs, labels);

	p = kvm_mips_build_ret_from_exit(p);

	return p;
}
Exemplo n.º 7
0
/**
 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to resume guest execution. This code is common between the
 * initial entry into the guest from the host, and returning from the exit
 * handler back to the guest.
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_enter_guest(void *addr)
{
	u32 *p = addr;
	unsigned int i;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Set Guest EPC */
	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
	UASM_i_MTC0(&p, T0, C0_EPC);

	/* Set the ASID for the Guest Kernel */
	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
		  T0);
	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
	uasm_i_xori(&p, T0, T0, KSU_USER);
	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
	 UASM_i_ADDIU(&p, T1, K1,
		      offsetof(struct kvm_vcpu_arch, guest_kernel_asid));
	/* else user */
	UASM_i_ADDIU(&p, T1, K1,
		     offsetof(struct kvm_vcpu_arch, guest_user_asid));
	uasm_l_kernel_asid(&l, p);

	/* t1: contains the base of the ASID array, need to get the cpu id  */
	/* smp_processor_id */
	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
	/* x4 */
	uasm_i_sll(&p, T2, T2, 2);
	UASM_i_ADDU(&p, T3, T1, T2);
	uasm_i_lw(&p, K0, 0, T3);
#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
	/* x sizeof(struct cpuinfo_mips)/4 */
	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/4);
	uasm_i_mul(&p, T2, T2, T3);

	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
	UASM_i_ADDU(&p, AT, AT, T2);
	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
	uasm_i_and(&p, K0, K0, T2);
#else
	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
#endif
	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
	uasm_i_ehb(&p);

	/* Disable RDHWR access */
	uasm_i_mtc0(&p, ZERO, C0_HWRENA);

	/* load the guest context from VCPU and return */
	for (i = 1; i < 32; ++i) {
		/* Guest k0/k1 loaded later */
		if (i == K0 || i == K1)
			continue;
		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
	}

#ifndef CONFIG_CPU_MIPSR6
	/* Restore hi/lo */
	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
	uasm_i_mthi(&p, K0);

	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
	uasm_i_mtlo(&p, K0);
#endif

	/* Restore the guest's k0/k1 registers */
	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);

	/* Jump to guest */
	uasm_i_eret(&p);

	uasm_resolve_relocs(relocs, labels);

	return p;
}
Exemplo n.º 8
0
static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
{
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
	u32 *buf, *p;
	const unsigned r_online = a0;
	const unsigned r_nc_count = a1;
	const unsigned r_pcohctl = t7;
	const unsigned max_instrs = 256;
	unsigned cpc_cmd;
	enum {
		lbl_incready = 1,
		lbl_poll_cont,
		lbl_secondary_hang,
		lbl_disable_coherence,
		lbl_flush_fsb,
		lbl_invicache,
		lbl_flushdcache,
		lbl_hang,
		lbl_set_cont,
		lbl_secondary_cont,
		lbl_decready,
	};

	/* Allocate a buffer to hold the generated code */
	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
	if (!buf)
		return NULL;

	/* Clear labels & relocs ready for (re)use */
	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	if (state == CPS_PM_POWER_GATED) {
		/* Power gating relies upon CPS SMP */
		if (!mips_cps_smp_in_use())
			goto out_err;

		/*
		 * Save CPU state. Note the non-standard calling convention
		 * with the return address placed in v0 to avoid clobbering
		 * the ra register before it is saved.
		 */
		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
		uasm_i_jalr(&p, v0, t0);
		uasm_i_nop(&p);
	}

	/*
	 * Load addresses of required CM & CPC registers. This is done early
	 * because they're needed in both the enable & disable coherence steps
	 * but in the coupled case the enable step will only run on one VPE.
	 */
	UASM_i_LA(&p, r_pcohctl, (long)_gcmp_base + GCMPCLCBOFS(COHCTL));

	if (coupled_coherence) {
		/* Increment ready_count */
		uasm_i_sync(&p, stype_ordering);
		uasm_build_label(&l, p, lbl_incready);
		uasm_i_ll(&p, t1, 0, r_nc_count);
		uasm_i_addiu(&p, t2, t1, 1);
		uasm_i_sc(&p, t2, 0, r_nc_count);
		uasm_il_beqz(&p, &r, t2, lbl_incready);
		uasm_i_addiu(&p, t1, t1, 1);

		/* Ordering barrier */
		uasm_i_sync(&p, stype_ordering);

		/*
		 * If this is the last VPE to become ready for non-coherence
		 * then it should branch below.
		 */
		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
		uasm_i_nop(&p);

		if (state < CPS_PM_POWER_GATED) {
			/*
			 * Otherwise this is not the last VPE to become ready
			 * for non-coherence. It needs to wait until coherence
			 * has been disabled before proceeding, which it will do
			 * by polling for the top bit of ready_count being set.
			 */
			uasm_i_addiu(&p, t1, zero, -1);
			uasm_build_label(&l, p, lbl_poll_cont);
			uasm_i_lw(&p, t0, 0, r_nc_count);
			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
			uasm_i_ehb(&p);
			uasm_i_yield(&p, zero, t1);
			uasm_il_b(&p, &r, lbl_poll_cont);
			uasm_i_nop(&p);
		} else {
			/*
			 * The core will lose power & this VPE will not continue
			 * so it can simply halt here.
			 */
			uasm_i_addiu(&p, t0, zero, TCHALT_H);
			uasm_i_mtc0(&p, t0, 2, 4);
			uasm_build_label(&l, p, lbl_secondary_hang);
			uasm_il_b(&p, &r, lbl_secondary_hang);
			uasm_i_nop(&p);
		}
	}

	/*
	 * This is the point of no return - this VPE will now proceed to
	 * disable coherence. At this point we *must* be sure that no other
	 * VPE within the core will interfere with the L1 dcache.
	 */
	uasm_build_label(&l, p, lbl_disable_coherence);

	/* Invalidate the L1 icache */
	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
			      Index_Invalidate_I, lbl_invicache);

	/* Writeback & invalidate the L1 dcache */
	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
			      Index_Writeback_Inv_D, lbl_flushdcache);

	/* Completion barrier */
	uasm_i_sync(&p, stype_memory);
	uasm_i_ehb(&p);

	/*
	 * Disable all but self interventions. The load from COHCTL is defined
	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
	 * resulting from the preceeding store is complete.
	 */
	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
	uasm_i_sw(&p, t0, 0, r_pcohctl);
	uasm_i_lw(&p, t0, 0, r_pcohctl);

	/* Sync to ensure previous interventions are complete */
	uasm_i_sync(&p, stype_intervention);
	uasm_i_ehb(&p);

	/* Disable coherence */
	uasm_i_sw(&p, zero, 0, r_pcohctl);
	uasm_i_lw(&p, t0, 0, r_pcohctl);

	if (state >= CPS_PM_CLOCK_GATED) {
		/* TODO: determine whether required based on CPC version */
		cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu].dcache,
				  lbl_flush_fsb);

		/* Determine the CPC command to issue */
		switch (state) {
		case CPS_PM_CLOCK_GATED:
			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
			break;
		case CPS_PM_POWER_GATED:
			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
			break;
		default:
			BUG();
			goto out_err;
		}

		/* Issue the CPC command */
		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
		uasm_i_addiu(&p, t1, zero, cpc_cmd);
		uasm_i_sw(&p, t1, 0, t0);

		if (state == CPS_PM_POWER_GATED) {
			/* If anything goes wrong just hang */
			uasm_build_label(&l, p, lbl_hang);
			uasm_il_b(&p, &r, lbl_hang);
			uasm_i_nop(&p);

			/*
			 * There's no point generating more code, the core is
			 * powered down & if powered back up will run from the
			 * reset vector not from here.
			 */
			goto gen_done;
		}

		/* Completion barrier */
		uasm_i_sync(&p, stype_memory);
		uasm_i_ehb(&p);
	}

	if (state == CPS_PM_NC_WAIT) {
		/*
		 * At this point it is safe for all VPEs to proceed with
		 * execution. This VPE will set the top bit of ready_count
		 * to indicate to the other VPEs that they may continue.
		 */
		if (coupled_coherence)
			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
					    lbl_set_cont);

		/*
		 * VPEs which did not disable coherence will continue
		 * executing, after coherence has been disabled, from this
		 * point.
		 */
		uasm_build_label(&l, p, lbl_secondary_cont);

		/* Now perform our wait */
		uasm_i_wait(&p, 0);
	}

	/*
	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
	 * will run this. The first will actually re-enable coherence & the
	 * rest will just be performing a rather unusual nop.
	 */
	uasm_i_addiu(&p, t0, zero, GCMP_CCB_COHCTL_DOMAIN_MSK);
	uasm_i_sw(&p, t0, 0, r_pcohctl);
	uasm_i_lw(&p, t0, 0, r_pcohctl);

	/* Completion barrier */
	uasm_i_sync(&p, stype_memory);
	uasm_i_ehb(&p);

	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
		/* Decrement ready_count */
		uasm_build_label(&l, p, lbl_decready);
		uasm_i_sync(&p, stype_ordering);
		uasm_i_ll(&p, t1, 0, r_nc_count);
		uasm_i_addiu(&p, t2, t1, -1);
		uasm_i_sc(&p, t2, 0, r_nc_count);
		uasm_il_beqz(&p, &r, t2, lbl_decready);
		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);

		/* Ordering barrier */
		uasm_i_sync(&p, stype_ordering);
	}

	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
		/*
		 * At this point it is safe for all VPEs to proceed with
		 * execution. This VPE will set the top bit of ready_count
		 * to indicate to the other VPEs that they may continue.
		 */
		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);

		/*
		 * This core will be reliant upon another core sending a
		 * power-up command to the CPC in order to resume operation.
		 * Thus an arbitrary VPE can't trigger the core leaving the
		 * idle state and the one that disables coherence might as well
		 * be the one to re-enable it. The rest will continue from here
		 * after that has been done.
		 */
		uasm_build_label(&l, p, lbl_secondary_cont);

		/* Ordering barrier */
		uasm_i_sync(&p, stype_ordering);
	}

	/* The core is coherent, time to return to C code */
	uasm_i_jr(&p, ra);
	uasm_i_nop(&p);

gen_done:
	/* Ensure the code didn't exceed the resources allocated for it */
	BUG_ON((p - buf) > max_instrs);
	BUG_ON((l - labels) > ARRAY_SIZE(labels));
	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));

	/* Patch branch offsets */
	uasm_resolve_relocs(relocs, labels);

	/* Flush the icache */
	local_flush_icache_range((unsigned long)buf, (unsigned long)p);

	return buf;
out_err:
	kfree(buf);
	return NULL;
}
Exemplo n.º 9
0
void build_copy_page(void)
{
	int off;
	u32 *buf = (u32 *)&copy_page_array;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
	int i;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	set_prefetch_parameters();

	/*
	 * This algorithm makes the following assumptions:
	 *   - All prefetch biases are multiples of 8 words.
	 *   - The prefetch biases are less than one page.
	 *   - The store prefetch bias isn't greater than the load
	 *     prefetch bias.
	 */
	BUG_ON(pref_bias_copy_load % (8 * copy_word_size));
	BUG_ON(pref_bias_copy_store % (8 * copy_word_size));
	BUG_ON(PAGE_SIZE < pref_bias_copy_load);
	BUG_ON(pref_bias_copy_store > pref_bias_copy_load);

	off = PAGE_SIZE - pref_bias_copy_load;
	if (off > 0xffff || !pref_bias_copy_load)
		pg_addiu(&buf, A2, A0, off);
	else
		uasm_i_ori(&buf, A2, A0, off);

	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())
		uasm_i_lui(&buf, AT, 0xa000);

	off = cache_line_size ? min(8, pref_bias_copy_load / cache_line_size) *
	                        cache_line_size : 0;
	while (off) {
		build_copy_load_pref(&buf, -off);
		off -= cache_line_size;
	}
	off = cache_line_size ? min(8, pref_bias_copy_store / cache_line_size) *
	                        cache_line_size : 0;
	while (off) {
		build_copy_store_pref(&buf, -off);
		off -= cache_line_size;
	}
	uasm_l_copy_pref_both(&l, buf);
	do {
		build_copy_load_pref(&buf, off);
		build_copy_load(&buf, T0, off);
		build_copy_load_pref(&buf, off + copy_word_size);
		build_copy_load(&buf, T1, off + copy_word_size);
		build_copy_load_pref(&buf, off + 2 * copy_word_size);
		build_copy_load(&buf, T2, off + 2 * copy_word_size);
		build_copy_load_pref(&buf, off + 3 * copy_word_size);
		build_copy_load(&buf, T3, off + 3 * copy_word_size);
		build_copy_store_pref(&buf, off);
		build_copy_store(&buf, T0, off);
		build_copy_store_pref(&buf, off + copy_word_size);
		build_copy_store(&buf, T1, off + copy_word_size);
		build_copy_store_pref(&buf, off + 2 * copy_word_size);
		build_copy_store(&buf, T2, off + 2 * copy_word_size);
		build_copy_store_pref(&buf, off + 3 * copy_word_size);
		build_copy_store(&buf, T3, off + 3 * copy_word_size);
		off += 4 * copy_word_size;
	} while (off < half_copy_loop_size);
	pg_addiu(&buf, A1, A1, 2 * off);
	pg_addiu(&buf, A0, A0, 2 * off);
	off = -off;
	do {
		build_copy_load_pref(&buf, off);
		build_copy_load(&buf, T0, off);
		build_copy_load_pref(&buf, off + copy_word_size);
		build_copy_load(&buf, T1, off + copy_word_size);
		build_copy_load_pref(&buf, off + 2 * copy_word_size);
		build_copy_load(&buf, T2, off + 2 * copy_word_size);
		build_copy_load_pref(&buf, off + 3 * copy_word_size);
		build_copy_load(&buf, T3, off + 3 * copy_word_size);
		build_copy_store_pref(&buf, off);
		build_copy_store(&buf, T0, off);
		build_copy_store_pref(&buf, off + copy_word_size);
		build_copy_store(&buf, T1, off + copy_word_size);
		build_copy_store_pref(&buf, off + 2 * copy_word_size);
		build_copy_store(&buf, T2, off + 2 * copy_word_size);
		build_copy_store_pref(&buf, off + 3 * copy_word_size);
		if (off == -(4 * copy_word_size))
			uasm_il_bne(&buf, &r, A2, A0, label_copy_pref_both);
		build_copy_store(&buf, T3, off + 3 * copy_word_size);
		off += 4 * copy_word_size;
	} while (off < 0);

	if (pref_bias_copy_load - pref_bias_copy_store) {
		pg_addiu(&buf, A2, A0,
			 pref_bias_copy_load - pref_bias_copy_store);
		uasm_l_copy_pref_store(&l, buf);
		off = 0;
		do {
			build_copy_load(&buf, T0, off);
			build_copy_load(&buf, T1, off + copy_word_size);
			build_copy_load(&buf, T2, off + 2 * copy_word_size);
			build_copy_load(&buf, T3, off + 3 * copy_word_size);
			build_copy_store_pref(&buf, off);
			build_copy_store(&buf, T0, off);
			build_copy_store_pref(&buf, off + copy_word_size);
			build_copy_store(&buf, T1, off + copy_word_size);
			build_copy_store_pref(&buf, off + 2 * copy_word_size);
			build_copy_store(&buf, T2, off + 2 * copy_word_size);
			build_copy_store_pref(&buf, off + 3 * copy_word_size);
			build_copy_store(&buf, T3, off + 3 * copy_word_size);
			off += 4 * copy_word_size;
		} while (off < half_copy_loop_size);
		pg_addiu(&buf, A1, A1, 2 * off);
		pg_addiu(&buf, A0, A0, 2 * off);
		off = -off;
		do {
			build_copy_load(&buf, T0, off);
			build_copy_load(&buf, T1, off + copy_word_size);
			build_copy_load(&buf, T2, off + 2 * copy_word_size);
			build_copy_load(&buf, T3, off + 3 * copy_word_size);
			build_copy_store_pref(&buf, off);
			build_copy_store(&buf, T0, off);
			build_copy_store_pref(&buf, off + copy_word_size);
			build_copy_store(&buf, T1, off + copy_word_size);
			build_copy_store_pref(&buf, off + 2 * copy_word_size);
			build_copy_store(&buf, T2, off + 2 * copy_word_size);
			build_copy_store_pref(&buf, off + 3 * copy_word_size);
			if (off == -(4 * copy_word_size))
				uasm_il_bne(&buf, &r, A2, A0,
					    label_copy_pref_store);
			build_copy_store(&buf, T3, off + 3 * copy_word_size);
			off += 4 * copy_word_size;
		} while (off < 0);
	}

	if (pref_bias_copy_store) {
		pg_addiu(&buf, A2, A0, pref_bias_copy_store);
		uasm_l_copy_nopref(&l, buf);
		off = 0;
		do {
			build_copy_load(&buf, T0, off);
			build_copy_load(&buf, T1, off + copy_word_size);
			build_copy_load(&buf, T2, off + 2 * copy_word_size);
			build_copy_load(&buf, T3, off + 3 * copy_word_size);
			build_copy_store(&buf, T0, off);
			build_copy_store(&buf, T1, off + copy_word_size);
			build_copy_store(&buf, T2, off + 2 * copy_word_size);
			build_copy_store(&buf, T3, off + 3 * copy_word_size);
			off += 4 * copy_word_size;
		} while (off < half_copy_loop_size);
		pg_addiu(&buf, A1, A1, 2 * off);
		pg_addiu(&buf, A0, A0, 2 * off);
		off = -off;
		do {
			build_copy_load(&buf, T0, off);
			build_copy_load(&buf, T1, off + copy_word_size);
			build_copy_load(&buf, T2, off + 2 * copy_word_size);
			build_copy_load(&buf, T3, off + 3 * copy_word_size);
			build_copy_store(&buf, T0, off);
			build_copy_store(&buf, T1, off + copy_word_size);
			build_copy_store(&buf, T2, off + 2 * copy_word_size);
			if (off == -(4 * copy_word_size))
				uasm_il_bne(&buf, &r, A2, A0,
					    label_copy_nopref);
			build_copy_store(&buf, T3, off + 3 * copy_word_size);
			off += 4 * copy_word_size;
		} while (off < 0);
	}

	uasm_i_jr(&buf, RA);
	uasm_i_nop(&buf);

	BUG_ON(buf > copy_page_array + ARRAY_SIZE(copy_page_array));

	uasm_resolve_relocs(relocs, labels);

	pr_debug("Synthesized copy page handler (%u instructions).\n",
		 (u32)(buf - copy_page_array));

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");
	for (i = 0; i < (buf - copy_page_array); i++)
		pr_debug("\t.word 0x%08x\n", copy_page_array[i]);
	pr_debug("\t.set pop\n");
}
Exemplo n.º 10
0
void __cpuinit build_clear_page(void)
{
	int off;
	u32 *buf = (u32 *)&clear_page_array;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
	int i;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON2) {
		const unsigned int wb_nudge = 26;

		pg_addiu(&buf, T0, A0, PAGE_SIZE);

		UASM_i_ADDIU(&buf, A1, A0, 128);
		uasm_l_clear_pref(&l, buf);
		uasm_i_zcbt(&buf, A0);
		uasm_i_pref(&buf, wb_nudge, 0, A0);
		UASM_i_ADDIU(&buf, A0, A0, 256);
		uasm_i_zcbt(&buf, A1);
		uasm_i_pref(&buf, wb_nudge, 0, A1);
		UASM_i_ADDIU(&buf, A1, A1, 256);
		uasm_i_zcbt(&buf, A0);
		uasm_i_pref(&buf, wb_nudge, 0, A0);
		UASM_i_ADDIU(&buf, A0, A0, 256);
		uasm_i_zcbt(&buf, A1);
		uasm_i_pref(&buf, wb_nudge, 0, A1);
		UASM_i_ADDIU(&buf, A1, A1, 256);
		uasm_i_zcbt(&buf, A0);
		uasm_i_pref(&buf, wb_nudge, 0, A0);
		UASM_i_ADDIU(&buf, A0, A0, 256);
		uasm_i_zcbt(&buf, A1);
		uasm_i_pref(&buf, wb_nudge, 0, A1);
		UASM_i_ADDIU(&buf, A1, A1, 256);
		uasm_i_zcbt(&buf, A0);
		uasm_i_pref(&buf, wb_nudge, 0, A0);
		UASM_i_ADDIU(&buf, A0, A0, 256);
		uasm_i_zcbt(&buf, A1);
		uasm_i_pref(&buf, wb_nudge, 0, A1);
		uasm_il_bne(&buf, &r, A0, T0, label_clear_pref);
		UASM_i_ADDIU(&buf, A1, A1, 256);
	} else {
		set_prefetch_parameters();

		/*
		 * This algorithm makes the following assumptions:
		 *   - The prefetch bias is a multiple of 2 words.
		 *   - The prefetch bias is less than one page.
		 */
		BUG_ON(pref_bias_clear_store % (2 * clear_word_size));
		BUG_ON(PAGE_SIZE < pref_bias_clear_store);

		off = PAGE_SIZE - pref_bias_clear_store;
		if (off > 0xffff || !pref_bias_clear_store)
			pg_addiu(&buf, A2, A0, off);
		else
			uasm_i_ori(&buf, A2, A0, off);

		if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())
			uasm_i_lui(&buf, AT, 0xa000);

		off = cache_line_size ? min(8, pref_bias_clear_store / cache_line_size)
	                        * cache_line_size : 0;
		while (off) {
			build_clear_pref(&buf, -off);
			off -= cache_line_size;
		}
		uasm_l_clear_pref(&l, buf);
		do {
			build_clear_pref(&buf, off);
			build_clear_store(&buf, off);
			off += clear_word_size;
		} while (off < half_clear_loop_size);
		pg_addiu(&buf, A0, A0, 2 * off);
		off = -off;
		do {
			build_clear_pref(&buf, off);
			if (off == -clear_word_size)
				uasm_il_bne(&buf, &r, A0, A2, label_clear_pref);
			build_clear_store(&buf, off);
			off += clear_word_size;
		} while (off < 0);

		if (pref_bias_clear_store) {
			pg_addiu(&buf, A2, A0, pref_bias_clear_store);
			uasm_l_clear_nopref(&l, buf);
			off = 0;
			do {
				build_clear_store(&buf, off);
				off += clear_word_size;
			} while (off < half_clear_loop_size);
			pg_addiu(&buf, A0, A0, 2 * off);
			off = -off;
			do {
				if (off == -clear_word_size)
					uasm_il_bne(&buf, &r, A0, A2,
						label_clear_nopref);
				build_clear_store(&buf, off);
				off += clear_word_size;
			} while (off < 0);
		}
	}
	uasm_i_jr(&buf, RA);
	uasm_i_nop(&buf);

	BUG_ON(buf > clear_page_array + ARRAY_SIZE(clear_page_array));

	uasm_resolve_relocs(relocs, labels);

	pr_debug("Synthesized clear page handler (%u instructions).\n",
		 (u32)(buf - clear_page_array));

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");
	for (i = 0; i < (buf - clear_page_array); i++)
		pr_debug("\t.word 0x%08x\n", clear_page_array[i]);
	pr_debug("\t.set pop\n");
}
Exemplo n.º 11
0
static void __cpuinit build_r4000_tlb_refill_handler(void)
{
	u32 *p = tlb_handler;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
	u32 *f;
	unsigned int final_len;
	int i;

	memset(tlb_handler, 0, sizeof(tlb_handler));
	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));
	memset(final_handler, 0, sizeof(final_handler));

	/*
	 * create the plain linear handler
	 */
	if (bcm1250_m3_war()) {
		UASM_i_MFC0(&p, K0, C0_BADVADDR);
		UASM_i_MFC0(&p, K1, C0_ENTRYHI);
		uasm_i_xor(&p, K0, K0, K1);
		UASM_i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
		uasm_il_bnez(&p, &r, K0, label_leave);
		/* No need for uasm_i_nop */
	}

#ifdef CONFIG_64BIT
	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
#else
	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
#endif

	build_get_ptep(&p, K0, K1);
	build_update_entries(&p, K0, K1);
	build_tlb_write_entry(&p, &l, &r, tlb_random);
	uasm_l_leave(&l, p);
	uasm_i_eret(&p); /* return from trap */

#ifdef CONFIG_64BIT
	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
#endif

	/*
	 * Overflow check: For the 64bit handler, we need at least one
	 * free instruction slot for the wrap-around branch. In worst
	 * case, if the intended insertion point is a delay slot, we
	 * need three, with the second nop'ed and the third being
	 * unused.
	 */
	/* Loongson2 ebase is different than r4k, we have more space */
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
	if ((p - tlb_handler) > 64)
		panic("TLB refill handler space exceeded");
#else
	if (((p - tlb_handler) > 63)
	    || (((p - tlb_handler) > 61)
		&& uasm_insn_has_bdelay(relocs, tlb_handler + 29)))
		panic("TLB refill handler space exceeded");
#endif

	/*
	 * Now fold the handler in the TLB refill handler space.
	 */
#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
	f = final_handler;
	/* Simplest case, just copy the handler. */
	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
	final_len = p - tlb_handler;
#else /* CONFIG_64BIT */
	f = final_handler + 32;
	if ((p - tlb_handler) <= 32) {
		/* Just copy the handler. */
		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
		final_len = p - tlb_handler;
	} else {
		u32 *split = tlb_handler + 30;

		/*
		 * Find the split point.
		 */
		if (uasm_insn_has_bdelay(relocs, split - 1))
			split--;

		/* Copy first part of the handler. */
		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
		f += split - tlb_handler;

		/* Insert branch. */
		uasm_l_split(&l, final_handler);
		uasm_il_b(&f, &r, label_split);
		if (uasm_insn_has_bdelay(relocs, split))
			uasm_i_nop(&f);
		else {
			uasm_copy_handler(relocs, labels, split, split + 1, f);
			uasm_move_labels(labels, f, f + 1, -1);
			f++;
			split++;
		}

		/* Copy the rest of the handler. */
		uasm_copy_handler(relocs, labels, split, p, final_handler);
		final_len = (f - (final_handler + 32)) + (p - split);
	}
#endif /* CONFIG_64BIT */

	uasm_resolve_relocs(relocs, labels);
	pr_debug("Wrote TLB refill handler (%u instructions).\n",
		 final_len);

	f = final_handler;
#if defined(CONFIG_64BIT) && !defined(CONFIG_CPU_LOONGSON2)
	if (final_len > 32)
		final_len = 64;
	else
		f = final_handler + 32;
#endif /* CONFIG_64BIT */
	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");
	for (i = 0; i < final_len; i++)
		pr_debug("\t.word 0x%08x\n", f[i]);
	pr_debug("\t.set pop\n");

	memcpy((void *)ebase, final_handler, 0x100);
}
Exemplo n.º 12
0
void build_clear_page(void)
{
	int off;
	u32 *buf = &__clear_page_start;
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
	int i;
	static atomic_t run_once = ATOMIC_INIT(0);

	if (atomic_xchg(&run_once, 1)) {
		return;
	}

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	set_prefetch_parameters();

	/*
	 * This algorithm makes the following assumptions:
	 *   - The prefetch bias is a multiple of 2 words.
	 *   - The prefetch bias is less than one page.
	 */
	BUG_ON(pref_bias_clear_store % (2 * clear_word_size));
	BUG_ON(PAGE_SIZE < pref_bias_clear_store);

	off = PAGE_SIZE - pref_bias_clear_store;
	if (off > 0xffff || !pref_bias_clear_store)
		pg_addiu(&buf, A2, A0, off);
	else
		uasm_i_ori(&buf, A2, A0, off);

	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())
		uasm_i_lui(&buf, AT, uasm_rel_hi(0xa0000000));

	off = cache_line_size ? min(8, pref_bias_clear_store / cache_line_size)
				* cache_line_size : 0;
	while (off) {
		build_clear_pref(&buf, -off);
		off -= cache_line_size;
	}
	uasm_l_clear_pref(&l, buf);
	do {
		build_clear_pref(&buf, off);
		build_clear_store(&buf, off);
		off += clear_word_size;
	} while (off < half_clear_loop_size);
	pg_addiu(&buf, A0, A0, 2 * off);
	off = -off;
	do {
		build_clear_pref(&buf, off);
		if (off == -clear_word_size)
			uasm_il_bne(&buf, &r, A0, A2, label_clear_pref);
		build_clear_store(&buf, off);
		off += clear_word_size;
	} while (off < 0);

	if (pref_bias_clear_store) {
		pg_addiu(&buf, A2, A0, pref_bias_clear_store);
		uasm_l_clear_nopref(&l, buf);
		off = 0;
		do {
			build_clear_store(&buf, off);
			off += clear_word_size;
		} while (off < half_clear_loop_size);
		pg_addiu(&buf, A0, A0, 2 * off);
		off = -off;
		do {
			if (off == -clear_word_size)
				uasm_il_bne(&buf, &r, A0, A2,
					    label_clear_nopref);
			build_clear_store(&buf, off);
			off += clear_word_size;
		} while (off < 0);
	}

	uasm_i_jr(&buf, RA);
	uasm_i_nop(&buf);

	BUG_ON(buf > &__clear_page_end);

	uasm_resolve_relocs(relocs, labels);

	pr_debug("Synthesized clear page handler (%u instructions).\n",
		 (u32)(buf - &__clear_page_start));

	pr_debug("\t.set push\n");
	pr_debug("\t.set noreorder\n");
	for (i = 0; i < (buf - &__clear_page_start); i++)
		pr_debug("\t.word 0x%08x\n", (&__clear_page_start)[i]);
	pr_debug("\t.set pop\n");
}