static intptr_t hashChunk(const UCollator *Collator, intptr_t HashState, const uint16_t *Str, uint32_t Length, UErrorCode *ErrorCode) { #if defined(__CYGWIN__) || defined(_MSC_VER) || defined(__MINGW32__) UCollationElements *CollationIterator = ucol_openElements( Collator, reinterpret_cast<const UChar *>(Str), Length, ErrorCode); #else UCollationElements *CollationIterator = ucol_openElements( Collator, Str, Length, ErrorCode); #endif while (U_SUCCESS(*ErrorCode)) { intptr_t Elem = ucol_next(CollationIterator, ErrorCode); // Ignore zero valued collation elements. They don't participate in the // ordering relation. if (Elem == 0) continue; if (Elem != UCOL_NULLORDER) { Elem *= HASH_M; Elem ^= Elem >> HASH_R; Elem *= HASH_M; HashState *= HASH_M; HashState ^= Elem; } else { break;
/* Return value is a "Win32 BOOL" (1 = true, 0 = false) */ extern "C" int32_t StartsWith( const char* lpLocaleName, const UChar* lpTarget, int32_t cwTargetLength, const UChar* lpSource, int32_t cwSourceLength, int32_t options) { int32_t result = FALSE; UErrorCode err = U_ZERO_ERROR; UCollator* pColl = GetCollatorForLocaleAndOptions(lpLocaleName, options, &err); if (U_SUCCESS(err)) { UStringSearch* pSearch = usearch_openFromCollator(lpTarget, cwTargetLength, lpSource, cwSourceLength, pColl, nullptr, &err); int32_t idx = USEARCH_DONE; if (U_SUCCESS(err)) { idx = usearch_first(pSearch, &err); if (idx != USEARCH_DONE) { if (idx == 0) { result = TRUE; } else { UCollationElements* pCollElem = ucol_openElements(pColl, lpSource, idx, &err); if (U_SUCCESS(err)) { int32_t curCollElem = UCOL_NULLORDER; result = TRUE; while ((curCollElem = ucol_next(pCollElem, &err)) != UCOL_NULLORDER) { if (curCollElem != 0) { // Non ignorable collation element found between start of the // string and the first match for lpTarget. result = FALSE; break; } } if (U_FAILURE(err)) { result = FALSE; } ucol_closeElements(pCollElem); } } } usearch_close(pSearch); } ucol_close(pColl); } return result; }
// Collator.startswith {{{ static PyObject * icu_Collator_collation_order(icu_Collator *self, PyObject *args, PyObject *kwargs) { PyObject *a_; int32_t asz; int32_t actual_a; UChar *a; wchar_t *aw; UErrorCode status = U_ZERO_ERROR; UCollationElements *iter = NULL; int order = 0, len = -1; if (!PyArg_ParseTuple(args, "U", &a_)) return NULL; asz = (int32_t)PyUnicode_GetSize(a_); a = (UChar*)calloc(asz*4 + 2, sizeof(UChar)); aw = (wchar_t*)calloc(asz*4 + 2, sizeof(wchar_t)); if (a == NULL || aw == NULL ) return PyErr_NoMemory(); actual_a = (int32_t)PyUnicode_AsWideChar((PyUnicodeObject*)a_, aw, asz*4+1); if (actual_a > -1) { u_strFromWCS(a, asz*4 + 1, &actual_a, aw, -1, &status); iter = ucol_openElements(self->collator, a, actual_a, &status); if (iter != NULL && U_SUCCESS(status)) { order = ucol_next(iter, &status); len = ucol_getOffset(iter); ucol_closeElements(iter); iter = NULL; } } free(a); free(aw); return Py_BuildValue("ii", order, len); } // }}}
/// Construct the ASCII collation table. ASCIICollation() { const UCollator *Collator = GetRootCollator(); for (unsigned char c = 0; c < 128; ++c) { UErrorCode ErrorCode = U_ZERO_ERROR; intptr_t NumCollationElts = 0; #if defined(__CYGWIN__) || defined(_MSC_VER) || defined(__MINGW32__) UChar Buffer[1]; #else uint16_t Buffer[1]; #endif Buffer[0] = c; UCollationElements *CollationIterator = ucol_openElements(Collator, Buffer, 1, &ErrorCode); while (U_SUCCESS(ErrorCode)) { intptr_t Elem = ucol_next(CollationIterator, &ErrorCode); if (Elem != UCOL_NULLORDER) { CollationTable[c] = Elem; ++NumCollationElts; } else { break; } } ucol_closeElements(CollationIterator); if (U_FAILURE(ErrorCode) || NumCollationElts != 1) { swift::crash("Error setting up the ASCII collation table"); } } }
//static jint NativeCollation_next(JNIEnv* env, jclass, jint address) { JNIEXPORT jint JNICALL Java_com_ibm_icu4jni_text_NativeCollation_next(JNIEnv* env, jclass, jint address) { UErrorCode status = U_ZERO_ERROR; jint result = ucol_next(toCollationElements(address), &status); icu4jni_error(env, status); return result; }
CEList::CEList(UCollator *coll, const UnicodeString &string, UErrorCode &status) : ces(NULL), listMax(CELIST_BUFFER_SIZE), listSize(0) { UCollationElements *elems = ucol_openElements(coll, string.getBuffer(), string.length(), &status); UCollationStrength strength = ucol_getStrength(coll); UBool toShift = ucol_getAttribute(coll, UCOL_ALTERNATE_HANDLING, &status) == UCOL_SHIFTED; uint32_t variableTop = ucol_getVariableTop(coll, &status); uint32_t strengthMask = 0; int32_t order; if (U_FAILURE(status)) { return; } // **** only set flag if string has Han(gul) **** // ucol_forceHanImplicit(elems, &status); -- removed for ticket #10476 switch (strength) { default: strengthMask |= UCOL_TERTIARYORDERMASK; U_FALLTHROUGH; case UCOL_SECONDARY: strengthMask |= UCOL_SECONDARYORDERMASK; U_FALLTHROUGH; case UCOL_PRIMARY: strengthMask |= UCOL_PRIMARYORDERMASK; } ces = ceBuffer; while ((order = ucol_next(elems, &status)) != UCOL_NULLORDER) { UBool cont = isContinuation(order); order &= strengthMask; if (toShift && variableTop > (uint32_t)order && (order & UCOL_PRIMARYORDERMASK) != 0) { if (strength >= UCOL_QUATERNARY) { order &= UCOL_PRIMARYORDERMASK; } else { order = UCOL_IGNORABLE; } } if (order == UCOL_IGNORABLE) { continue; } if (cont) { order |= UCOL_CONTINUATION_MARKER; } add(order, status); } ucol_closeElements(elems); }
__swift_int32_t swift::_swift_stdlib_unicodeCollationIterator_next( void *CollationIterator, bool *HitEnd) { UErrorCode ErrorCode = U_ZERO_ERROR; auto Result = ucol_next( static_cast<UCollationElements *>(CollationIterator), &ErrorCode); if (U_FAILURE(ErrorCode)) { swift::crash("_swift_stdlib_unicodeCollationIterator_next: ucol_next() failed."); } *HitEnd = (Result == UCOL_NULLORDER); return Result; }
static void assertEqual(UCollationElements *i1, UCollationElements *i2) { int32_t c1, c2; int32_t count = 0; UErrorCode status = U_ZERO_ERROR; do { c1 = ucol_next(i1, &status); c2 = ucol_next(i2, &status); if (c1 != c2) { log_err("Error in iteration %d assetEqual between\n %d and %d, they are not equal\n", count, c1, c2); break; } count += 1; } while (c1 != UCOL_NULLORDER); }
const CEI *Target::nextCE(int32_t offset) { UErrorCode status = U_ZERO_ERROR; int32_t low = -1, high = -1; uint32_t order; UBool cont = FALSE; if (offset >= bufferMin && offset < bufferMax) { return &ceb[offset]; } if (bufferMax >= bufferSize || offset != bufferMax) { return NULL; } do { low = ucol_getOffset(elements); order = ucol_next(elements, &status); high = ucol_getOffset(elements); if (order == (uint32_t)UCOL_NULLORDER) { //high = low = -1; break; } cont = isContinuation(order); order &= strengthMask; if (toShift && variableTop > order && (order & UCOL_PRIMARYORDERMASK) != 0) { if (strength >= UCOL_QUATERNARY) { order &= UCOL_PRIMARYORDERMASK; } else { order = UCOL_IGNORABLE; } } } while (order == UCOL_IGNORABLE); if (cont) { order |= UCOL_CONTINUATION_MARKER; } ceb[offset].order = order; ceb[offset].lowOffset = low; ceb[offset].highOffset = high; bufferMax += 1; return &ceb[offset]; }
/** * Return an integer array containing all of the collation orders * returned by calls to next on the specified iterator */ OrderAndOffset* getOrders(UCollationElements *iter, int32_t *orderLength) { UErrorCode status; int32_t order; int32_t maxSize = 100; int32_t size = 0; int32_t offset = ucol_getOffset(iter); OrderAndOffset *temp; OrderAndOffset *orders =(OrderAndOffset *)malloc(sizeof(OrderAndOffset) * maxSize); status= U_ZERO_ERROR; while ((order=ucol_next(iter, &status)) != UCOL_NULLORDER) { if (size == maxSize) { maxSize *= 2; temp = (OrderAndOffset *)malloc(sizeof(OrderAndOffset) * maxSize); memcpy(temp, orders, size * sizeof(OrderAndOffset)); free(orders); orders = temp; } orders[size].order = order; orders[size].offset = offset; offset = ucol_getOffset(iter); size += 1; } if (maxSize > size && size > 0) { temp = (OrderAndOffset *)malloc(sizeof(OrderAndOffset) * size); memcpy(temp, orders, size * sizeof(OrderAndOffset)); free(orders); orders = temp; } *orderLength = size; return orders; }
OrderList::OrderList(UCollator *coll, const UnicodeString &string, int32_t stringOffset) : list(NULL), listMax(16), listSize(0) { UErrorCode status = U_ZERO_ERROR; UCollationElements *elems = ucol_openElements(coll, string.getBuffer(), string.length(), &status); uint32_t strengthMask = 0; int32_t order, low, high; switch (ucol_getStrength(coll)) { default: strengthMask |= UCOL_TERTIARYORDERMASK; /* fall through */ case UCOL_SECONDARY: strengthMask |= UCOL_SECONDARYORDERMASK; /* fall through */ case UCOL_PRIMARY: strengthMask |= UCOL_PRIMARYORDERMASK; } list = new Order[listMax]; ucol_setOffset(elems, stringOffset, &status); do { low = ucol_getOffset(elems); order = ucol_next(elems, &status); high = ucol_getOffset(elems); if (order != UCOL_NULLORDER) { order &= strengthMask; } if (order != UCOL_IGNORABLE) { add(order, low, high); } } while (order != UCOL_NULLORDER); ucol_closeElements(elems); }
static intptr_t hashChunk(const UCollator *Collator, intptr_t HashState, const uint16_t *Str, uint32_t Length, UErrorCode *ErrorCode) { UCollationElements *CollationIterator = ucol_openElements( Collator, Str, Length, ErrorCode); while (U_SUCCESS(*ErrorCode)) { intptr_t Elem = ucol_next(CollationIterator, ErrorCode); // Ignore zero valued collation elements. They don't participate in the // ordering relation. if (Elem == 0) continue; if (Elem != UCOL_NULLORDER) { Elem *= HASH_M; Elem ^= Elem >> HASH_R; Elem *= HASH_M; HashState *= HASH_M; HashState ^= Elem; } else { break;
// Collator.collation_order {{{ static PyObject * icu_Collator_collation_order(icu_Collator *self, PyObject *a_) { int32_t asz = 0; UChar *a = NULL; UErrorCode status = U_ZERO_ERROR; UCollationElements *iter = NULL; int order = 0, len = -1; a = python_to_icu(a_, &asz); if (a == NULL) goto end; iter = ucol_openElements(self->collator, a, asz, &status); if (U_FAILURE(status)) { PyErr_SetString(PyExc_ValueError, u_errorName(status)); goto end; } order = ucol_next(iter, &status); len = ucol_getOffset(iter); end: if (iter != NULL) ucol_closeElements(iter); iter = NULL; if (a != NULL) free(a); if (PyErr_Occurred()) return NULL; return Py_BuildValue("ii", order, len); } // }}}
/** * Testing the discontigous contractions */ static void TestDiscontiguos() { const char *rulestr = "&z < AB < X\\u0300 < ABC < X\\u0300\\u0315"; UChar rule[50]; int rulelen = u_unescape(rulestr, rule, 50); const char *src[] = { "ADB", "ADBC", "A\\u0315B", "A\\u0315BC", /* base character blocked */ "XD\\u0300", "XD\\u0300\\u0315", /* non blocking combining character */ "X\\u0319\\u0300", "X\\u0319\\u0300\\u0315", /* blocking combining character */ "X\\u0314\\u0300", "X\\u0314\\u0300\\u0315", /* contraction prefix */ "ABDC", "AB\\u0315C","X\\u0300D\\u0315", "X\\u0300\\u0319\\u0315", "X\\u0300\\u031A\\u0315", /* ends not with a contraction character */ "X\\u0319\\u0300D", "X\\u0319\\u0300\\u0315D", "X\\u0300D\\u0315D", "X\\u0300\\u0319\\u0315D", "X\\u0300\\u031A\\u0315D" }; const char *tgt[] = { /* non blocking combining character */ "A D B", "A D BC", "A \\u0315 B", "A \\u0315 BC", /* base character blocked */ "X D \\u0300", "X D \\u0300\\u0315", /* non blocking combining character */ "X\\u0300 \\u0319", "X\\u0300\\u0315 \\u0319", /* blocking combining character */ "X \\u0314 \\u0300", "X \\u0314 \\u0300\\u0315", /* contraction prefix */ "AB DC", "AB \\u0315 C","X\\u0300 D \\u0315", "X\\u0300\\u0315 \\u0319", "X\\u0300 \\u031A \\u0315", /* ends not with a contraction character */ "X\\u0300 \\u0319D", "X\\u0300\\u0315 \\u0319D", "X\\u0300 D\\u0315D", "X\\u0300\\u0315 \\u0319D", "X\\u0300 \\u031A\\u0315D" }; int size = 20; UCollator *coll; UErrorCode status = U_ZERO_ERROR; int count = 0; UCollationElements *iter; UCollationElements *resultiter; coll = ucol_openRules(rule, rulelen, UCOL_OFF, UCOL_DEFAULT_STRENGTH,NULL, &status); iter = ucol_openElements(coll, rule, 1, &status); resultiter = ucol_openElements(coll, rule, 1, &status); if (U_FAILURE(status)) { log_err_status(status, "Error opening collation rules -> %s\n", u_errorName(status)); return; } while (count < size) { UChar str[20]; UChar tstr[20]; int strLen = u_unescape(src[count], str, 20); UChar *s; ucol_setText(iter, str, strLen, &status); if (U_FAILURE(status)) { log_err("Error opening collation iterator\n"); return; } u_unescape(tgt[count], tstr, 20); s = tstr; log_verbose("count %d\n", count); for (;;) { uint32_t ce; UChar *e = u_strchr(s, 0x20); if (e == 0) { e = u_strchr(s, 0); } ucol_setText(resultiter, s, (int32_t)(e - s), &status); ce = ucol_next(resultiter, &status); if (U_FAILURE(status)) { log_err("Error manipulating collation iterator\n"); return; } while (ce != UCOL_NULLORDER) { if (ce != (uint32_t)ucol_next(iter, &status) || U_FAILURE(status)) { log_err("Discontiguos contraction test mismatch\n"); return; } ce = ucol_next(resultiter, &status); if (U_FAILURE(status)) { log_err("Error getting next collation element\n"); return; } } s = e + 1; if (*e == 0) { break; } } ucol_reset(iter); backAndForth(iter); count ++; } ucol_closeElements(resultiter); ucol_closeElements(iter); ucol_close(coll); }
/** * Test for getOffset() and setOffset() */ static void TestOffset() { UErrorCode status= U_ZERO_ERROR; UCollator *en_us=NULL; UCollationElements *iter, *pristine; int32_t offset; OrderAndOffset *orders; int32_t orderLength=0; int count = 0; UChar test1[50]; UChar test2[50]; u_uastrcpy(test1, "What subset of all possible test cases?"); u_uastrcpy(test2, "has the highest probability of detecting"); en_us = ucol_open("en_US", &status); log_verbose("Testing getOffset and setOffset for collations\n"); iter = ucol_openElements(en_us, test1, u_strlen(test1), &status); if(U_FAILURE(status)){ log_err_status(status, "ERROR: in creation of collation element iterator using ucol_openElements()\n %s\n", myErrorName(status)); ucol_close(en_us); return; } /* testing boundaries */ ucol_setOffset(iter, 0, &status); if (U_FAILURE(status) || ucol_previous(iter, &status) != UCOL_NULLORDER) { log_err("Error: After setting offset to 0, we should be at the end " "of the backwards iteration"); } ucol_setOffset(iter, u_strlen(test1), &status); if (U_FAILURE(status) || ucol_next(iter, &status) != UCOL_NULLORDER) { log_err("Error: After setting offset to end of the string, we should " "be at the end of the backwards iteration"); } /* Run all the way through the iterator, then get the offset */ orders = getOrders(iter, &orderLength); offset = ucol_getOffset(iter); if (offset != u_strlen(test1)) { log_err("offset at end != length %d vs %d\n", offset, u_strlen(test1) ); } /* Now set the offset back to the beginning and see if it works */ pristine=ucol_openElements(en_us, test1, u_strlen(test1), &status); if(U_FAILURE(status)){ log_err("ERROR: in creation of collation element iterator using ucol_openElements()\n %s\n", myErrorName(status)); ucol_close(en_us); return; } status = U_ZERO_ERROR; ucol_setOffset(iter, 0, &status); if (U_FAILURE(status)) { log_err("setOffset failed. %s\n", myErrorName(status)); } else { assertEqual(iter, pristine); } ucol_closeElements(pristine); ucol_closeElements(iter); free(orders); /* testing offsets in normalization buffer */ test1[0] = 0x61; test1[1] = 0x300; test1[2] = 0x316; test1[3] = 0x62; test1[4] = 0; ucol_setAttribute(en_us, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); iter = ucol_openElements(en_us, test1, 4, &status); if(U_FAILURE(status)){ log_err("ERROR: in creation of collation element iterator using ucol_openElements()\n %s\n", myErrorName(status)); ucol_close(en_us); return; } count = 0; while (ucol_next(iter, &status) != UCOL_NULLORDER && U_SUCCESS(status)) { switch (count) { case 0: if (ucol_getOffset(iter) != 1) { log_err("ERROR: Offset of iteration should be 1\n"); } break; case 3: if (ucol_getOffset(iter) != 4) { log_err("ERROR: Offset of iteration should be 4\n"); } break; default: if (ucol_getOffset(iter) != 3) { log_err("ERROR: Offset of iteration should be 3\n"); } } count ++; } ucol_reset(iter); count = 0; while (ucol_previous(iter, &status) != UCOL_NULLORDER && U_SUCCESS(status)) { switch (count) { case 0: case 1: if (ucol_getOffset(iter) != 3) { log_err("ERROR: Offset of iteration should be 3\n"); } break; case 2: if (ucol_getOffset(iter) != 1) { log_err("ERROR: Offset of iteration should be 1\n"); } break; default: if (ucol_getOffset(iter) != 0) { log_err("ERROR: Offset of iteration should be 0\n"); } } count ++; } if(U_FAILURE(status)){ log_err("ERROR: in iterating collation elements %s\n", myErrorName(status)); } ucol_closeElements(iter); ucol_close(en_us); }
static void TestBug672() { UErrorCode status = U_ZERO_ERROR; UChar pattern[20]; UChar text[50]; int i; int result[3][3]; u_uastrcpy(pattern, "resume"); u_uastrcpy(text, "Time to resume updating my resume."); for (i = 0; i < 3; ++ i) { UCollator *coll = ucol_open(LOCALES[i], &status); UCollationElements *pitr = ucol_openElements(coll, pattern, -1, &status); UCollationElements *titer = ucol_openElements(coll, text, -1, &status); if (U_FAILURE(status)) { log_err_status(status, "ERROR: in creation of either the collator or the collation iterator :%s\n", myErrorName(status)); return; } log_verbose("locale tested %s\n", LOCALES[i]); while (ucol_next(pitr, &status) != UCOL_NULLORDER && U_SUCCESS(status)) { } if (U_FAILURE(status)) { log_err("ERROR: reversing collation iterator :%s\n", myErrorName(status)); return; } ucol_reset(pitr); ucol_setOffset(titer, u_strlen(pattern), &status); if (U_FAILURE(status)) { log_err("ERROR: setting offset in collator :%s\n", myErrorName(status)); return; } result[i][0] = ucol_getOffset(titer); log_verbose("Text iterator set to offset %d\n", result[i][0]); /* Use previous() */ ucol_previous(titer, &status); result[i][1] = ucol_getOffset(titer); log_verbose("Current offset %d after previous\n", result[i][1]); /* Add one to index */ log_verbose("Adding one to current offset...\n"); ucol_setOffset(titer, ucol_getOffset(titer) + 1, &status); if (U_FAILURE(status)) { log_err("ERROR: setting offset in collator :%s\n", myErrorName(status)); return; } result[i][2] = ucol_getOffset(titer); log_verbose("Current offset in text = %d\n", result[i][2]); ucol_closeElements(pitr); ucol_closeElements(titer); ucol_close(coll); } if (uprv_memcmp(result[0], result[1], 3) != 0 || uprv_memcmp(result[1], result[2], 3) != 0) { log_err("ERROR: Different locales have different offsets at the same character\n"); } }
/** * Get the ordering priority of the next character in the string. * @return the next character's ordering. Returns NULLORDER if an error has * occured or if the end of string has been reached */ int32_t CollationElementIterator::next(UErrorCode& status) { return ucol_next(m_data_, &status); }
static void TestJB1401(void) { UCollator *myCollator = 0; UErrorCode status = U_ZERO_ERROR; static UChar NFD_UnsafeStartChars[] = { 0x0f73, /* Tibetan Vowel Sign II */ 0x0f75, /* Tibetan Vowel Sign UU */ 0x0f81, /* Tibetan Vowel Sign Reversed II */ 0 }; int i; myCollator = ucol_open("en_US", &status); if (U_FAILURE(status)){ int32_t bufferLen = 0; UChar dispName [100]; bufferLen = uloc_getDisplayName("en_US", 0, dispName, 100, &status); /*Report the error with display name... */ log_err("ERROR: Failed to create the collator for : \"%s\"\n", dispName); return; } ucol_setAttribute(myCollator, UCOL_NORMALIZATION_MODE, UCOL_ON, &status); if (U_FAILURE(status)){ log_err("ERROR: Failed to set normalization mode ON for collator.\n"); return; } for (i=0; ; i++) { UChar c; UChar X[4]; UChar Y[20]; UChar Z[20]; /* Get the next funny character to be tested, and set up the * three test strings X, Y, Z, consisting of an A-grave + test char, * in original form, NFD, and then NFC form. */ c = NFD_UnsafeStartChars[i]; if (c==0) {break;} X[0]=0xC0; X[1]=c; X[2]=0; /* \u00C0 is A Grave*/ unorm_normalize(X, -1, UNORM_NFD, 0, Y, 20, &status); unorm_normalize(Y, -1, UNORM_NFC, 0, Z, 20, &status); if (U_FAILURE(status)){ log_err("ERROR: Failed to normalize test of character %x\n", c); return; } /* Collation test. All three strings should be equal. * doTest does both strcoll and sort keys, with params in both orders. */ doTest(myCollator, X, Y, UCOL_EQUAL); doTest(myCollator, X, Z, UCOL_EQUAL); doTest(myCollator, Y, Z, UCOL_EQUAL); /* Run collation element iterators over the three strings. Results should be same for each. */ { UCollationElements *ceiX, *ceiY, *ceiZ; int32_t ceX, ceY, ceZ; int j; ceiX = ucol_openElements(myCollator, X, -1, &status); ceiY = ucol_openElements(myCollator, Y, -1, &status); ceiZ = ucol_openElements(myCollator, Z, -1, &status); if (U_FAILURE(status)) { log_err("ERROR: uucol_openElements failed.\n"); return; } for (j=0;; j++) { ceX = ucol_next(ceiX, &status); ceY = ucol_next(ceiY, &status); ceZ = ucol_next(ceiZ, &status); if (U_FAILURE(status)) { log_err("ERROR: ucol_next failed for iteration #%d.\n", j); break; } if (ceX != ceY || ceY != ceZ) { log_err("ERROR: ucol_next failed for iteration #%d.\n", j); break; } if (ceX == UCOL_NULLORDER) { break; } } ucol_closeElements(ceiX); ucol_closeElements(ceiY); ucol_closeElements(ceiZ); } } ucol_close(myCollator); }
void backAndForth(UCollationElements *iter) { /* Run through the iterator forwards and stick it into an array */ int32_t index, o; UErrorCode status = U_ZERO_ERROR; int32_t orderLength = 0; int32_t *orders; orders= getOrders(iter, &orderLength); /* Now go through it backwards and make sure we get the same values */ index = orderLength; ucol_reset(iter); /* synwee : changed */ while ((o = ucol_previous(iter, &status)) != UCOL_NULLORDER) { if (o != orders[-- index]) { if (o == 0) index ++; else { while (index > 0 && orders[-- index] == 0) { } if (o != orders[index]) { log_err("Mismatch at index : 0x%x\n", index); return; } } } } while (index != 0 && orders[index - 1] == 0) { index --; } if (index != 0) { log_err("Didn't get back to beginning - index is %d\n", index); ucol_reset(iter); log_err("\nnext: "); if ((o = ucol_next(iter, &status)) != UCOL_NULLORDER) { log_err("Error at %x\n", o); } log_err("\nprev: "); if ((o = ucol_previous(iter, &status)) != UCOL_NULLORDER) { log_err("Error at %x\n", o); } log_verbose("\n"); } free(orders); }
/** * Test for setText() */ static void TestSetText() { int32_t c,i; UErrorCode status = U_ZERO_ERROR; UCollator *en_us=NULL; UCollationElements *iter1, *iter2; UChar test1[50]; UChar test2[50]; u_uastrcpy(test1, "What subset of all possible test cases?"); u_uastrcpy(test2, "has the highest probability of detecting"); en_us = ucol_open("en_US", &status); log_verbose("testing setText for Collation elements\n"); iter1=ucol_openElements(en_us, test1, u_strlen(test1), &status); if(U_FAILURE(status)){ log_err_status(status, "ERROR: in creation of collation element iterator1 using ucol_openElements()\n %s\n", myErrorName(status)); ucol_close(en_us); return; } iter2=ucol_openElements(en_us, test2, u_strlen(test2), &status); if(U_FAILURE(status)){ log_err("ERROR: in creation of collation element iterator2 using ucol_openElements()\n %s\n", myErrorName(status)); ucol_close(en_us); return; } /* Run through the second iterator just to exercise it */ c = ucol_next(iter2, &status); i = 0; while ( ++i < 10 && (c != UCOL_NULLORDER)) { if (U_FAILURE(status)) { log_err("iter2->next() returned an error. %s\n", myErrorName(status)); ucol_closeElements(iter2); ucol_closeElements(iter1); ucol_close(en_us); return; } c = ucol_next(iter2, &status); } /* Now set it to point to the same string as the first iterator */ ucol_setText(iter2, test1, u_strlen(test1), &status); if (U_FAILURE(status)) { log_err("call to iter2->setText(test1) failed. %s\n", myErrorName(status)); } else { assertEqual(iter1, iter2); } /* Now set it to point to a null string with fake length*/ ucol_setText(iter2, NULL, 2, &status); if (status != U_ILLEGAL_ARGUMENT_ERROR) { log_err("call to iter2->setText(null, 2) should yield an illegal-argument-error - %s\n", myErrorName(status)); } ucol_closeElements(iter2); ucol_closeElements(iter1); ucol_close(en_us); }
/** * Testing iterators with extremely small buffers */ static void TestSmallBuffer() { UErrorCode status = U_ZERO_ERROR; UCollator *coll; UCollationElements *testiter, *iter; int32_t count = 0; OrderAndOffset *testorders, *orders; UChar teststr[500]; UChar str[] = {0x300, 0x31A, 0}; /* creating a long string of decomposable characters, since by default the writable buffer is of size 256 */ while (count < 500) { if ((count & 1) == 0) { teststr[count ++] = 0x300; } else { teststr[count ++] = 0x31A; } } coll = ucol_open("th_TH", &status); if(U_SUCCESS(status) && coll) { testiter = ucol_openElements(coll, teststr, 500, &status); iter = ucol_openElements(coll, str, 2, &status); orders = getOrders(iter, &count); if (count != 2) { log_err("Error collation elements size is not 2 for \\u0300\\u031A\n"); } /* this will rearrange the string data to 250 characters of 0x300 first then 250 characters of 0x031A */ testorders = getOrders(testiter, &count); if (count != 500) { log_err("Error decomposition does not give the right sized collation elements\n"); } while (count != 0) { /* UCA collation element for 0x0F76 */ if ((count > 250 && testorders[-- count].order != orders[1].order) || (count <= 250 && testorders[-- count].order != orders[0].order)) { log_err("Error decomposition does not give the right collation element at %d count\n", count); break; } } free(testorders); free(orders); ucol_reset(testiter); /* ensures closing of elements done properly to clear writable buffer */ ucol_next(testiter, &status); ucol_next(testiter, &status); ucol_closeElements(testiter); ucol_closeElements(iter); ucol_close(coll); } else { log_err_status(status, "Couldn't open collator -> %s\n", u_errorName(status)); } }
static jint NativeCollation_next(JNIEnv* env, jclass, jint address) { UErrorCode status = U_ZERO_ERROR; jint result = ucol_next(toCollationElements(address), &status); icu4jni_error(env, status); return result; }
static jint NativeCollation_next(JNIEnv* env, jclass, jlong address) { UErrorCode status = U_ZERO_ERROR; jint result = ucol_next(toCollationElements(address), &status); maybeThrowIcuException(env, "ucol_next", status); return result; }
void backAndForth(UCollationElements *iter) { /* Run through the iterator forwards and stick it into an array */ int32_t idx, o; UErrorCode status = U_ZERO_ERROR; int32_t orderLength = 0; OrderAndOffset *orders = getOrders(iter, &orderLength); /* Now go through it backwards and make sure we get the same values */ idx = orderLength; ucol_reset(iter); /* synwee : changed */ while ((o = ucol_previous(iter, &status)) != UCOL_NULLORDER) { #if TEST_OFFSETS int32_t offset = #endif ucol_getOffset(iter); idx -= 1; if (o != orders[idx].order) { if (o == 0) idx ++; else { while (idx > 0 && orders[-- idx].order == 0) { /* nothing... */ } if (o != orders[idx].order) { log_err("Mismatched order at index %d: 0x%8.8X vs. 0x%8.8X\n", idx, orders[idx].order, o); goto bail; } } } #if TEST_OFFSETS if (offset != orders[idx].offset) { log_err("Mismatched offset at index %d: %d vs. %d\n", idx, orders[idx].offset, offset); goto bail; } #endif } while (idx != 0 && orders[idx - 1].order == 0) { idx -= 1; } if (idx != 0) { log_err("Didn't get back to beginning - index is %d\n", idx); ucol_reset(iter); log_err("\nnext: "); if ((o = ucol_next(iter, &status)) != UCOL_NULLORDER) { log_err("Error at %x\n", o); } log_err("\nprev: "); if ((o = ucol_previous(iter, &status)) != UCOL_NULLORDER) { log_err("Error at %x\n", o); } log_verbose("\n"); } bail: free(orders); }
static void TestSearchCollatorElements(void) { const TSCEItem * tsceItemPtr; for (tsceItemPtr = tsceItems; tsceItemPtr->locale != NULL; tsceItemPtr++) { UErrorCode status = U_ZERO_ERROR; UCollator* ucol = ucol_open(tsceItemPtr->locale, &status); if ( U_SUCCESS(status) ) { UCollationElements * uce = ucol_openElements(ucol, tsceText, kLen_tsceText, &status); if ( U_SUCCESS(status) ) { int32_t offset, element; const int32_t * nextOffsetPtr; const int32_t * limitOffsetPtr; nextOffsetPtr = tsceItemPtr->offsets; limitOffsetPtr = tsceItemPtr->offsets + tsceItemPtr->offsetsLen; do { offset = ucol_getOffset(uce); element = ucol_next(uce, &status); log_verbose("(%s) offset=%2d ce=%08x\n", tsceItemPtr->locale, offset, element); if ( element == 0 ) { log_err("error, locale %s, ucol_next returned element 0\n", tsceItemPtr->locale ); } if ( nextOffsetPtr < limitOffsetPtr ) { if (offset != *nextOffsetPtr) { log_err("error, locale %s, expected ucol_next -> ucol_getOffset %d, got %d\n", tsceItemPtr->locale, *nextOffsetPtr, offset ); nextOffsetPtr = limitOffsetPtr; break; } nextOffsetPtr++; } else { log_err("error, locale %s, ucol_next returned more elements than expected\n", tsceItemPtr->locale ); } } while ( U_SUCCESS(status) && element != UCOL_NULLORDER ); if ( nextOffsetPtr < limitOffsetPtr ) { log_err("error, locale %s, ucol_next returned fewer elements than expected\n", tsceItemPtr->locale ); } ucol_setOffset(uce, kLen_tsceText, &status); status = U_ZERO_ERROR; nextOffsetPtr = tsceItemPtr->offsets + tsceItemPtr->offsetsLen; limitOffsetPtr = tsceItemPtr->offsets; do { offset = ucol_getOffset(uce); element = ucol_previous(uce, &status); if ( element == 0 ) { log_err("error, locale %s, ucol_previous returned element 0\n", tsceItemPtr->locale ); } if ( nextOffsetPtr > limitOffsetPtr ) { nextOffsetPtr--; if (offset != *nextOffsetPtr) { log_err("error, locale %s, expected ucol_previous -> ucol_getOffset %d, got %d\n", tsceItemPtr->locale, *nextOffsetPtr, offset ); nextOffsetPtr = limitOffsetPtr; break; } } else { log_err("error, locale %s, ucol_previous returned more elements than expected\n", tsceItemPtr->locale ); } } while ( U_SUCCESS(status) && element != UCOL_NULLORDER ); if ( nextOffsetPtr > limitOffsetPtr ) { log_err("error, locale %s, ucol_previous returned fewer elements than expected\n", tsceItemPtr->locale ); } ucol_closeElements(uce); } else { log_err("error, locale %s, ucol_openElements failed: %s\n", tsceItemPtr->locale, u_errorName(status) ); } ucol_close(ucol); } else { log_data_err("error, locale %s, ucol_open failed: %s\n", tsceItemPtr->locale, u_errorName(status) ); } } }