Exemplo n.º 1
0
/*
 * usb_enable_endpoint - Enable an endpoint for USB communications
 * @dev: the device whose interface is being enabled
 * @ep: the endpoint
 *
 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
 * For control endpoints, both the input and output sides are handled.
 */
static void
usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
{
	unsigned int epaddr = ep->desc.bEndpointAddress;
	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
	int is_control;

	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
			== USB_ENDPOINT_XFER_CONTROL);
	if (usb_endpoint_out(epaddr) || is_control) {
		usb_settoggle(dev, epnum, 1, 0);
		dev->ep_out[epnum] = ep;
	}
	if (!usb_endpoint_out(epaddr) || is_control) {
		usb_settoggle(dev, epnum, 0, 0);
		dev->ep_in[epnum] = ep;
	}
}
Exemplo n.º 2
0
/*
 * usb_enable_endpoint - Enable an endpoint for USB communications
 * @dev: the device whose interface is being enabled
 * @epd: pointer to the endpoint descriptor
 *
 * Marks the endpoint as running, resets its toggle, and stores
 * its maxpacket value.  For control endpoints, both the input
 * and output sides are handled.
 */
void usb_enable_endpoint(struct usb_device *dev,
		struct usb_endpoint_descriptor *epd)
{
	int maxsize = epd->wMaxPacketSize;
	unsigned int epaddr = epd->bEndpointAddress;
	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
	int is_control = ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
				USB_ENDPOINT_XFER_CONTROL);

	if (usb_endpoint_out(epaddr) || is_control) {
		usb_endpoint_running(dev, epnum, 1);
		usb_settoggle(dev, epnum, 1, 0);
		dev->epmaxpacketout[epnum] = maxsize;
	}
	if (!usb_endpoint_out(epaddr) || is_control) {
		usb_endpoint_running(dev, epnum, 0);
		usb_settoggle(dev, epnum, 0, 0);
		dev->epmaxpacketin[epnum] = maxsize;
	}
}
Exemplo n.º 3
0
static void xhci_dbg_ep_ctx(struct xhci_hcd *xhci,
		     struct xhci_container_ctx *ctx,
		     unsigned int last_ep)
{
	int i, j;
	int last_ep_ctx = 31;
	/* Fields are 32 bits wide, DMA addresses are in bytes */
	int field_size = 32 / 8;
	int csz = HCC_64BYTE_CONTEXT(xhci->hcc_params);

	if (last_ep < 31)
		last_ep_ctx = last_ep + 1;
	for (i = 0; i < last_ep_ctx; ++i) {
		unsigned int epaddr = xhci_get_endpoint_address(i);
		struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, ctx, i);
		dma_addr_t dma = ctx->dma +
			((unsigned long)ep_ctx - (unsigned long)ctx->bytes);

		xhci_dbg(xhci, "%s Endpoint %02d Context (ep_index %02d):\n",
				usb_endpoint_out(epaddr) ? "OUT" : "IN",
				epaddr & USB_ENDPOINT_NUMBER_MASK, i);
		xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info\n",
				&ep_ctx->ep_info,
				(unsigned long long)dma, ep_ctx->ep_info);
		dma += field_size;
		xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - ep_info2\n",
				&ep_ctx->ep_info2,
				(unsigned long long)dma, ep_ctx->ep_info2);
		dma += field_size;
		xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08llx - deq\n",
				&ep_ctx->deq,
				(unsigned long long)dma, ep_ctx->deq);
		dma += 2*field_size;
		xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - tx_info\n",
				&ep_ctx->tx_info,
				(unsigned long long)dma, ep_ctx->tx_info);
		dma += field_size;
		for (j = 0; j < 3; ++j) {
			xhci_dbg(xhci, "@%p (virt) @%08llx (dma) %#08x - rsvd[%d]\n",
					&ep_ctx->reserved[j],
					(unsigned long long)dma,
					ep_ctx->reserved[j], j);
			dma += field_size;
		}

		if (csz)
			dbg_rsvd64(xhci, (u64 *)ep_ctx, dma);
	}
}
Exemplo n.º 4
0
/**
 * usb_disable_endpoint -- Disable an endpoint by address
 * @dev: the device whose endpoint is being disabled
 * @epaddr: the endpoint's address.  Endpoint number for output,
 *	endpoint number + USB_DIR_IN for input
 *
 * Deallocates hcd/hardware state for this endpoint ... and nukes all
 * pending urbs.
 *
 * If the HCD hasn't registered a disable() function, this marks the
 * endpoint as halted and sets its maxpacket size to 0 to prevent
 * further submissions.
 */
void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
{
	if (dev && dev->bus && dev->bus->op && dev->bus->op->disable)
		dev->bus->op->disable(dev, epaddr);
	else {
		unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;

		if (usb_endpoint_out(epaddr)) {
			usb_endpoint_halt(dev, epnum, 1);
			dev->epmaxpacketout[epnum] = 0;
		} else {
			usb_endpoint_halt(dev, epnum, 0);
			dev->epmaxpacketin[epnum] = 0;
		}
	}
}
Exemplo n.º 5
0
/**
 * usb_disable_endpoint -- Disable an endpoint by address
 * @dev: the device whose endpoint is being disabled
 * @epaddr: the endpoint's address.  Endpoint number for output,
 *	endpoint number + USB_DIR_IN for input
 *
 * Deallocates hcd/hardware state for this endpoint ... and nukes all
 * pending urbs.
 *
 * If the HCD hasn't registered a disable() function, this sets the
 * endpoint's maxpacket size to 0 to prevent further submissions.
 */
void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
{
	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
	struct usb_host_endpoint *ep;

	if (!dev)
		return;

	if (usb_endpoint_out(epaddr)) {
		ep = dev->ep_out[epnum];
		dev->ep_out[epnum] = NULL;
	} else {
		ep = dev->ep_in[epnum];
		dev->ep_in[epnum] = NULL;
	}
	if (ep && dev->bus)
		usb_hcd_endpoint_disable(dev, ep);
}
Exemplo n.º 6
0
/**
 * usb_set_interface - Makes a particular alternate setting be current
 * @dev: the device whose interface is being updated
 * @interface: the interface being updated
 * @alternate: the setting being chosen.
 * Context: !in_interrupt ()
 *
 * This is used to enable data transfers on interfaces that may not
 * be enabled by default.  Not all devices support such configurability.
 * Only the driver bound to an interface may change its setting.
 *
 * Within any given configuration, each interface may have several
 * alternative settings.  These are often used to control levels of
 * bandwidth consumption.  For example, the default setting for a high
 * speed interrupt endpoint may not send more than 64 bytes per microframe,
 * while interrupt transfers of up to 3KBytes per microframe are legal.
 * Also, isochronous endpoints may never be part of an
 * interface's default setting.  To access such bandwidth, alternate
 * interface settings must be made current.
 *
 * Note that in the Linux USB subsystem, bandwidth associated with
 * an endpoint in a given alternate setting is not reserved until an URB
 * is submitted that needs that bandwidth.  Some other operating systems
 * allocate bandwidth early, when a configuration is chosen.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 * Also, drivers must not change altsettings while urbs are scheduled for
 * endpoints in that interface; all such urbs must first be completed
 * (perhaps forced by unlinking).
 *
 * Returns zero on success, or else the status code returned by the
 * underlying usb_control_msg() call.
 */
int usb_set_interface(struct usb_device *dev, int interface, int alternate)
{
	struct usb_interface *iface;
	struct usb_host_interface *alt;
	int ret;
	int manual = 0;

	iface = usb_ifnum_to_if(dev, interface);
	if (!iface) {
		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
			interface);
		return -EINVAL;
	}

	alt = usb_altnum_to_altsetting(iface, alternate);
	if (!alt) {
		warn("selecting invalid altsetting %d", alternate);
		return -EINVAL;
	}

	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
				   alternate, interface, NULL, 0, HZ * 5);

	/* 9.4.10 says devices don't need this and are free to STALL the
	 * request if the interface only has one alternate setting.
	 */
	if (ret == -EPIPE && iface->num_altsetting == 1) {
		dev_dbg(&dev->dev,
			"manual set_interface for iface %d, alt %d\n",
			interface, alternate);
		manual = 1;
	} else if (ret < 0)
		return ret;

	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
	 * when they implement async or easily-killable versions of this or
	 * other "should-be-internal" functions (like clear_halt).
	 * should hcd+usbcore postprocess control requests?
	 */

	/* prevent submissions using previous endpoint settings */
	usb_disable_interface(dev, iface);

	iface->cur_altsetting = alt;

	/* If the interface only has one altsetting and the device didn't
	 * accept the request, we attempt to carry out the equivalent action
	 * by manually clearing the HALT feature for each endpoint in the
	 * new altsetting.
	 */
	if (manual) {
		int i;

		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
			unsigned int epaddr =
				alt->endpoint[i].desc.bEndpointAddress;
			unsigned int pipe =
	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);

			usb_clear_halt(dev, pipe);
		}
	}

	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
	 *
	 * Note:
	 * Despite EP0 is always present in all interfaces/AS, the list of
	 * endpoints from the descriptor does not contain EP0. Due to its
	 * omnipresence one might expect EP0 being considered "affected" by
	 * any SetInterface request and hence assume toggles need to be reset.
	 * However, EP0 toggles are re-synced for every individual transfer
	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
	 * (Likewise, EP0 never "halts" on well designed devices.)
	 */
	usb_enable_interface(dev, iface);

	return 0;
}
Exemplo n.º 7
0
/**
 * usb_set_interface - Makes a particular alternate setting be current
 * @dev: the device whose interface is being updated
 * @interface: the interface being updated
 * @alternate: the setting being chosen.
 * Context: !in_interrupt ()
 *
 * This is used to enable data transfers on interfaces that may not
 * be enabled by default.  Not all devices support such configurability.
 * Only the driver bound to an interface may change its setting.
 *
 * Within any given configuration, each interface may have several
 * alternative settings.  These are often used to control levels of
 * bandwidth consumption.  For example, the default setting for a high
 * speed interrupt endpoint may not send more than 64 bytes per microframe,
 * while interrupt transfers of up to 3KBytes per microframe are legal.
 * Also, isochronous endpoints may never be part of an
 * interface's default setting.  To access such bandwidth, alternate
 * interface settings must be made current.
 *
 * Note that in the Linux USB subsystem, bandwidth associated with
 * an endpoint in a given alternate setting is not reserved until an URB
 * is submitted that needs that bandwidth.  Some other operating systems
 * allocate bandwidth early, when a configuration is chosen.
 *
 * This call is synchronous, and may not be used in an interrupt context.
 * Also, drivers must not change altsettings while urbs are scheduled for
 * endpoints in that interface; all such urbs must first be completed
 * (perhaps forced by unlinking).
 *
 * Returns zero on success, or else the status code returned by the
 * underlying usb_control_msg() call.
 */
int usb_set_interface(struct usb_device *dev, int interface, int alternate)
{
	struct usb_interface *iface;
	struct usb_host_interface *alt;
	int ret;
	int manual = 0;

	if (dev->state == USB_STATE_SUSPENDED)
		return -EHOSTUNREACH;

	iface = usb_ifnum_to_if(dev, interface);
	if (!iface) {
		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
			interface);
		return -EINVAL;
	}

	alt = usb_altnum_to_altsetting(iface, alternate);
	if (!alt) {
		warn("selecting invalid altsetting %d", alternate);
		return -EINVAL;
	}

	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
				   alternate, interface, NULL, 0, 5000);

	/* 9.4.10 says devices don't need this and are free to STALL the
	 * request if the interface only has one alternate setting.
	 */
	if (ret == -EPIPE && iface->num_altsetting == 1) {
		dev_dbg(&dev->dev,
			"manual set_interface for iface %d, alt %d\n",
			interface, alternate);
		manual = 1;
	} else if (ret < 0)
		return ret;

	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
	 * when they implement async or easily-killable versions of this or
	 * other "should-be-internal" functions (like clear_halt).
	 * should hcd+usbcore postprocess control requests?
	 */

	/* prevent submissions using previous endpoint settings */
	usb_disable_interface(dev, iface);

	/* 9.1.1.5 says:
	 *
	 *	Configuring a device or changing an alternate setting
	 *	causes all of the status and configuration values
	 *	associated with endpoints in the affected interfaces to
	 *	be set to their default values. This includes setting
	 *	the data toggle of any endpoint using data toggles to
	 *	the value DATA0.
	 *
	 * Some devices take this too literally and don't reset the data
	 * toggles if the new altsetting is the same as the old one (the
	 * command isn't "changing" an alternate setting).  We will manually
	 * reset the toggles when the new and old altsettings are the same.
	 * Most devices won't need this, but fortunately it doesn't happen
	 * often.
	 */
	if (iface->cur_altsetting == alt)
		manual = 1;
	iface->cur_altsetting = alt;

	/* If the interface only has one altsetting and the device didn't
	 * accept the request (or whenever the old altsetting is the same
	 * as the new one), we attempt to carry out the equivalent action
	 * by manually clearing the HALT feature for each endpoint in the
	 * new altsetting.
	 */
	if (manual) {
		int i;

		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
			unsigned int epaddr =
				alt->endpoint[i].desc.bEndpointAddress;
			unsigned int pipe =
	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);

			usb_clear_halt(dev, pipe);
		}
	}

	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
	 *
	 * Note:
	 * Despite EP0 is always present in all interfaces/AS, the list of
	 * endpoints from the descriptor does not contain EP0. Due to its
	 * omnipresence one might expect EP0 being considered "affected" by
	 * any SetInterface request and hence assume toggles need to be reset.
	 * However, EP0 toggles are re-synced for every individual transfer
	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
	 * (Likewise, EP0 never "halts" on well designed devices.)
	 */
	usb_enable_interface(dev, iface);

	return 0;
}