// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to // avoid unnecessary operations void NavEKF2_core::setWindMagStateLearningMode() { // If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states inhibitWindStates = ((!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE)); // determine if the vehicle is manoevring if (accNavMagHoriz > 0.5f) { manoeuvring = true; } else { manoeuvring = false; } // Determine if learning of magnetic field states has been requested by the user bool magCalRequested = ((frontend._magCal == 0) && !onGround) || ((frontend._magCal == 1) && manoeuvring) || (frontend._magCal == 3); // Deny mag calibration request if we aren't using the compass, are in the pre-arm constant position mode or it has been inhibited by the user bool magCalDenied = !use_compass() || (PV_AidingMode == AID_NONE) || (frontend._magCal == 2); // Inhibit the magnetic field calibration if not requested or denied inhibitMagStates = (!magCalRequested || magCalDenied); // Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations // if we are not using those states if (inhibitMagStates && inhibitWindStates) { stateIndexLim = 15; } else if (inhibitWindStates) { stateIndexLim = 21; } else { stateIndexLim = 23; } }
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to // avoid unnecessary operations void NavEKF2_core::setWindMagStateLearningMode() { // If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states inhibitWindStates = ((!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE)); // determine if the vehicle is manoevring if (accNavMagHoriz > 0.5f) { manoeuvring = true; } else { manoeuvring = false; } // Determine if learning of magnetic field states has been requested by the user bool magCalRequested = ((frontend->_magCal == 0) && inFlight) || // when flying ((frontend->_magCal == 1) && manoeuvring) || // when manoeuvring ((frontend->_magCal == 3) && firstMagYawInit) || // when initial in-air yaw and field reset has completed (frontend->_magCal == 4); // all the time // Deny mag calibration request if we aren't using the compass, it has been inhibited by the user, // we do not have an absolute position reference or are on the ground (unless explicitly requested by the user) bool magCalDenied = !use_compass() || (frontend->_magCal == 2) ||(onGround && frontend->_magCal != 4); // Inhibit the magnetic field calibration if not requested or denied inhibitMagStates = (!magCalRequested || magCalDenied); // If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed // because we want it re-done for each takeoff if (onGround) { firstMagYawInit = false; } // Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations // if we are not using those states if (inhibitMagStates && inhibitWindStates) { stateIndexLim = 15; } else if (inhibitWindStates) { stateIndexLim = 21; } else { stateIndexLim = 23; } }
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to // avoid unnecessary operations void NavEKF2_core::setWindMagStateLearningMode() { // If we are on ground, or in constant position mode, or don't have the right vehicle and sensing to estimate wind, inhibit wind states bool setWindInhibit = (!useAirspeed() && !assume_zero_sideslip()) || onGround || (PV_AidingMode == AID_NONE); if (!inhibitWindStates && setWindInhibit) { inhibitWindStates = true; } else if (inhibitWindStates && !setWindInhibit) { inhibitWindStates = false; // set states and variances if (yawAlignComplete && useAirspeed()) { // if we have airspeed and a valid heading, set the wind states to the reciprocal of the vehicle heading // which assumes the vehicle has launched into the wind Vector3f tempEuler; stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z); float windSpeed = sqrtf(sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y)) - tasDataDelayed.tas; stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z); stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z); // set the wind sate variances to the measurement uncertainty for (uint8_t index=22; index<=23; index++) { P[index][index] = sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f) * constrain_float(_ahrs->get_EAS2TAS(), 0.9f, 10.0f)); } } else { // set the variances using a typical wind speed for (uint8_t index=22; index<=23; index++) { P[index][index] = sq(5.0f); } } } // determine if the vehicle is manoevring if (accNavMagHoriz > 0.5f) { manoeuvring = true; } else { manoeuvring = false; } // Determine if learning of magnetic field states has been requested by the user uint8_t magCal = effective_magCal(); bool magCalRequested = ((magCal == 0) && inFlight) || // when flying ((magCal == 1) && manoeuvring) || // when manoeuvring ((magCal == 3) && finalInflightYawInit && finalInflightMagInit) || // when initial in-air yaw and mag field reset is complete (magCal == 4); // all the time // Deny mag calibration request if we aren't using the compass, it has been inhibited by the user, // we do not have an absolute position reference or are on the ground (unless explicitly requested by the user) bool magCalDenied = !use_compass() || (magCal == 2) || (onGround && magCal != 4); // Inhibit the magnetic field calibration if not requested or denied bool setMagInhibit = !magCalRequested || magCalDenied; if (!inhibitMagStates && setMagInhibit) { inhibitMagStates = true; } else if (inhibitMagStates && !setMagInhibit) { inhibitMagStates = false; if (magFieldLearned) { // if we have already learned the field states, then retain the learned variances P[16][16] = earthMagFieldVar.x; P[17][17] = earthMagFieldVar.y; P[18][18] = earthMagFieldVar.z; P[19][19] = bodyMagFieldVar.x; P[20][20] = bodyMagFieldVar.y; P[21][21] = bodyMagFieldVar.z; } else { // set the variances equal to the observation variances for (uint8_t index=18; index<=21; index++) { P[index][index] = sq(frontend->_magNoise); } // set the NE earth magnetic field states using the published declination // and set the corresponding variances and covariances alignMagStateDeclination(); } // request a reset of the yaw and magnetic field states if not done before if (!magStateInitComplete || (!finalInflightMagInit && inFlight)) { magYawResetRequest = true; } } // If on ground we clear the flag indicating that the magnetic field in-flight initialisation has been completed // because we want it re-done for each takeoff if (onGround) { finalInflightYawInit = false; finalInflightMagInit = false; } // Adjust the indexing limits used to address the covariance, states and other EKF arrays to avoid unnecessary operations // if we are not using those states if (inhibitMagStates && inhibitWindStates) { stateIndexLim = 15; } else if (inhibitWindStates) { stateIndexLim = 21; } else { stateIndexLim = 23; } }
// fuse selected position, velocity and height measurements void NavEKF2_core::FuseVelPosNED() { // start performance timer hal.util->perf_begin(_perf_FuseVelPosNED); // health is set bad until test passed velHealth = false; posHealth = false; hgtHealth = false; // declare variables used to check measurement errors Vector3f velInnov; // declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations float posErr; Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only Vector6 observation; float SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // set the GPS data timeout depending on whether airspeed data is present uint32_t gpsRetryTime; if (useAirspeed()) gpsRetryTime = frontend->gpsRetryTimeUseTAS_ms; else gpsRetryTime = frontend->gpsRetryTimeNoTAS_ms; // form the observation vector observation[0] = gpsDataDelayed.vel.x; observation[1] = gpsDataDelayed.vel.y; observation[2] = gpsDataDelayed.vel.z; observation[3] = gpsDataDelayed.pos.x; observation[4] = gpsDataDelayed.pos.y; observation[5] = -hgtMea; // calculate additional error in GPS position caused by manoeuvring posErr = frontend->gpsPosVarAccScale * accNavMag; // estimate the GPS Velocity, GPS horiz position and height measurement variances. // if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity // otherwise we scale it using manoeuvre acceleration // Use different errors if flying without GPS using synthetic position and velocity data if (PV_AidingMode == AID_NONE && inFlight) { // Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use) // This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres R_OBS[0] = sq(10.0f); R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; // Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres R_OBS[3] = sq(25.0f); R_OBS[4] = R_OBS[3]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f)); } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); R_OBS[4] = R_OBS[3]; } R_OBS[5] = posDownObsNoise; // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data and an independant height source is being used, check to see if the GPS vertical velocity and altimeter // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) { // calculate innovations for height and vertical GPS vel measurements float hgtErr = stateStruct.position.z - observation[5]; float velDErr = stateStruct.velocity.z - observation[2]; // check if they are the same sign and both more than 3-sigma out of bounds if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { badIMUdata = true; } else { badIMUdata = false; } } // calculate innovations and check GPS data validity using an innovation consistency check // test position measurements if (fusePosData) { // test horizontal position measurements innovVelPos[3] = stateStruct.position.x - observation[3]; innovVelPos[4] = stateStruct.position.y - observation[4]; varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; // apply an innovation consistency threshold test, but don't fail if bad IMU data float maxPosInnov2 = sq(max(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; posHealth = ((posTestRatio < 1.0f) || badIMUdata); // declare a timeout condition if we have been too long without data or not aiding posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use position data if healthy, timed out, or in constant position mode if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) { posHealth = true; // only reset the failed time and do glitch timeout checks if we are doing full aiding if (PV_AidingMode == AID_ABSOLUTE) { lastPosPassTime_ms = imuSampleTime_ms; // if timed out or outside the specified uncertainty radius, reset to the GPS if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) { // reset the position to the current GPS position ResetPosition(); // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS data on this time step fusePosData = false; fuseVelData = false; // Reset the position variances and corresponding covariances to a value that will pass the checks zeroRows(P,6,7); zeroCols(P,6,7); P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax)); P[7][7] = P[6][6]; // Reset the normalised innovation to avoid failing the bad fusion tests posTestRatio = 0.0f; velTestRatio = 0.0f; } } } else { posHealth = false; } } // test velocity measurements if (fuseVelData) { // test velocity measurements uint8_t imax = 2; // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) { imax = 1; } float innovVelSumSq = 0; // sum of squares of velocity innovations float varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { // velocity states start at index 3 stateIndex = i + 3; // calculate innovations using blended and single IMU predicted states velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended // calculate innovation variance varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; // sum the innovation and innovation variances innovVelSumSq += sq(velInnov[i]); varVelSum += varInnovVelPos[i]; } // apply an innovation consistency threshold test, but don't fail if bad IMU data // calculate the test ratio velTestRatio = innovVelSumSq / (varVelSum * sq(max(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f))); // fail if the ratio is greater than 1 velHealth = ((velTestRatio < 1.0f) || badIMUdata); // declare a timeout if we have not fused velocity data for too long or not aiding velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use velocity data if healthy, timed out, or in constant position mode if (velHealth || velTimeout) { velHealth = true; // restart the timeout count lastVelPassTime_ms = imuSampleTime_ms; // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity if (PV_AidingMode == AID_ABSOLUTE && velTimeout) { // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS velocity data on this time step fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } else { velHealth = false; } } // test height measurements if (fuseHgtData) { // calculate height innovations innovVelPos[5] = stateStruct.position.z - observation[5]; varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; // calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(max(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]); // fail if the ratio is > 1, but don't fail if bad IMU data hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); // Fuse height data if healthy or timed out or in constant position mode if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) { // Calculate a filtered value to be used by pre-flight health checks // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution if (onGround) { float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f; const float hgtInnovFiltTC = 2.0f; float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f); hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha; } else { hgtInnovFiltState = 0.0f; } // if timed out, reset the height if (hgtTimeout) { ResetHeight(); hgtTimeout = false; } // If we have got this far then declare the height data as healthy and reset the timeout counter hgtHealth = true; lastHgtPassTime_ms = imuSampleTime_ms; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData && velHealth) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel) { fuseData[2] = true; } tiltErrVec.zero(); } if (fusePosData && posHealth) { fuseData[3] = true; fuseData[4] = true; tiltErrVec.zero(); } if (fuseHgtData && hgtHealth) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 3 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 5) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; const float gndMaxBaroErr = 4.0f; const float gndBaroInnovFloor = -0.5f; if(getTouchdownExpected()) { // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=15; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = 0.0f; } } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { Kfusion[22] = 0.0f; Kfusion[23] = 0.0f; } // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion stateStruct.angErr.zero(); // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } // the first 3 states represent the angular misalignment vector. This is // is used to correct the estimated quaternion stateStruct.quat.rotate(stateStruct.angErr); // sum the attitude error from velocity and position fusion only // used as a metric for convergence monitoring if (obsIndex != 5) { tiltErrVec += stateStruct.angErr; } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } } } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. ForceSymmetry(); ConstrainVariances(); // stop performance timer hal.util->perf_end(_perf_FuseVelPosNED); }
// check for new valid GPS data and update stored measurement if available void NavEKF2_core::readGpsData() { // check for new GPS data // do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer if (_ahrs->get_gps().last_message_time_ms() - lastTimeGpsReceived_ms > 70) { if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // report GPS fix status gpsCheckStatus.bad_fix = false; // store fix time from previous read secondLastGpsTime_ms = lastTimeGpsReceived_ms; // get current fix time lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms(); // estimate when the GPS fix was valid, allowing for GPS processing and other delays // ideally we should be using a timing signal from the GPS receiver to set this time gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend->_gpsDelay_ms; // Correct for the average intersampling delay due to the filter updaterate gpsDataNew.time_ms -= localFilterTimeStep_ms/2; // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = MAX(gpsDataNew.time_ms,imuDataDelayed.time_ms); // read the NED velocity from the GPS gpsDataNew.vel = _ahrs->get_gps().velocity(); // Use the speed accuracy from the GPS if available, otherwise set it to zero. // Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); gpsSpdAccuracy *= (1.0f - alpha); float gpsSpdAccRaw; if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) { gpsSpdAccuracy = 0.0f; } else { gpsSpdAccuracy = MAX(gpsSpdAccuracy,gpsSpdAccRaw); } // check if we have enough GPS satellites and increase the gps noise scaler if we don't if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.0f; } else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.4f; } else { // <= 4 satellites or in constant position mode gpsNoiseScaler = 2.0f; } // Check if GPS can output vertical velocity and set GPS fusion mode accordingly if (_ahrs->get_gps().have_vertical_velocity() && frontend->_fusionModeGPS == 0) { useGpsVertVel = true; } else { useGpsVertVel = false; } // Monitor quality of the GPS velocity data before and after alignment using separate checks if (PV_AidingMode != AID_ABSOLUTE) { // Pre-alignment checks gpsGoodToAlign = calcGpsGoodToAlign(); } else { // Post-alignment checks calcGpsGoodForFlight(); } // Read the GPS locaton in WGS-84 lat,long,height coordinates const struct Location &gpsloc = _ahrs->get_gps().location(); // Set the EKF origin and magnetic field declination if not previously set and GPS checks have passed if (gpsGoodToAlign && !validOrigin) { setOrigin(); // Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly alignMagStateDeclination(); // Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum' EKF_origin.alt = gpsloc.alt - baroDataNew.hgt; } // convert GPS measurements to local NED and save to buffer to be fused later if we have a valid origin if (validOrigin) { gpsDataNew.pos = location_diff(EKF_origin, gpsloc); gpsDataNew.hgt = 0.01f * (gpsloc.alt - EKF_origin.alt); storedGPS.push(gpsDataNew); // declare GPS available for use gpsNotAvailable = false; } // Commence GPS aiding when able to if (readyToUseGPS() && PV_AidingMode != AID_ABSOLUTE) { PV_AidingMode = AID_ABSOLUTE; // Initialise EKF position and velocity states to last GPS measurement ResetPosition(); ResetVelocity(); } } else { // report GPS fix status gpsCheckStatus.bad_fix = true; } } // We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon // If that happens we need to put the filter into a constant position mode, reset the velocity states to zero // and use the last estimated position as a synthetic GPS position // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS is not available and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (PV_AidingMode == AID_ABSOLUTE && !useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // we can do optical flow only nav frontend->_fusionModeGPS = 3; PV_AidingMode = AID_RELATIVE; } else { // store the current position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // put the filter into constant position mode PV_AidingMode = AID_NONE; // Reset the velocity and position states ResetVelocity(); ResetPosition(); // Reset the normalised innovation to avoid false failing bad fusion tests velTestRatio = 0.0f; posTestRatio = 0.0f; } } } }
// Set inertial navigation aiding mode void NavEKF2_core::setAidingMode() { // Save the previous status so we can detect when it has changed PV_AidingModePrev = PV_AidingMode; // Determine if we should change aiding mode if (PV_AidingMode == AID_NONE) { // Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete // and IMU gyro bias estimates have stabilised bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus(); // If GPS usage has been prohiited then we use flow aiding provided optical flow data is present // GPS aiding is the perferred option unless excluded by the user if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && filterIsStable && !gpsInhibit) { PV_AidingMode = AID_ABSOLUTE; } else if (optFlowDataPresent() && filterIsStable) { PV_AidingMode = AID_RELATIVE; } } else if (PV_AidingMode == AID_RELATIVE) { // Check if the optical flow sensor has timed out bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000); // Check if the fusion has timed out (flow measurements have been rejected for too long) bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000); // Enable switch to absolute position mode if GPS is available // If GPS is not available and flow fusion has timed out, then fall-back to no-aiding if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit) { PV_AidingMode = AID_ABSOLUTE; } else if (flowSensorTimeout || flowFusionTimeout) { PV_AidingMode = AID_NONE; } } else if (PV_AidingMode == AID_ABSOLUTE) { // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend->gpsRetryTimeUseTAS_ms : frontend->gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend->gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS is not available and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (!useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // attempt optical flow navigation PV_AidingMode = AID_RELATIVE; } else { // put the filter into constant position mode PV_AidingMode = AID_NONE; } } } else if (gpsInhibit) { // put the filter into constant position mode in response to an exernal request PV_AidingMode = AID_NONE; } } // check to see if we are starting or stopping aiding and set states and modes as required if (PV_AidingMode != PV_AidingModePrev) { // set various usage modes based on the condition when we start aiding. These are then held until aiding is stopped. if (PV_AidingMode == AID_NONE) { // We have ceased aiding GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_WARNING, "EKF2 IMU%u has stopped aiding",(unsigned)imu_index); // When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors posTimeout = true; velTimeout = true; // Reset the normalised innovation to avoid false failing bad fusion tests velTestRatio = 0.0f; posTestRatio = 0.0f; // store the current position to be used to keep reporting the last known position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // initialise filtered altitude used to provide a takeoff reference to current baro on disarm // this reduces the time required for the baro noise filter to settle before the filtered baro data can be used meaHgtAtTakeOff = baroDataDelayed.hgt; // reset the vertical position state to faster recover from baro errors experienced during touchdown stateStruct.position.z = -meaHgtAtTakeOff; } else if (PV_AidingMode == AID_RELATIVE) { // We have commenced aiding, but GPS usage has been prohibited so use optical flow only GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using optical flow",(unsigned)imu_index); posTimeout = true; velTimeout = true; // Reset the last valid flow measurement time flowValidMeaTime_ms = imuSampleTime_ms; // Reset the last valid flow fusion time prevFlowFuseTime_ms = imuSampleTime_ms; } else if (PV_AidingMode == AID_ABSOLUTE) { // We have commenced aiding and GPS usage is allowed GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "EKF2 IMU%u is using GPS",(unsigned)imu_index); posTimeout = false; velTimeout = false; // we need to reset the GPS timers to prevent GPS timeout logic being invoked on entry into GPS aiding // this is because the EKF can be interrupted for an arbitrary amount of time during vehicle arming checks lastTimeGpsReceived_ms = imuSampleTime_ms; secondLastGpsTime_ms = imuSampleTime_ms; // reset the last valid position fix time to prevent unwanted activation of GPS glitch logic lastPosPassTime_ms = imuSampleTime_ms; } // Always reset the position and velocity when changing mode ResetVelocity(); ResetPosition(); } }
// check for new valid GPS data and update stored measurement if available void NavEKF2_core::readGpsData() { // check for new GPS data if (_ahrs->get_gps().last_message_time_ms() != lastTimeGpsReceived_ms) { if (_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // report GPS fix status gpsCheckStatus.bad_fix = false; // store fix time from previous read secondLastGpsTime_ms = lastTimeGpsReceived_ms; // get current fix time lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms(); // estimate when the GPS fix was valid, allowing for GPS processing and other delays // ideally we should be using a timing signal from the GPS receiver to set this time gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms; // Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame // This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms); // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms); // read the NED velocity from the GPS gpsDataNew.vel = _ahrs->get_gps().velocity(); // Use the speed accuracy from the GPS if available, otherwise set it to zero. // Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f); gpsSpdAccuracy *= (1.0f - alpha); float gpsSpdAccRaw; if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) { gpsSpdAccuracy = 0.0f; } else { gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw); } // check if we have enough GPS satellites and increase the gps noise scaler if we don't if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.0f; } else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) { gpsNoiseScaler = 1.4f; } else { // <= 4 satellites or in constant position mode gpsNoiseScaler = 2.0f; } // Check if GPS can output vertical velocity and set GPS fusion mode accordingly if (_ahrs->get_gps().have_vertical_velocity() && frontend._fusionModeGPS == 0) { useGpsVertVel = true; } else { useGpsVertVel = false; } // Monitor quality of the GPS velocity data before and after alignment using separate checks if (PV_AidingMode != AID_ABSOLUTE) { // Pre-alignment checks gpsQualGood = calcGpsGoodToAlign(); } else { // Post-alignment checks calcGpsGoodForFlight(); } // read latitutde and longitude from GPS and convert to local NE position relative to the stored origin // If we don't have an origin, then set it to the current GPS coordinates const struct Location &gpsloc = _ahrs->get_gps().location(); if (validOrigin) { gpsDataNew.pos = location_diff(EKF_origin, gpsloc); } else if (gpsQualGood) { // Set the NE origin to the current GPS position setOrigin(); // Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly alignMagStateDeclination(); // Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum' EKF_origin.alt = gpsloc.alt - baroDataNew.hgt; // We are by definition at the origin at the instant of alignment so set NE position to zero gpsDataNew.pos.zero(); // If GPS useage isn't explicitly prohibited, we switch to absolute position mode if (isAiding && frontend._fusionModeGPS != 3) { PV_AidingMode = AID_ABSOLUTE; // Initialise EKF position and velocity states ResetPosition(); ResetVelocity(); } } // calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually decayGpsOffset(); // save measurement to buffer to be fused later StoreGPS(); // declare GPS available for use gpsNotAvailable = false; } else { // report GPS fix status gpsCheckStatus.bad_fix = true; } } // We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon // If that happens we need to put the filter into a constant position mode, reset the velocity states to zero // and use the last estimated position as a synthetic GPS position // check if we can use opticalflow as a backup bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout); // Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend.gpsRetryTimeUseTAS_ms : frontend.gpsRetryTimeNoTAS_ms; // Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend.gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms; // If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) { // Let other processes know that GPS i snota vailable and that a timeout has occurred posTimeout = true; velTimeout = true; gpsNotAvailable = true; // If we are currently reliying on GPS for navigation, then we need to switch to a non-GPS mode of operation if (PV_AidingMode == AID_ABSOLUTE) { // If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode. // If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode. if (!useAirspeed() && !assume_zero_sideslip()) { if (optFlowBackupAvailable) { // we can do optical flow only nav frontend._fusionModeGPS = 3; PV_AidingMode = AID_RELATIVE; } else { // store the current position lastKnownPositionNE.x = stateStruct.position.x; lastKnownPositionNE.y = stateStruct.position.y; // put the filter into constant position mode PV_AidingMode = AID_NONE; // reset all glitch states gpsPosGlitchOffsetNE.zero(); gpsVelGlitchOffset.zero(); // Reset the velocity and position states ResetVelocity(); ResetPosition(); // Reset the normalised innovation to avoid false failing the bad position fusion test velTestRatio = 0.0f; posTestRatio = 0.0f; } } } } // If not aiding we synthesise the GPS measurements at the last known position if (PV_AidingMode == AID_NONE) { if (imuSampleTime_ms - gpsDataNew.time_ms > 200) { gpsDataNew.pos.x = lastKnownPositionNE.x; gpsDataNew.pos.y = lastKnownPositionNE.y; gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms; // Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame // This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors gpsDataNew.time_ms = roundToNearest(gpsDataNew.time_ms, frontend.fusionTimeStep_ms); // Prevent time delay exceeding age of oldest IMU data in the buffer gpsDataNew.time_ms = max(gpsDataNew.time_ms,imuDataDelayed.time_ms); // save measurement to buffer to be fused later StoreGPS(); } } }