Exemplo n.º 1
0
Arquivo: add.c Projeto: jpflori/pari
GEN
addui_sign(ulong x, GEN y, long sy)
{
  long ly;
  GEN z;

  if (!x) return icopy_sign(y, sy);
  if (!sy) return utoipos(x);
  if (sy == 1) return adduispec(x,y+2, lgefint(y)-2);
  ly=lgefint(y);
  if (ly==3)
  {
    const ulong t = y[2];
    if (x == t) return gen_0;
    z=cgeti(3);
    if (x < t) {
      z[1] = evalsigne(-1) | evallgefint(3);
      z[2] = t - x;
    }
    else {
      z[1] = evalsigne(1) | evallgefint(3);
      z[2] = x - t;
    }
    return z;
  }
  z = subiuspec(y+2,x, ly-2);
  setsigne(z,-1); return z;
}
Exemplo n.º 2
0
static void
choose_prime(primedata *S, GEN pol, GEN dpol)
{
  byteptr di = diffptr + 1;
  long i, j, k, r, lcm, oldlcm, pp, N = degpol(pol), minp = N*N / 4;
  GEN Z, p, ff, oldff, n, oldn;
  pari_sp av;

  if (DEBUGLEVEL) (void)timer2();
  p = utoipos(2);
  while (p[2] <= minp) NEXT_PRIME_VIADIFF(p[2], di);
  oldlcm = 0;
  oldff = oldn = NULL; pp = 0; /* gcc -Wall */
  av = avma;
  for(k = 1; k < 11 || !oldlcm; k++,avma = av)
  {
    do NEXT_PRIME_VIADIFF(p[2], di); while (!smodis(dpol, p[2]));
    if (k > 5 * N) pari_err(talker,"sorry, too many block systems in nfsubfields");
    ff = (GEN)FpX_factor(pol, p)[1];
    r = lg(ff)-1;
    if (r == N || r >= BIL) continue;

    n = cgetg(r+1, t_VECSMALL); lcm = n[1] = degpol(ff[1]);
    for (j=2; j<=r; j++) { n[j] = degpol(ff[j]); lcm = clcm(lcm, n[j]); }
    if (lcm <= oldlcm) continue; /* false when oldlcm = 0 */

    if (DEBUGLEVEL) fprintferr("p = %ld,\tlcm = %ld,\torbits: %Z\n",p[2],lcm,n);
    pp = p[2];
    oldn = n;
    oldff = ff;
    oldlcm = lcm; if (r == 1) break;
    av = avma;
  }
  if (DEBUGLEVEL) fprintferr("Chosen prime: p = %ld\n", pp);
  S->ff = oldff;
  S->lcm= oldlcm;
  S->p  = utoipos(pp);
  S->pol = FpX_red(pol, S->p); init_primedata(S);

  n = oldn; r = lg(n); Z = cgetg(r,t_VEC);
  for (k=0,i=1; i<r; i++)
  {
    GEN t = cgetg(n[i]+1, t_VECSMALL); gel(Z,i) = t;
    for (j=1; j<=n[i]; j++) t[j] = ++k;
  }
  S->Z = Z;
}
Exemplo n.º 3
0
static GEN
subfieldsall(GEN nf)
{
  pari_sp av = avma;
  long N, ld, i, v0;
  GEN G, pol, dg, LSB, NLSB;
  poldata PD;
  primedata S;
  blockdata B;

  /* much easier if nf is Galois (WSS) */
  G = galoisconj4(nf, NULL, 1);
  if (typ(G) != t_INT)
  {
    GEN L, S, p;
    long l;

    pol = get_nfpol(nf, &nf);
    L = lift_intern( galoissubfields(G, 0, varn(pol)) );
    l = lg(L);
    S = cgetg(l, t_VECSMALL);
    for (i=1; i<l; i++) S[i] = lg(gmael(L,i,1));
    p = vecsmall_indexsort(S);
    return gerepilecopy(av,  vecpermute(L, p));
  }

  subfields_poldata(nf, &PD);
  pol = PD.pol;

  v0 = varn(pol); N = degpol(pol);
  dg = divisors(utoipos(N)); ld = lg(dg)-1;
  if (DEBUGLEVEL) fprintferr("\n***** Entering subfields\n\npol = %Z\n",pol);

  LSB = _subfield(pol, pol_x[0]);
  if (ld > 2)
  {
    B.PD = &PD;
    B.S  = &S;
    B.N  = N;
    choose_prime(&S, PD.pol, PD.dis);
    for (i=2; i<ld; i++)
    {
      B.size  = itos(gel(dg,i));
      B.d = N / B.size;
      NLSB = subfields_of_given_degree(&B);
      if (NLSB) { LSB = concat(LSB, NLSB); gunclone(NLSB); }
    }
    (void)delete_var(); /* from choose_prime */
  }
  LSB = shallowconcat(LSB, _subfield(pol_x[0], pol));
  if (DEBUGLEVEL) fprintferr("\n***** Leaving subfields\n\n");
  return fix_var(gerepilecopy(av, LSB), v0);
}
Exemplo n.º 4
0
GEN
bezout(GEN a, GEN b, GEN *pu, GEN *pv)
{
  GEN t,u,u1,v,v1,d,d1,q,r;
  GEN *pt;
  pari_sp av, av1;
  long s, sa, sb;
  ulong g;
  ulong xu,xu1,xv,xv1;                /* Lehmer stage recurrence matrix */
  int lhmres;                        /* Lehmer stage return value */

  s = abscmpii(a,b);
  if (s < 0)
  {
    t=b; b=a; a=t;
    pt=pu; pu=pv; pv=pt;
  }
  /* now |a| >= |b| */

  sa = signe(a); sb = signe(b);
  if (!sb)
  {
    if (pv) *pv = gen_0;
    switch(sa)
    {
    case  0: if (pu) *pu = gen_0; return gen_0;
    case  1: if (pu) *pu = gen_1; return icopy(a);
    case -1: if (pu) *pu = gen_m1; return(negi(a));
    }
  }
  if (s == 0)                        /* |a| == |b| != 0 */
  {
    if (pu) *pu = gen_0;
    if (sb > 0)
    { if (pv) *pv = gen_1; return icopy(b); }
    else
    { if (pv) *pv = gen_m1; return(negi(b)); }
  }
  /* now |a| > |b| > 0 */

  if (lgefint(a) == 3)                /* single-word affair */
  {
    g = xxgcduu(uel(a,2), uel(b,2), 0, &xu, &xu1, &xv, &xv1, &s);
    sa = s > 0 ? sa : -sa;
    sb = s > 0 ? -sb : sb;
    if (pu)
    {
      if (xu == 0) *pu = gen_0; /* can happen when b divides a */
      else if (xu == 1) *pu = sa < 0 ? gen_m1 : gen_1;
      else if (xu == 2) *pu = sa < 0 ? gen_m2 : gen_2;
      else
      {
        *pu = cgeti(3);
        (*pu)[1] = evalsigne(sa)|evallgefint(3);
        (*pu)[2] = xu;
      }
    }
    if (pv)
    {
      if (xv == 1) *pv = sb < 0 ? gen_m1 : gen_1;
      else if (xv == 2) *pv = sb < 0 ? gen_m2 : gen_2;
      else
      {
        *pv = cgeti(3);
        (*pv)[1] = evalsigne(sb)|evallgefint(3);
        (*pv)[2] = xv;
      }
    }
    if      (g == 1) return gen_1;
    else if (g == 2) return gen_2;
    else return utoipos(g);
  }

  /* general case */
  av = avma;
  (void)new_chunk(lgefint(b) + (lgefint(a)<<1)); /* room for u,v,gcd */
  /* if a is significantly larger than b, calling lgcdii() is not the best
   * way to start -- reduce a mod b first
   */
  if (lgefint(a) > lgefint(b))
  {
    d = absi(b), q = dvmdii(absi(a), d, &d1);
    if (!signe(d1))                /* a == qb */
    {
      avma = av;
      if (pu) *pu = gen_0;
      if (pv) *pv = sb < 0 ? gen_m1 : gen_1;
      return (icopy(d));
    }
    else
    {
      u = gen_0;
      u1 = v = gen_1;
      v1 = negi(q);
    }
    /* if this results in lgefint(d) == 3, will fall past main loop */
  }
  else
  {
    d = absi(a); d1 = absi(b);
    u = v1 = gen_1; u1 = v = gen_0;
  }
  av1 = avma;

  /* main loop is almost identical to that of invmod() */
  while (lgefint(d) > 3 && signe(d1))
  {
    lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, ULONG_MAX);
    if (lhmres != 0)                /* check progress */
    {                                /* apply matrix */
      if ((lhmres == 1) || (lhmres == -1))
      {
        if (xv1 == 1)
        {
          r = subii(d,d1); d=d1; d1=r;
          a = subii(u,u1); u=u1; u1=a;
          a = subii(v,v1); v=v1; v1=a;
        }
        else
        {
          r = subii(d, mului(xv1,d1)); d=d1; d1=r;
          a = subii(u, mului(xv1,u1)); u=u1; u1=a;
          a = subii(v, mului(xv1,v1)); v=v1; v1=a;
        }
      }
      else
      {
        r  = subii(muliu(d,xu),  muliu(d1,xv));
        d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
        a  = subii(muliu(u,xu),  muliu(u1,xv));
        u1 = subii(muliu(u,xu1), muliu(u1,xv1)); u = a;
        a  = subii(muliu(v,xu),  muliu(v1,xv));
        v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
        if (lhmres&1) { togglesign(d);  togglesign(u);  togglesign(v); }
        else          { togglesign(d1); togglesign(u1); togglesign(v1); }
      }
    }
    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
      a = subii(u,mulii(q,u1));
      u=u1; u1=a;
      a = subii(v,mulii(q,v1));
      v=v1; v1=a;
      d=d1; d1=r;
    }
    if (gc_needed(av,1))
    {
      if(DEBUGMEM>1) pari_warn(warnmem,"bezout");
      gerepileall(av1,6, &d,&d1,&u,&u1,&v,&v1);
    }
  } /* end while */

  /* Postprocessing - final sprint */
  if (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3, and
     * gcd(d,d1) is nonzero and fits into one word
     */
    g = xxgcduu(uel(d,2), uel(d1,2), 0, &xu, &xu1, &xv, &xv1, &s);
    u = subii(muliu(u,xu), muliu(u1, xv));
    v = subii(muliu(v,xu), muliu(v1, xv));
    if (s < 0) { sa = -sa; sb = -sb; }
    avma = av;
    if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
    if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
    if (g == 1) return gen_1;
    else if (g == 2) return gen_2;
    else return utoipos(g);
  }
  /* get here when the final sprint was skipped (d1 was zero already).
   * Now the matrix is final, and d contains the gcd.
   */
  avma = av;
  if (pu) *pu = sa < 0 ? negi(u) : icopy(u);
  if (pv) *pv = sb < 0 ? negi(v) : icopy(v);
  return icopy(d);
}
Exemplo n.º 5
0
/* Naive recombination of modular factors: combine up to maxK modular
 * factors, degree <= klim and divisible by hint
 *
 * target = polynomial we want to factor
 * famod = array of modular factors.  Product should be congruent to
 * target/lc(target) modulo p^a
 * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */
static GEN
nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim)
{
  GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn;
  GEN bound = T->bound;
  GEN nfpol = gel(nf,1);
  long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol);
  GEN res = cgetg(3, t_VEC);
  pari_sp av0 = avma;
  GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1);

  GEN ind      = cgetg(lfamod+1, t_VECSMALL);
  GEN degpol   = cgetg(lfamod+1, t_VECSMALL);
  GEN degsofar = cgetg(lfamod+1, t_VECSMALL);
  GEN listmod  = cgetg(lfamod+1, t_COL);
  GEN fa       = cgetg(lfamod+1, t_COL);
  GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc;
  GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk;
  GEN Clt  = mul_content(C, lt);
  GEN C2lt = mul_content(C,Clt);
  const double Bhigh = get_Bhigh(lfamod, dnf);
  trace_data _T1, _T2, *T1, *T2;
  pari_timer ti;

  TIMERstart(&ti);

  if (maxK < 0) maxK = lfamod-1;

  C2ltpol = C2lt? gmul(C2lt,pol): pol;
  {
    GEN q = ceil_safe(sqrtr(T->BS_2));
    GEN t1,t2, ltdn, lt2dn;
    GEN trace1   = cgetg(lfamod+1, t_MAT);
    GEN trace2   = cgetg(lfamod+1, t_MAT);

    ltdn = mul_content(lt, dn);
    lt2dn= mul_content(ltdn, lt);

    for (i=1; i <= lfamod; i++)
    {
      pari_sp av = avma;
      GEN P = gel(famod,i);
      long d = degpol(P);

      degpol[i] = d; P += 2;
      t1 = gel(P,d-1);/* = - S_1 */
      t2 = gsqr(t1);
      if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1));
      /* t2 = S_2 Newton sum */
      t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk);
      if (lt)
      {
        if (typ(t2)!=t_INT) {
          t1 = FpX_red(gmul(ltdn, t1), pk);
          t2 = FpX_red(gmul(lt2dn,t2), pk);
        } else {
          t1 = remii(mulii(ltdn, t1), pk);
          t2 = remii(mulii(lt2dn,t2), pk);
        }
      }
      gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) );
      gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av;
    }
    T1 = init_trace(&_T1, trace1, T->L, q);
    T2 = init_trace(&_T2, trace2, T->L, q);
    for (i=1; i <= lfamod; i++) { 
      gunclone(gel(trace1,i));
      gunclone(gel(trace2,i));
    }
  }
  degsofar[0] = 0; /* sentinel */

  /* ind runs through strictly increasing sequences of length K,
   * 1 <= ind[i] <= lfamod */
nextK:
  if (K > maxK || 2*K > lfamod) goto END;
  if (DEBUGLEVEL > 3)
    fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K));
  setlg(ind, K+1); ind[1] = 1;
  i = 1; curdeg = degpol[ind[1]];
  for(;;)
  { /* try all combinations of K factors */
    for (j = i; j < K; j++)
    {
      degsofar[j] = curdeg;
      ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]];
    }
    if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */
    {
      GEN t, y, q, list;
      pari_sp av;

      av = avma;
      /* d - 1 test */
      if (T1)
      {
        t = get_trace(ind, T1);
        if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh)
        {
          if (DEBUGLEVEL>6) fprintferr(".");
          avma = av; goto NEXT;
        }
      }
      /* d - 2 test */
      if (T2)
      {
        t = get_trace(ind, T2);
        if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh)
        {
          if (DEBUGLEVEL>3) fprintferr("|");
          avma = av; goto NEXT;
        }
      }
      avma = av;
      y = lt; /* full computation */
      for (i=1; i<=K; i++)
      {
        GEN q = gel(famod, ind[i]);
        if (y) q = gmul(y, q);
        y = FqX_centermod(q, Tpk, pk, pks2);
      }
      y = nf_pol_lift(y, bound, T);
      if (!y)
      {
        if (DEBUGLEVEL>3) fprintferr("@");
        avma = av; goto NEXT;
      }
      /* try out the new combination: y is the candidate factor */
      q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES);
      if (!q)
      {
        if (DEBUGLEVEL>3) fprintferr("*");
        avma = av; goto NEXT;
      }

      /* found a factor */
      list = cgetg(K+1, t_VEC);
      gel(listmod,cnt) = list;
      for (i=1; i<=K; i++) list[i] = famod[ind[i]];

      y = Q_primpart(y);
      gel(fa,cnt++) = QXQX_normalize(y, nfpol);
      /* fix up pol */
      pol = q;
      for (i=j=k=1; i <= lfamod; i++)
      { /* remove used factors */
        if (j <= K && i == ind[j]) j++;
        else
        {
          famod[k] = famod[i];
          update_trace(T1, k, i);
          update_trace(T2, k, i);
          degpol[k] = degpol[i]; k++;
        }
      }
      lfamod -= K;
      if (lfamod < 2*K) goto END;
      i = 1; curdeg = degpol[ind[1]];

      if (C2lt) pol = Q_primpart(pol);
      if (lt) lt = absi(leading_term(pol));
      Clt  = mul_content(C, lt);
      C2lt = mul_content(C,Clt);
      C2ltpol = C2lt? gmul(C2lt,pol): pol;
      if (DEBUGLEVEL > 2)
      {
        fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y);
        fprintferr("remaining modular factor(s): %ld\n", lfamod);
      }
      continue;
    }

NEXT:
    for (i = K+1;;)
    {
      if (--i == 0) { K++; goto nextK; }
      if (++ind[i] <= lfamod - K + i)
      {
        curdeg = degsofar[i-1] + degpol[ind[i]];
        if (curdeg <= klim) break;
      }
    }
  }
END:
  if (degpol(pol) > 0)
  { /* leftover factor */
    if (signe(leading_term(pol)) < 0) pol = gneg_i(pol);

    if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol);
    setlg(famod, lfamod+1);
    gel(listmod,cnt) = shallowcopy(famod);
    gel(fa,cnt++) = pol;
  }
  if (DEBUGLEVEL>6) fprintferr("\n");
  if (cnt == 2) { 
    avma = av0; 
    gel(res,1) = mkvec(T->pol);
    gel(res,2) = mkvec(T->fact);
  }
  else
  {
    setlg(listmod, cnt); setlg(fa, cnt);
    gel(res,1) = fa;
    gel(res,2) = listmod;
    res = gerepilecopy(av0, res);
  }
  return res;
}
Exemplo n.º 6
0
/* return the factorization of x in nf */
GEN
nffactor(GEN nf,GEN pol)
{
  GEN A,g,y,p1,T, rep = cgetg(3, t_MAT);
  long l, j, dA;
  pari_sp av = avma;
  pari_timer ti;

  if (DEBUGLEVEL>2) { TIMERstart(&ti); fprintferr("\nEntering nffactor:\n"); }
  nf = checknf(nf); T = gel(nf,1);
  if (typ(pol) != t_POL) pari_err(notpoler,"nffactor");
  if (varncmp(varn(pol), varn(T)) >= 0)
    pari_err(talker,"polynomial variable must have highest priority in nffactor");

  A = fix_relative_pol(nf,pol,0);
  dA = degpol(A);
  if (dA <= 0) {
    avma = (pari_sp)(rep + 3);
    return dA == 0? trivfact(): zerofact(varn(pol));
  }
  A = Q_primpart( QXQX_normalize(A, T) );
  if (dA == 1) {
    GEN c;
    A = gerepilecopy(av, A); c = gel(A,2);
    if (typ(c) == t_POL && degpol(c) > 0) gel(A,2) = mkpolmod(c, gcopy(T));
    gel(rep,1) = mkcol(A);
    gel(rep,2) = mkcol(gen_1); return rep;
  }
  if (degpol(T) == 1)
    return gerepileupto(av, factpol(Q_primpart(simplify(pol)), 0));

  A = Q_primpart( lift_intern(A) );
  g = nfgcd(A, derivpol(A), T, gel(nf,4));

  A = QXQX_normalize(A, T);
  A = Q_primpart(A);
  if (DEBUGLEVEL>2) msgTIMER(&ti, "squarefree test");

  if (degpol(g))
  { /* not squarefree */
    pari_sp av1;
    GEN ex;
    g = QXQX_normalize(g, T);
    A = RgXQX_div(A,g, T);

    y = nfsqff(nf,A,0); av1 = avma;
    l = lg(y);
    ex=(GEN)gpmalloc(l * sizeof(long));
    for (j=l-1; j>=1; j--)
    {
      GEN fact = lift(gel(y,j)), quo = g, q;
      long e = 0;
      for(e = 1;; e++)
      {
        q = RgXQX_divrem(quo,fact,T, ONLY_DIVIDES);
        if (!q) break;
        quo = q;
      }
      ex[j] = e;
    }
    avma = av1; y = gerepileupto(av, RgXQXV_to_mod(y,T));
    p1 = cgetg(l, t_COL); for (j=l-1; j>=1; j--) gel(p1,j) = utoipos(ex[j]);
    free(ex);
  }
  else
  {
    y = gerepileupto(av, RgXQXV_to_mod(nfsqff(nf,A,0), T));
    l = lg(y);
    p1 = cgetg(l, t_COL); for (j=l-1; j>=1; j--) gel(p1,j) = gen_1;
  }
  if (DEBUGLEVEL>3)
    fprintferr("number of factor(s) found: %ld\n", lg(y)-1);
  gel(rep,1) = y;
  gel(rep,2) = p1; return sort_factor(rep, cmp_pol);
}
Exemplo n.º 7
0
static long
nf_pick_prime(long ct, GEN nf, GEN polbase, long fl,
              GEN *lt, GEN *Fa, GEN *pr, GEN *Tp)
{
  GEN nfpol = gel(nf,1), dk, bad;
  long maxf, n = degpol(nfpol), dpol = degpol(polbase), nbf = 0;
  byteptr pt = diffptr;
  ulong pp = 0;

  *lt  = leading_term(polbase); /* t_INT */
  if (gcmp1(*lt)) *lt = NULL;
  dk = absi(gel(nf,3));
  bad = mulii(dk,gel(nf,4)); if (*lt) bad = mulii(bad, *lt);

  /* FIXME: slow factorization of large polynomials over large Fq */
  maxf = 1;
  if (ct > 1) {
    if (dpol > 100) /* tough */
    {
      if (n >= 20) maxf = 4;
    }
    else
    {
      if (n >= 15) maxf = 4;
    }
  }
  
  for (ct = 5;;)
  {
    GEN aT, apr, ap, modpr, red;
    long anbf;
    pari_timer ti_pr;

    GEN list, r = NULL, fa = NULL;
    pari_sp av2 = avma;
    if (DEBUGLEVEL>3) TIMERstart(&ti_pr);
    for (;;)
    {
      NEXT_PRIME_VIADIFF_CHECK(pp, pt);
      if (! umodiu(bad,pp)) continue;
      ap = utoipos(pp);
      list = (GEN)FpX_factor(nfpol, ap)[1];
      if (maxf == 1)
      { /* deg.1 factors are best */
        r = gel(list,1);
        if (degpol(r) == 1) break;
      }
      else
      { /* otherwise, pick factor of largish degree */
        long i, dr;
        for (i = lg(list)-1; i > 0; i--)
        {
          r = gel(list,i); dr = degpol(r);
          if (dr <= maxf) break;
        }
        if (i > 0) break;
      }
      avma = av2;
    }
    apr = primedec_apply_kummer(nf,r,1,ap);

    modpr = zk_to_ff_init(nf,&apr,&aT,&ap);
    red = modprX(polbase, nf, modpr);
    if (!aT)
    { /* degree 1 */
      red = ZX_to_Flx(red, pp);
      if (!Flx_is_squarefree(red, pp)) { avma = av2; continue; }
      anbf = fl? Flx_nbroots(red, pp): Flx_nbfact(red, pp);
    }
    else
    {
      GEN q;
      if (!FqX_is_squarefree(red,aT,ap)) { avma = av2; continue; }
      q = gpowgs(ap, degpol(aT));
      anbf = fl? FqX_split_deg1(&fa, red, q, aT, ap)
               : FqX_split_by_degree(&fa, red, q, aT, ap);
    }
    if (fl == 2 && anbf < dpol) return anbf;
    if (anbf <= 1)
    {
      if (!fl) return anbf; /* irreducible */
      if (!anbf) return 0; /* no root */
    }

    if (!nbf || anbf < nbf
             || (anbf == nbf && cmpii(gel(apr,4), gel(*pr,4)) > 0))
    {
      nbf = anbf;
      *pr = apr;
      *Tp = aT;
      *Fa = fa;
    }
    else avma = av2;
    if (DEBUGLEVEL>3)
      fprintferr("%3ld %s at prime\n  %Z\nTime: %ld\n",
                 anbf, fl?"roots": "factors", apr, TIMER(&ti_pr));
    if (--ct <= 0) return nbf;
  }
}
Exemplo n.º 8
0
static GEN
nf_LLL_cmbf(nfcmbf_t *T, GEN p, long k, long rec)
{
  nflift_t *L = T->L;
  GEN pk = L->pk, PRK = L->prk, PRKinv = L->iprk, GSmin = L->GSmin;
  GEN Tpk = L->Tpk;

  GEN famod = T->fact, nf = T->nf, ZC = T->ZC, Br = T->Br;
  GEN Pbase = T->polbase, P = T->pol, dn = T->dn;
  GEN nfT = gel(nf,1);
  GEN Btra;
  long dnf = degpol(nfT), dP = degpol(P);

  double BitPerFactor = 0.5; /* nb bits / modular factor */
  long i, C, tmax, n0;
  GEN lP, Bnorm, Tra, T2, TT, CM_L, m, list, ZERO;
  double Bhigh;
  pari_sp av, av2, lim;
  long ti_LLL = 0, ti_CF = 0;
  pari_timer ti2, TI;

  lP = absi(leading_term(P));
  if (is_pm1(lP)) lP = NULL;

  n0 = lg(famod) - 1;
 /* Lattice: (S PRK), small vector (vS vP). To find k bound for the image,
  * write S = S1 q + S0, P = P1 q + P0
  * |S1 vS + P1 vP|^2 <= Bhigh for all (vS,vP) assoc. to true factors */
  Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2, dnf)));
  Bhigh = get_Bhigh(n0, dnf);
  C = (long)ceil(sqrt(Bhigh/n0)) + 1; /* C^2 n0 ~ Bhigh */
  Bnorm = dbltor( n0 * C * C + Bhigh );
  ZERO = zeromat(n0, dnf);

  av = avma; lim = stack_lim(av, 1);
  TT = cgetg(n0+1, t_VEC);
  Tra  = cgetg(n0+1, t_MAT);
  for (i=1; i<=n0; i++) TT[i] = 0;
  CM_L = gscalsmat(C, n0);
  /* tmax = current number of traces used (and computed so far) */
  for(tmax = 0;; tmax++)
  {
    long a, b, bmin, bgood, delta, tnew = tmax + 1, r = lg(CM_L)-1;
    GEN oldCM_L, M_L, q, S1, P1, VV;
    int first = 1;

    /* bound for f . S_k(genuine factor) = ZC * bound for T_2(S_tnew) */
    Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2*tnew, dnf)));
    bmin = logint(ceil_safe(sqrtr(Btra)), gen_2, NULL);
    if (DEBUGLEVEL>2)
      fprintferr("\nLLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld)\n",
                 r, tmax, bmin);

    /* compute Newton sums (possibly relifting first) */
    if (gcmp(GSmin, Btra) < 0)
    {
      nflift_t L1;
      GEN polred;

      bestlift_init(k<<1, nf, T->pr, Btra, &L1);
      polred = ZqX_normalize(Pbase, lP, &L1);
      k      = L1.k;
      pk     = L1.pk;
      PRK    = L1.prk;
      PRKinv = L1.iprk;
      GSmin  = L1.GSmin;
      Tpk    = L1.Tpk;
      famod = hensel_lift_fact(polred, famod, Tpk, p, pk, k);
      for (i=1; i<=n0; i++) TT[i] = 0;
    }
    for (i=1; i<=n0; i++)
    {
      GEN h, lPpow = lP? gpowgs(lP, tnew): NULL;
      GEN z = polsym_gen(gel(famod,i), gel(TT,i), tnew, Tpk, pk);
      gel(TT,i) = z;
      h = gel(z,tnew+1);
      /* make Newton sums integral */
      lPpow = mul_content(lPpow, dn);
      if (lPpow) h = FpX_red(gmul(h,lPpow), pk);
      gel(Tra,i) = nf_bestlift(h, NULL, L); /* S_tnew(famod) */
    }

    /* compute truncation parameter */
    if (DEBUGLEVEL>2) { TIMERstart(&ti2); TIMERstart(&TI); }
    oldCM_L = CM_L;
    av2 = avma;
    b = delta = 0; /* -Wall */
AGAIN:
    M_L = Q_div_to_int(CM_L, utoipos(C));
    VV = get_V(Tra, M_L, PRK, PRKinv, pk, &a);
    if (first)
    { /* initialize lattice, using few p-adic digits for traces */
      bgood = (long)(a - max(32, BitPerFactor * r));
      b = max(bmin, bgood);
      delta = a - b;
    }
    else
    { /* add more p-adic digits and continue reduction */
      if (a < b) b = a;
      b = max(b-delta, bmin);
      if (b - delta/2 < bmin) b = bmin; /* near there. Go all the way */
    }

    /* restart with truncated entries */
    q = int2n(b);
    P1 = gdivround(PRK, q);
    S1 = gdivround(Tra, q);
    T2 = gsub(gmul(S1, M_L), gmul(P1, VV));
    m = vconcat( CM_L, T2 );
    if (first)
    {
      first = 0;
      m = shallowconcat( m, vconcat(ZERO, P1) );
      /*     [ C M_L   0  ]
       * m = [            ]   square matrix
       *     [  T2'   PRK ]   T2' = Tra * M_L  truncated
       */
    }
    CM_L = LLL_check_progress(Bnorm, n0, m, b == bmin, /*dbg:*/ &ti_LLL);
    if (DEBUGLEVEL>2)
      fprintferr("LLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld\n",
                 a,b, lg(m)-1, CM_L? lg(CM_L)-1: 1, TIMER(&TI));
    if (!CM_L) { list = mkcol(QXQX_normalize(P,nfT)); break; }
    if (b > bmin)
    {
      CM_L = gerepilecopy(av2, CM_L);
      goto AGAIN;
    }
    if (DEBUGLEVEL>2) msgTIMER(&ti2, "for this trace");

    i = lg(CM_L) - 1;
    if (i == r && gequal(CM_L, oldCM_L))
    {
      CM_L = oldCM_L;
      avma = av2; continue;
    }

    if (i <= r && i*rec < n0)
    {
      pari_timer ti;
      if (DEBUGLEVEL>2) TIMERstart(&ti);
      list = nf_chk_factors(T, P, Q_div_to_int(CM_L,utoipos(C)), famod, pk);
      if (DEBUGLEVEL>2) ti_CF += TIMER(&ti);
      if (list) break;
      CM_L = gerepilecopy(av2, CM_L);
    }
    if (low_stack(lim, stack_lim(av,1)))
    {
      if(DEBUGMEM>1) pari_warn(warnmem,"nf_LLL_cmbf");
      gerepileall(av, Tpk? 9: 8,
                      &CM_L,&TT,&Tra,&famod,&pk,&GSmin,&PRK,&PRKinv,&Tpk);
    }
  }
  if (DEBUGLEVEL>2)
    fprintferr("* Time LLL: %ld\n* Time Check Factor: %ld\n",ti_LLL,ti_CF);
  return list;
}
Exemplo n.º 9
0
int
invmod(GEN a, GEN b, GEN *res)
#endif
{
  GEN v,v1,d,d1,q,r;
  pari_sp av, av1, lim;
  long s;
  ulong g;
  ulong xu,xu1,xv,xv1;		/* Lehmer stage recurrence matrix */
  int lhmres;			/* Lehmer stage return value */

  if (typ(a) != t_INT || typ(b) != t_INT) pari_err(arither1);
  if (!signe(b)) { *res=absi(a); return 0; }
  av = avma;
  if (lgefint(b) == 3) /* single-word affair */
  {
    ulong d1 = umodiu(a, (ulong)(b[2]));
    if (d1 == 0)
    {
      if (b[2] == 1L)
        { *res = gen_0; return 1; }
      else
        { *res = absi(b); return 0; }
    }
    g = xgcduu((ulong)(b[2]), d1, 1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    fprintferr(" <- %lu,%lu\n", (ulong)(b[2]), (ulong)(d1[2]));
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    avma = av;
    if (g != 1UL) { *res = utoipos(g); return 0; }
    xv = xv1 % (ulong)(b[2]); if (s < 0) xv = ((ulong)(b[2])) - xv;
    *res = utoipos(xv); return 1;
  }

  (void)new_chunk(lgefint(b));
  d = absi(b); d1 = modii(a,d);

  v=gen_0; v1=gen_1;	/* general case */
#ifdef DEBUG_LEHMER
  fprintferr("INVERT: -------------------------\n");
  output(d1);
#endif
  av1 = avma; lim = stack_lim(av,1);

  while (lgefint(d) > 3 && signe(d1))
  {
#ifdef DEBUG_LEHMER
    fprintferr("Calling Lehmer:\n");
#endif
    lhmres = lgcdii((ulong*)d, (ulong*)d1, &xu, &xu1, &xv, &xv1, MAXULONG);
    if (lhmres != 0)		/* check progress */
    {				/* apply matrix */
#ifdef DEBUG_LEHMER
      fprintferr("Lehmer returned %d [%lu,%lu;%lu,%lu].\n",
	      lhmres, xu, xu1, xv, xv1);
#endif
      if ((lhmres == 1) || (lhmres == -1))
      {
	if (xv1 == 1)
	{
	  r = subii(d,d1); d=d1; d1=r;
	  a = subii(v,v1); v=v1; v1=a;
	}
	else
	{
	  r = subii(d, mului(xv1,d1)); d=d1; d1=r;
	  a = subii(v, mului(xv1,v1)); v=v1; v1=a;
	}
      }
      else
      {
	r  = subii(muliu(d,xu),  muliu(d1,xv));
	a  = subii(muliu(v,xu),  muliu(v1,xv));
	d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r;
	v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a;
        if (lhmres&1)
	{
          setsigne(d,-signe(d));
          setsigne(v,-signe(v));
        }
        else
	{
          if (signe(d1)) { setsigne(d1,-signe(d1)); }
          setsigne(v1,-signe(v1));
        }
      }
    }
#ifdef DEBUG_LEHMER
    else
      fprintferr("Lehmer returned 0.\n");
    output(d); output(d1); output(v); output(v1);
    sleep(1);
#endif

    if (lhmres <= 0 && signe(d1))
    {
      q = dvmdii(d,d1,&r);
#ifdef DEBUG_LEHMER
      fprintferr("Full division:\n");
      printf("  q = "); output(q); sleep (1);
#endif
      a = subii(v,mulii(q,v1));
      v=v1; v1=a;
      d=d1; d1=r;
    }
    if (low_stack(lim, stack_lim(av,1)))
    {
      GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1;
      if(DEBUGMEM>1) pari_warn(warnmem,"invmod");
      gerepilemany(av1,gptr,4);
    }
  } /* end while */

  /* Postprocessing - final sprint */
  if (signe(d1))
  {
    /* Assertions: lgefint(d)==lgefint(d1)==3, and
     * gcd(d,d1) is nonzero and fits into one word
     */
    g = xxgcduu((ulong)d[2], (ulong)d1[2], 1, &xu, &xu1, &xv, &xv1, &s);
#ifdef DEBUG_LEHMER
    output(d);output(d1);output(v);output(v1);
    fprintferr(" <- %lu,%lu\n", (ulong)d[2], (ulong)d1[2]);
    fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma);
#endif
    if (g != 1UL) { avma = av; *res = utoipos(g); return 0; }
    /* (From the xgcduu() blurb:)
     * For finishing the multiword modinv, we now have to multiply the
     * returned matrix  (with properly adjusted signs)  onto the values
     * v' and v1' previously obtained from the multiword division steps.
     * Actually, it is sufficient to take the scalar product of [v',v1']
     * with [u1,-v1], and change the sign if s==1.
     */
    v = subii(muliu(v,xu1),muliu(v1,xv1));
    if (s > 0) setsigne(v,-signe(v));
    avma = av; *res = modii(v,b);
#ifdef DEBUG_LEHMER
    output(*res); fprintfderr("============================Done.\n");
    sleep(1);
#endif
    return 1;
  }
  /* get here when the final sprint was skipped (d1 was zero already) */
  avma = av;
  if (!equalii(d,gen_1)) { *res = icopy(d); return 0; }
  *res = modii(v,b);
#ifdef DEBUG_LEHMER
  output(*res); fprintferr("============================Done.\n");
  sleep(1);
#endif
  return 1;
}
Exemplo n.º 10
0
static GEN
ell1(GEN ell) { return equaliu(ell,2)? utoipos(5): addiu(ell,1); }
Exemplo n.º 11
0
/* d = requested degree for subfield. Return DATA, valid for given pol, S and d
 * If DATA != NULL, translate pol [ --> pol(X+1) ] and update DATA
 * 1: polynomial pol
 * 2: p^e (for Hensel lifts) such that p^e > max(M),
 * 3: Hensel lift to precision p^e of DATA[4]
 * 4: roots of pol in F_(p^S->lcm),
 * 5: number of polynomial changes (translations)
 * 6: Bezout coefficients associated to the S->ff[i]
 * 7: Hadamard bound for coefficients of h(x) such that g o h = 0 mod pol.
 * 8: bound M for polynomials defining subfields x PD->den
 * 9: *[i] = interpolation polynomial for S->ff[i] [= 1 on the first root
      S->firstroot[i], 0 on the others] */
static void
compute_data(blockdata *B)
{
  GEN ffL, roo, pe, p1, p2, fk, fhk, MM, maxroot, pol;
  primedata *S = B->S;
  GEN p = S->p, T = S->T, ff = S->ff, DATA = B->DATA;
  long i, j, l, e, N, lff = lg(ff);

  if (DEBUGLEVEL>1) fprintferr("Entering compute_data()\n\n");
  pol = B->PD->pol; N = degpol(pol);
  roo = B->PD->roo;
  if (DATA) /* update (translate) an existing DATA */
  {
    GEN Xm1 = gsub(pol_x[varn(pol)], gen_1);
    GEN TR = addis(gel(DATA,5), 1);
    GEN mTR = negi(TR), interp, bezoutC;

    gel(DATA,5) = TR;
    pol = translate_pol(gel(DATA,1), gen_m1);
    l = lg(roo); p1 = cgetg(l, t_VEC);
    for (i=1; i<l; i++) gel(p1,i) = gadd(TR, gel(roo,i));
    roo = p1;

    fk = gel(DATA,4); l = lg(fk);
    for (i=1; i<l; i++) gel(fk,i) = gsub(Xm1, gel(fk,i));

    bezoutC = gel(DATA,6); l = lg(bezoutC);
    interp  = gel(DATA,9);
    for (i=1; i<l; i++)
    {
      if (degpol(interp[i]) > 0) /* do not turn pol_1[0] into gen_1 */
      {
        p1 = translate_pol(gel(interp,i), gen_m1);
        gel(interp,i) = FpXX_red(p1, p);
      }
      if (degpol(bezoutC[i]) > 0)
      {
        p1 = translate_pol(gel(bezoutC,i), gen_m1);
        gel(bezoutC,i) = FpXX_red(p1, p);
      }
    }
    ff = cgetg(lff, t_VEC); /* copy, don't overwrite! */
    for (i=1; i<lff; i++)
      gel(ff,i) = FpX_red(translate_pol((GEN)S->ff[i], mTR), p);
  }
  else
  {
    DATA = cgetg(10,t_VEC);
    fk = S->fk;
    gel(DATA,5) = gen_0;
    gel(DATA,6) = shallowcopy(S->bezoutC);
    gel(DATA,9) = shallowcopy(S->interp);
  }
  gel(DATA,1) = pol;
  MM = gmul2n(bound_for_coeff(B->d, roo, &maxroot), 1);
  gel(DATA,8) = MM;
  e = logint(shifti(vecmax(MM),20), p, &pe); /* overlift 2^20 [for d-1 test] */
  gel(DATA,2) = pe;
  gel(DATA,4) = roots_from_deg1(fk);

  /* compute fhk = hensel_lift_fact(pol,fk,T,p,pe,e) in 2 steps
   * 1) lift in Zp to precision p^e */
  ffL = hensel_lift_fact(pol, ff, NULL, p, pe, e);
  fhk = NULL;
  for (l=i=1; i<lff; i++)
  { /* 2) lift factorization of ff[i] in Qp[X] / T */
    GEN F, L = gel(ffL,i);
    long di = degpol(L);
    F = cgetg(di+1, t_VEC);
    for (j=1; j<=di; j++) F[j] = fk[l++];
    L = hensel_lift_fact(L, F, T, p, pe, e);
    fhk = fhk? shallowconcat(fhk, L): L;
  }
  gel(DATA,3) = roots_from_deg1(fhk);

  p1 = mulsr(N, gsqrt(gpowgs(utoipos(N-1),N-1),DEFAULTPREC));
  p2 = gpowgs(maxroot, B->size + N*(N-1)/2);
  p1 = gdiv(gmul(p1,p2), gsqrt(B->PD->dis,DEFAULTPREC));
  gel(DATA,7) = mulii(shifti(ceil_safe(p1), 1), B->PD->den);

  if (DEBUGLEVEL>1) {
    fprintferr("f = %Z\n",DATA[1]);
    fprintferr("p = %Z, lift to p^%ld\n", p, e);
    fprintferr("2 * Hadamard bound * ind = %Z\n",DATA[7]);
    fprintferr("2 * M = %Z\n",DATA[8]);
  }
  if (B->DATA) {
    DATA = gclone(DATA);
    if (isclone(B->DATA)) gunclone(B->DATA);
  }
  B->DATA = DATA;
}
Exemplo n.º 12
0
/* Computation of potential block systems of given size d associated to a
 * rational prime p: give a row vector of row vectors containing the
 * potential block systems of imprimitivity; a potential block system is a
 * vector of row vectors (enumeration of the roots). */
static GEN
calc_block(blockdata *B, GEN Z, GEN Y, GEN SB)
{
  long r = lg(Z), lK, i, j, t, tp, T, u, nn, lnon, lY;
  GEN K, n, non, pn, pnon, e, Yp, Zp, Zpp;
  pari_sp av0 = avma;

  if (DEBUGLEVEL>3)
  {
    fprintferr("lg(Z) = %ld, lg(Y) = %ld\n", r,lg(Y));
    if (DEBUGLEVEL > 5)
    {
      fprintferr("Z = %Z\n",Z);
      fprintferr("Y = %Z\n",Y);
    }
  }
  lnon = min(BIL, r);
  e    = new_chunk(BIL);
  n    = new_chunk(r);
  non  = new_chunk(lnon);
  pnon = new_chunk(lnon);
  pn   = new_chunk(lnon);

  Zp   = cgetg(lnon,t_VEC);
  Zpp  = cgetg(lnon,t_VEC); nn = 0;
  for (i=1; i<r; i++) { n[i] = lg(Z[i])-1; nn += n[i]; }
  lY = lg(Y); Yp = cgetg(lY+1,t_VEC);
  for (j=1; j<lY; j++) Yp[j] = Y[j];

  {
    pari_sp av = avma;
    long k = nn / B->size;
    for (j = 1; j < r; j++) 
      if (n[j] % k) break;
    if (j == r)
    {
      gel(Yp,lY) = Z;
      SB = print_block_system(B, Yp, SB);
      avma = av;
    }
  }
  gel(Yp,lY) = Zp;

  K = divisors(utoipos(n[1])); lK = lg(K);
  for (i=1; i<lK; i++)
  {
    long ngcd = n[1], k = itos(gel(K,i)), dk = B->size*k, lpn = 0;
    for (j=2; j<r; j++)
      if (n[j]%k == 0)
      {
        if (++lpn >= BIL) pari_err(talker,"overflow in calc_block");
        pn[lpn] = n[j]; pnon[lpn] = j;
        ngcd = cgcd(ngcd, n[j]);
      }
    if (dk % ngcd) continue;
    T = 1<<lpn;
    if (lpn == r-2)
    {
      T--; /* done already above --> print_block_system */
      if (!T) continue;
    }

    if (dk == n[1])
    { /* empty subset, t = 0. Split out for clarity */
      Zp[1] = Z[1]; setlg(Zp, 2);
      for (u=1,j=2; j<r; j++) Zpp[u++] = Z[j];
      setlg(Zpp, u);
      SB = calc_block(B, Zpp, Yp, SB);
    }

    for (t = 1; t < T; t++)
    { /* loop through all non-empty subsets of [1..lpn] */
      for (nn=n[1],tp=t, u=1; u<=lpn; u++,tp>>=1)
      {
        if (tp&1) { nn += pn[u]; e[u] = 1; } else e[u] = 0;
      }
      if (dk != nn) continue;

      for (j=1; j<r; j++) non[j]=0;
      Zp[1] = Z[1];
      for (u=2,j=1; j<=lpn; j++)
        if (e[j]) { Zp[u] = Z[pnon[j]]; non[pnon[j]] = 1; u++; }
      setlg(Zp, u);
      for (u=1,j=2; j<r; j++)
        if (!non[j]) Zpp[u++] = Z[j];
      setlg(Zpp, u);
      SB = calc_block(B, Zpp, Yp, SB);
    }
  }
  avma = av0; return SB;
}