Exemplo n.º 1
0
// merge all regions' slices to get islands
void Layer::make_slices()
{
    ExPolygons slices;
    if (m_regions.size() == 1) {
        // optimization: if we only have one region, take its slices
        slices = m_regions.front()->slices;
    } else {
        Polygons slices_p;
        for (LayerRegion *layerm : m_regions)
            polygons_append(slices_p, to_polygons(layerm->slices));
        slices = union_ex(slices_p);
    }
    
    this->slices.expolygons.clear();
    this->slices.expolygons.reserve(slices.size());
    
    // prepare ordering points
    Points ordering_points;
    ordering_points.reserve(slices.size());
    for (const ExPolygon &ex : slices)
        ordering_points.push_back(ex.contour.first_point());
    
    // sort slices
    std::vector<Points::size_type> order;
    Slic3r::Geometry::chained_path(ordering_points, order);
    
    // populate slices vector
    for (size_t i : order)
        this->slices.expolygons.push_back(std::move(slices[i]));
}
Exemplo n.º 2
0
Slic3r::ExPolygons
union_ex(const Slic3r::Surfaces &subject, bool safety_offset)
{
    Polygons pp;
    for (Slic3r::Surfaces::const_iterator s = subject.begin(); s != subject.end(); ++s) {
        Polygons spp = *s;
        pp.insert(pp.end(), spp.begin(), spp.end());
    }
    return union_ex(pp, safety_offset);
}
Exemplo n.º 3
0
//FIXME Vojtech: This functon may likely be optimized to avoid some of the Slic3r to Clipper 
// conversions and unnecessary Clipper calls.
ExPolygons offset2_ex(const ExPolygons &expolygons, const float delta1,
    const float delta2, ClipperLib::JoinType joinType, double miterLimit)
{
    Polygons polys;
    for (const ExPolygon &expoly : expolygons)
        append(polys, 
               offset(offset_ex(expoly, delta1, joinType, miterLimit), 
                      delta2, joinType, miterLimit));
    return union_ex(polys);
}
Exemplo n.º 4
0
void
LayerRegion::merge_slices()
{
    // without safety offset, artifacts are generated (GH #2494)
    ExPolygons expp = union_ex((Polygons)this->slices, true);
    this->slices.surfaces.clear();
    this->slices.surfaces.reserve(expp.size());
    
    for (ExPolygons::const_iterator expoly = expp.begin(); expoly != expp.end(); ++expoly)
        this->slices.surfaces.push_back(Surface(stInternal, *expoly));
}
Exemplo n.º 5
0
void Layer::merge_slices()
{
    if (m_regions.size() == 1) {
        // Optimization, also more robust. Don't merge classified pieces of layerm->slices,
        // but use the non-split islands of a layer. For a single region print, these shall be equal.
        m_regions.front()->slices.set(this->slices.expolygons, stInternal);
    } else {
        for (LayerRegion *layerm : m_regions)
            // without safety offset, artifacts are generated (GH #2494)
            layerm->slices.set(union_ex(to_polygons(std::move(layerm->slices.surfaces)), true), stInternal);
    }
}
Exemplo n.º 6
0
ExPolygons simplify_polygons_ex(const Polygons &subject, bool preserve_collinear)
{
    if (! preserve_collinear)
        return union_ex(simplify_polygons(subject, false));

    // convert into Clipper polygons
    ClipperLib::Paths input_subject = Slic3rMultiPoints_to_ClipperPaths(subject);
    
    ClipperLib::PolyTree polytree;
    
    ClipperLib::Clipper c;
    c.PreserveCollinear(true);
    c.StrictlySimple(true);
    c.AddPaths(input_subject, ClipperLib::ptSubject, true);
    c.Execute(ClipperLib::ctUnion, polytree, ClipperLib::pftNonZero, ClipperLib::pftNonZero);
    
    // convert into ExPolygons
    return PolyTreeToExPolygons(polytree);
}
Exemplo n.º 7
0
void
PerimeterGenerator::process()
{
    // other perimeters
    this->_mm3_per_mm           = this->perimeter_flow.mm3_per_mm();
    coord_t pwidth              = this->perimeter_flow.scaled_width();
    coord_t pspacing            = this->perimeter_flow.scaled_spacing();
    
    // external perimeters
    this->_ext_mm3_per_mm       = this->ext_perimeter_flow.mm3_per_mm();
    coord_t ext_pwidth          = this->ext_perimeter_flow.scaled_width();
    coord_t ext_pspacing        = this->ext_perimeter_flow.scaled_spacing();
    coord_t ext_pspacing2       = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
    
    // overhang perimeters
    this->_mm3_per_mm_overhang  = this->overhang_flow.mm3_per_mm();
    
    // solid infill
    coord_t ispacing            = this->solid_infill_flow.scaled_spacing();
    coord_t gap_area_threshold  = pwidth * pwidth;
    
    // Calculate the minimum required spacing between two adjacent traces.
    // This should be equal to the nominal flow spacing but we experiment
    // with some tolerance in order to avoid triggering medial axis when
    // some squishing might work. Loops are still spaced by the entire
    // flow spacing; this only applies to collapsing parts.
    // For ext_min_spacing we use the ext_pspacing calculated for two adjacent
    // external loops (which is the correct way) instead of using ext_pspacing2
    // which is the spacing between external and internal, which is not correct
    // and would make the collapsing (thus the details resolution) dependent on 
    // internal flow which is unrelated.
    coord_t min_spacing         = pspacing      * (1 - INSET_OVERLAP_TOLERANCE);
    coord_t ext_min_spacing     = ext_pspacing  * (1 - INSET_OVERLAP_TOLERANCE);
    
    // prepare grown lower layer slices for overhang detection
    if (this->lower_slices != NULL && this->config->overhangs) {
        // We consider overhang any part where the entire nozzle diameter is not supported by the
        // lower layer, so we take lower slices and offset them by half the nozzle diameter used 
        // in the current layer
        double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
        
        this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
    }
    
    // we need to process each island separately because we might have different
    // extra perimeters for each one
    for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
        surface != this->slices->surfaces.end(); ++surface) {
        // detect how many perimeters must be generated for this island
        signed short loop_number = this->config->perimeters + surface->extra_perimeters;
        loop_number--;  // 0-indexed loops
        
        Polygons gaps;
        
        Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
        if (loop_number >= 0) {  // no loops = -1
            
            std::vector<PerimeterGeneratorLoops> contours(loop_number+1);    // depth => loops
            std::vector<PerimeterGeneratorLoops> holes(loop_number+1);       // depth => loops
            Polylines thin_walls;
            
            // we loop one time more than needed in order to find gaps after the last perimeter was applied
            for (signed short i = 0; i <= loop_number+1; ++i) {  // outer loop is 0
                Polygons offsets;
                if (i == 0) {
                    // the minimum thickness of a single loop is:
                    // ext_width/2 + ext_spacing/2 + spacing/2 + width/2
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(ext_pwidth/2 + ext_min_spacing/2 - 1),
                            +(ext_min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(last, -ext_pwidth/2);
                    }
                    
                    // look for thin walls
                    if (this->config->thin_walls) {
                        Polygons diffpp = diff(
                            last,
                            offset(offsets, +ext_pwidth/2),
                            true  // medial axis requires non-overlapping geometry
                        );
                        
                        // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
                        // (actually, something larger than that still may exist due to mitering or other causes)
                        coord_t min_width = ext_pwidth / 2;
                        ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
                        
                        // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
                        Polylines pp;
                        for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                            ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
                        
                        double threshold = ext_pwidth * 2;
                        for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
                            if (p->length() > threshold) {
                                thin_walls.push_back(*p);
                            }
                        }
                        
                        #ifdef DEBUG
                        printf("  %zu thin walls detected\n", thin_walls.size());
                        #endif
                        
                        /*
                        if (false) {
                            require "Slic3r/SVG.pm";
                            Slic3r::SVG::output(
                                "medial_axis.svg",
                                no_arrows       => 1,
                                #expolygons      => \@expp,
                                polylines       => \@thin_walls,
                            );
                        }
                        */
                    }
                } else {
                    coord_t distance = (i == 1) ? ext_pspacing2 : pspacing;
                    
                    if (this->config->thin_walls) {
                        offsets = offset2(
                            last,
                            -(distance + min_spacing/2 - 1),
                            +(min_spacing/2 - 1)
                        );
                    } else {
                        offsets = offset(
                            last,
                            -distance
                        );
                    }
                    
                    // look for gaps
                    if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0) {
                        // not using safety offset here would "detect" very narrow gaps
                        // (but still long enough to escape the area threshold) that gap fill
                        // won't be able to fill but we'd still remove from infill area
                        ExPolygons diff_expp = diff_ex(
                            offset(last, -0.5*distance),
                            offset(offsets, +0.5*distance + 10)  // safety offset
                        );
                        for (ExPolygons::const_iterator ex = diff_expp.begin(); ex != diff_expp.end(); ++ex) {
                            if (fabs(ex->area()) >= gap_area_threshold) {
                                Polygons pp = *ex;
                                gaps.insert(gaps.end(), pp.begin(), pp.end());
                            }
                        }
                    }
                }
                
                if (offsets.empty()) break;
                if (i > loop_number) break; // we were only looking for gaps this time
                
                last = offsets;
                for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
                    PerimeterGeneratorLoop loop(*polygon, i);
                    loop.is_contour = polygon->is_counter_clockwise();
                    if (loop.is_contour) {
                        contours[i].push_back(loop);
                    } else {
                        holes[i].push_back(loop);
                    }
                }
            }
            
            // nest loops: holes first
            for (signed short d = 0; d <= loop_number; ++d) {
                PerimeterGeneratorLoops &holes_d = holes[d];
                
                // loop through all holes having depth == d
                for (signed short i = 0; i < holes_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = holes_d[i];
                    
                    // find the hole loop that contains this one, if any
                    for (signed short t = d+1; t <= loop_number; ++t) {
                        for (signed short j = 0; j < holes[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = holes[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    
                    // if no hole contains this hole, find the contour loop that contains it
                    for (signed short t = loop_number; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                holes_d.erase(holes_d.begin() + i);
                                --i;
                                goto NEXT_LOOP;
                            }
                        }
                    }
                    NEXT_LOOP: ;
                }
            }
        
            // nest contour loops
            for (signed short d = loop_number; d >= 1; --d) {
                PerimeterGeneratorLoops &contours_d = contours[d];
                
                // loop through all contours having depth == d
                for (signed short i = 0; i < contours_d.size(); ++i) {
                    const PerimeterGeneratorLoop &loop = contours_d[i];
                
                    // find the contour loop that contains it
                    for (signed short t = d-1; t >= 0; --t) {
                        for (signed short j = 0; j < contours[t].size(); ++j) {
                            PerimeterGeneratorLoop &candidate_parent = contours[t][j];
                            if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
                                candidate_parent.children.push_back(loop);
                                contours_d.erase(contours_d.begin() + i);
                                --i;
                                goto NEXT_CONTOUR;
                            }
                        }
                    }
                    
                    NEXT_CONTOUR: ;
                }
            }
        
            // at this point, all loops should be in contours[0]
            
            ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
            
            // if brim will be printed, reverse the order of perimeters so that
            // we continue inwards after having finished the brim
            // TODO: add test for perimeter order
            if (this->config->external_perimeters_first
                || (this->layer_id == 0 && this->print_config->brim_width.value > 0))
                    entities.reverse();
            
            // append perimeters for this slice as a collection
            if (!entities.empty())
                this->loops->append(entities);
        }
        
        // fill gaps
        if (!gaps.empty()) {
            /*
            if (false) {
                require "Slic3r/SVG.pm";
                Slic3r::SVG::output(
                    "gaps.svg",
                    expolygons => union_ex(\@gaps),
                );
            }
            */
            
            // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
            // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
            std::vector<PerimeterGeneratorGapSize> gap_sizes;
            gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, 2*pwidth));
            gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, 1*pwidth));
            
            for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
                gap_size != gap_sizes.end(); ++gap_size) {
                ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size->min, 
                    gap_size->max, unscale(gap_size->width), gaps);
                this->gap_fill->append(gap_fill.entities);
                
                // Make sure we don't infill narrow parts that are already gap-filled
                // (we only consider this surface's gaps to reduce the diff() complexity).
                // Growing actual extrusions ensures that gaps not filled by medial axis
                // are not subtracted from fill surfaces (they might be too short gaps
                // that medial axis skips but infill might join with other infill regions
                // and use zigzag).
                coord_t dist = gap_size->width/2;
                Polygons filled;
                for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
                    it != gap_fill.entities.end(); ++it) {
                    Polygons f;
                    offset((*it)->as_polyline(), &f, dist);
                    filled.insert(filled.end(), f.begin(), f.end());
                }
                last = diff(last, filled);
                gaps = diff(gaps, filled);  // prevent more gap fill here
            }
        }
        
        // create one more offset to be used as boundary for fill
        // we offset by half the perimeter spacing (to get to the actual infill boundary)
        // and then we offset back and forth by half the infill spacing to only consider the
        // non-collapsing regions
        coord_t inset = 0;
        if (loop_number == 0) {
            // one loop
            inset += ext_pspacing2/2;
        } else if (loop_number > 0) {
            // two or more loops
            inset += pspacing/2;
        }
        
        // only apply infill overlap if we actually have one perimeter
        if (inset > 0)
            inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
        
        {
            ExPolygons expp = union_ex(last);
            
            // simplify infill contours according to resolution
            Polygons pp;
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                ex->simplify_p(SCALED_RESOLUTION, &pp);
            
            // collapse too narrow infill areas
            coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
            expp = offset2_ex(
                pp,
                -inset -min_perimeter_infill_spacing/2,
                +min_perimeter_infill_spacing/2
            );
            
            // append infill areas to fill_surfaces
            for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
                this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex));  // use a bogus surface type
        }
    }
}
Exemplo n.º 8
0
void
SLAPrint::write_svg(const std::string &outputfile) const
{
    const Sizef3 size = this->bb.size();
    const double support_material_radius = sm_pillars_radius();
    
    FILE* f = fopen(outputfile.c_str(), "w");
    fprintf(f,
        "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
        "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
        "<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
        "<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
        , size.x, size.y, SLIC3R_VERSION);
    
    for (size_t i = 0; i < this->layers.size(); ++i) {
        const Layer &layer = this->layers[i];
        fprintf(f,
            "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\" slic3r:slice-z=\"%0.4f\" slic3r:layer-height=\"%0.4f\">\n",
            i,
            layer.print_z,
            layer.slice_z,
            layer.print_z - ((i == 0) ? 0. : this->layers[i-1].print_z)
        );
        
        if (layer.solid) {
            const ExPolygons &slices = layer.slices.expolygons;
            for (ExPolygons::const_iterator it = slices.begin(); it != slices.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
                    pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
                );
            }
        } else {
            // Perimeters.
            for (ExPolygons::const_iterator it = layer.perimeters.expolygons.begin();
                it != layer.perimeters.expolygons.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"perimeter\" />\n",
                    pd.c_str(), "white", "black", "0"
                );
            }
            
            // Solid infill.
            for (ExPolygons::const_iterator it = layer.solid_infill.expolygons.begin();
                it != layer.solid_infill.expolygons.end(); ++it) {
                std::string pd = this->_SVG_path_d(*it);
                
                fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
                    pd.c_str(), "white", "black", "0"
                );
            }
            
            // Internal infill.
            for (ExtrusionEntitiesPtr::const_iterator it = layer.infill.entities.begin();
                it != layer.infill.entities.end(); ++it) {
                const ExPolygons infill = union_ex((*it)->grow());
                
                for (ExPolygons::const_iterator e = infill.begin(); e != infill.end(); ++e) {
                    std::string pd = this->_SVG_path_d(*e);
                
                    fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
                        pd.c_str(), "white", "black", "0"
                    );
                }
            }
        }
        
        // don't print support material in raft layers
        if (i >= (size_t)this->config.raft_layers) {
            // look for support material pillars belonging to this layer
            for (std::vector<SupportPillar>::const_iterator it = this->sm_pillars.begin(); it != this->sm_pillars.end(); ++it) {
                if (!(it->top_layer >= i && it->bottom_layer <= i)) continue;
            
                // generate a conic tip
                float radius = fminf(
                    support_material_radius,
                    (it->top_layer - i + 1) * this->config.layer_height.value
                );
            
                fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
                    unscale(it->x) - this->bb.min.x,
                    size.y - (unscale(it->y) - this->bb.min.y),
                    radius
                );
            }
        }
        
        fprintf(f,"\t</g>\n");
    }
    fprintf(f,"</svg>\n");
}
Exemplo n.º 9
0
void
SLAPrint::slice()
{
    TriangleMesh mesh = this->model->mesh();
    mesh.repair();
    
    // align to origin taking raft into account
    this->bb = mesh.bounding_box();
    if (this->config.raft_layers > 0) {
        this->bb.min.x -= this->config.raft_offset.value;
        this->bb.min.y -= this->config.raft_offset.value;
        this->bb.max.x += this->config.raft_offset.value;
        this->bb.max.y += this->config.raft_offset.value;
    }
    mesh.translate(0, 0, -bb.min.z);
    this->bb.translate(0, 0, -bb.min.z);
    
    // if we are generating a raft, first_layer_height will not affect mesh slicing
    const float lh       = this->config.layer_height.value;
    const float first_lh = this->config.first_layer_height.value;
    
    // generate the list of Z coordinates for mesh slicing
    // (we slice each layer at half of its thickness)
    this->layers.clear();
    {
        const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
        this->layers.push_back(Layer(first_slice_lh/2, first_slice_lh));
    }
    while (this->layers.back().print_z + lh/2 <= mesh.stl.stats.max.z) {
        this->layers.push_back(Layer(this->layers.back().print_z + lh/2, this->layers.back().print_z + lh));
    }
    
    // perform slicing and generate layers
    {
        std::vector<float> slice_z;
        for (size_t i = 0; i < this->layers.size(); ++i)
            slice_z.push_back(this->layers[i].slice_z);
        
        std::vector<ExPolygons> slices;
        TriangleMeshSlicer(&mesh).slice(slice_z, &slices);
        
        for (size_t i = 0; i < slices.size(); ++i)
            this->layers[i].slices.expolygons = slices[i];
    }
    
    // generate infill
    if (this->config.fill_density < 100) {
        std::auto_ptr<Fill> fill(Fill::new_from_type(this->config.fill_pattern.value));
        fill->bounding_box.merge(Point::new_scale(bb.min.x, bb.min.y));
        fill->bounding_box.merge(Point::new_scale(bb.max.x, bb.max.y));
        fill->spacing       = this->config.get_abs_value("infill_extrusion_width", this->config.layer_height.value);
        fill->angle         = Geometry::deg2rad(this->config.fill_angle.value);
        fill->density       = this->config.fill_density.value/100;
        
        parallelize<size_t>(
            0,
            this->layers.size()-1,
            boost::bind(&SLAPrint::_infill_layer, this, _1, fill.get()),
            this->config.threads.value
        );
    }
    
    // generate support material
    this->sm_pillars.clear();
    ExPolygons overhangs;
    if (this->config.support_material) {
        // flatten and merge all the overhangs
        {
            Polygons pp;
            for (std::vector<Layer>::const_iterator it = this->layers.begin()+1; it != this->layers.end(); ++it)
                pp += diff(it->slices, (it - 1)->slices);
            overhangs = union_ex(pp);
        }
        
        // generate points following the shape of each island
        Points pillars_pos;
        const coordf_t spacing = scale_(this->config.support_material_spacing);
        const coordf_t radius  = scale_(this->sm_pillars_radius());
        for (ExPolygons::const_iterator it = overhangs.begin(); it != overhangs.end(); ++it) {
            // leave a radius/2 gap between pillars and contour to prevent lateral adhesion
            for (float inset = radius * 1.5;; inset += spacing) {
                // inset according to the configured spacing
                Polygons curr = offset(*it, -inset);
                if (curr.empty()) break;
                
                // generate points along the contours
                for (Polygons::const_iterator pg = curr.begin(); pg != curr.end(); ++pg) {
                    Points pp = pg->equally_spaced_points(spacing);
                    for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
                        pillars_pos.push_back(*p);
                }
            }
        }
        
        // for each pillar, check which layers it applies to
        for (Points::const_iterator p = pillars_pos.begin(); p != pillars_pos.end(); ++p) {
            SupportPillar pillar(*p);
            bool object_hit = false;
            
            // check layers top-down
            for (int i = this->layers.size()-1; i >= 0; --i) {
                // check whether point is void in this layer
                if (!this->layers[i].slices.contains(*p)) {
                    // no slice contains the point, so it's in the void
                    if (pillar.top_layer > 0) {
                        // we have a pillar, so extend it
                        pillar.bottom_layer = i + this->config.raft_layers;
                    } else if (object_hit) {
                        // we don't have a pillar and we're below the object, so create one
                        pillar.top_layer = i + this->config.raft_layers;
                    }
                } else {
                    if (pillar.top_layer > 0) {
                        // we have a pillar which is not needed anymore, so store it and initialize a new potential pillar
                        this->sm_pillars.push_back(pillar);
                        pillar = SupportPillar(*p);
                    }
                    object_hit = true;
                }
            }
            if (pillar.top_layer > 0) this->sm_pillars.push_back(pillar);
        }
    }
    
    // generate a solid raft if requested
    // (do this after support material because we take support material shape into account)
    if (this->config.raft_layers > 0) {
        ExPolygons raft = this->layers.front().slices + overhangs;  // take support material into account
        raft = offset_ex(raft, scale_(this->config.raft_offset));
        for (int i = this->config.raft_layers; i >= 1; --i) {
            this->layers.insert(this->layers.begin(), Layer(0, first_lh + lh * (i-1)));
            this->layers.front().slices = raft;
        }
        
        // prepend total raft height to all sliced layers
        for (size_t i = this->config.raft_layers; i < this->layers.size(); ++i)
            this->layers[i].print_z += first_lh + lh * (this->config.raft_layers-1);
    }
}
Exemplo n.º 10
0
// Here the perimeters are created cummulatively for all layer regions sharing the same parameters influencing the perimeters.
// The perimeter paths and the thin fills (ExtrusionEntityCollection) are assigned to the first compatible layer region.
// The resulting fill surface is split back among the originating regions.
void Layer::make_perimeters()
{
    BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id();
    
    // keep track of regions whose perimeters we have already generated
    std::set<size_t> done;
    
    for (LayerRegionPtrs::iterator layerm = m_regions.begin(); layerm != m_regions.end(); ++ layerm) {
        size_t region_id = layerm - m_regions.begin();
        if (done.find(region_id) != done.end()) continue;
        BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << ", region " << region_id;
        done.insert(region_id);
        const PrintRegionConfig &config = (*layerm)->region()->config();
        
        // find compatible regions
        LayerRegionPtrs layerms;
        layerms.push_back(*layerm);
        for (LayerRegionPtrs::const_iterator it = layerm + 1; it != m_regions.end(); ++it) {
            LayerRegion* other_layerm = *it;
            const PrintRegionConfig &other_config = other_layerm->region()->config();
            
            if (config.perimeter_extruder   == other_config.perimeter_extruder
                && config.perimeters        == other_config.perimeters
                && config.perimeter_speed   == other_config.perimeter_speed
                && config.external_perimeter_speed == other_config.external_perimeter_speed
                && config.gap_fill_speed    == other_config.gap_fill_speed
                && config.overhangs         == other_config.overhangs
                && config.serialize("perimeter_extrusion_width").compare(other_config.serialize("perimeter_extrusion_width")) == 0
                && config.thin_walls        == other_config.thin_walls
                && config.external_perimeters_first == other_config.external_perimeters_first) {
                layerms.push_back(other_layerm);
                done.insert(it - m_regions.begin());
            }
        }
        
        if (layerms.size() == 1) {  // optimization
            (*layerm)->fill_surfaces.surfaces.clear();
            (*layerm)->make_perimeters((*layerm)->slices, &(*layerm)->fill_surfaces);
            (*layerm)->fill_expolygons = to_expolygons((*layerm)->fill_surfaces.surfaces);
        } else {
            SurfaceCollection new_slices;
            {
                // group slices (surfaces) according to number of extra perimeters
                std::map<unsigned short,Surfaces> slices;  // extra_perimeters => [ surface, surface... ]
                for (LayerRegionPtrs::iterator l = layerms.begin(); l != layerms.end(); ++l) {
                    for (Surfaces::iterator s = (*l)->slices.surfaces.begin(); s != (*l)->slices.surfaces.end(); ++s) {
                        slices[s->extra_perimeters].push_back(*s);
                    }
                }
                // merge the surfaces assigned to each group
                for (std::map<unsigned short,Surfaces>::const_iterator it = slices.begin(); it != slices.end(); ++it)
                    new_slices.append(union_ex(it->second, true), it->second.front());
            }
            
            // make perimeters
            SurfaceCollection fill_surfaces;
            (*layerm)->make_perimeters(new_slices, &fill_surfaces);

            // assign fill_surfaces to each layer
            if (!fill_surfaces.surfaces.empty()) { 
                for (LayerRegionPtrs::iterator l = layerms.begin(); l != layerms.end(); ++l) {
                    // Separate the fill surfaces.
                    ExPolygons expp = intersection_ex(to_polygons(fill_surfaces), (*l)->slices);
                    (*l)->fill_expolygons = expp;
                    (*l)->fill_surfaces.set(std::move(expp), fill_surfaces.surfaces.front());
                }
            }
        }
    }
    BOOST_LOG_TRIVIAL(trace) << "Generating perimeters for layer " << this->id() << " - Done";
}