ssize_t BSP_uart_termios_write_com2(int minor, const char *buf, size_t len) { if(len <= 0) { return 0; } assert(buf != NULL); /* If there TX buffer is busy - something is royally screwed up */ assert((uread(BSP_UART_COM2, LSR) & THRE) != 0); if(termios_stopped_com2) { /* CTS low */ termios_tx_hold_com2 = *buf; termios_tx_hold_valid_com2 = 1; return 0; } /* Write character */ uwrite(BSP_UART_COM2, THR, *buf & 0xff); /* Enable interrupts if necessary */ if ( !termios_tx_active_com2 ) { termios_tx_active_com2 = 1; uart_data[BSP_UART_COM2].ier |= TRANSMIT_ENABLE; uwrite(BSP_UART_COM2, IER, uart_data[BSP_UART_COM2].ier); } return 1; }
void common_putc(dev_t dev, int c) { /* Always send to stdout. */ (void)uwrite(1, &c, 1); /* Copy to serial if open. */ if (com_fd != -1) (void)uwrite(com_fd, &c, 1); }
/* * Set baud */ void BSP_uart_set_baud(int uart, int baud) { unsigned char ier; /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); /* * This function may be called whenever TERMIOS parameters * are changed, so we have to make sure that baud change is * indeed required */ if(baud == uart_data[uart].baud) { return; } ier = uread(uart, IER); BSP_uart_init(uart, baud, uart_data[uart].hwFlow); uwrite(uart, IER, ier); return; }
static void LCD_WR_REG(uint8_t da) { gpio_set_value(GPIO_PIN_LED_A0,0); uwrite(&da,1); gpio_set_value(GPIO_PIN_LED_A0,1); }
/* * Enable/disable interrupts */ void BSP_uart_intr_ctrl(int uart, int cmd) { int iStatus = (int)INTERRUPT_DISABLE; assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); switch(cmd) { case BSP_UART_INTR_CTRL_ENABLE: iStatus |= (RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE | TRANSMIT_ENABLE); if ( uart_data[uart].hwFlow ) { iStatus |= MODEM_ENABLE; } break; case BSP_UART_INTR_CTRL_TERMIOS: iStatus |= (RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE); if ( uart_data[uart].hwFlow ) { iStatus |= MODEM_ENABLE; } break; case BSP_UART_INTR_CTRL_GDB: iStatus |= RECEIVE_ENABLE; break; } uart_data[uart].ier = iStatus; uwrite(uart, IER, iStatus); return; }
int fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) { /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ uint32_t instr; int size = tp->ftt_thumb ? 2 : 4; /* * Distinguish between read or write failures and a changed * instruction. */ if (uread(p, &instr, size, tp->ftt_pc) != 0) goto end; if (tp->ftt_thumb) { if (*((uint16_t*) &instr) != FASTTRAP_THUMB_INSTR) goto end; } else { if (instr != FASTTRAP_ARM_INSTR) goto end; } if (uwrite(p, &tp->ftt_instr, size, tp->ftt_pc) != 0) return (-1); end: tp->ftt_installed = 0; return (0); }
void BSP_uart_termios_isr_com2() { unsigned char buf[40]; int off, ret, vect; off = 0; for(;;) { vect = uread(BSP_UART_COM2, IIR) & 0xf; switch(vect) { case NO_MORE_INTR : /* No more interrupts */ if(off != 0) { /* Update rx buffer */ rtems_termios_enqueue_raw_characters(termios_ttyp_com2, (char *)buf, off); } return; case TRANSMITTER_HODING_REGISTER_EMPTY : /* * TX holding empty: we have to disable these interrupts * if there is nothing more to send. */ ret = rtems_termios_dequeue_characters(termios_ttyp_com2, 1); /* If nothing else to send disable interrupts */ if(ret == 0) { uwrite(BSP_UART_COM2, IER, (RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE ) ); termios_tx_active_com2 = 0; } break; case RECEIVER_DATA_AVAIL : case CHARACTER_TIMEOUT_INDICATION: /* RX data ready */ assert(off < sizeof(buf)); buf[off++] = uread(BSP_UART_COM2, RBR); break; case RECEIVER_ERROR: /* RX error: eat character */ uartError(BSP_UART_COM2); break; default: /* Should not happen */ assert(0); return; } } }
static void LCD_WR16(uint16_t da) { char tmp[2], *buf; buf=(char* )&da; tmp[1]=*buf; tmp[0]=*(buf+1); uwrite(tmp, 2); }
int fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) { fasttrap_instr_t instr = FASTTRAP_INSTR; if (uwrite(p, &instr, 1, tp->ftt_pc) != 0) return (-1); return (0); }
void BSP_uart_set_attributes ( int uart, unsigned long baud, unsigned long databits, unsigned long parity, unsigned long stopbits ) { unsigned char mcr, ier; /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); /* * This function may be called whenever TERMIOS parameters * are changed, so we have to make sure that baud change is * indeed required */ if( (baud == uart_data[uart].baud) && (databits == uart_data[uart].databits) && (parity == uart_data[uart].parity) && (stopbits == uart_data[uart].stopbits) ) { return; } mcr = uread(uart, MCR); ier = uread(uart, IER); BSP_uart_init(uart, baud, databits, parity, stopbits, uart_data[uart].hwFlow); uwrite(uart, MCR, mcr); uwrite(uart, IER, ier); return; }
int main( int argc , char **argv ) { unsigned long cliaddr; unsigned short cliport; int ufd , nfd; fprintf( stderr, "start\n"); uinit(INADDR_ANY); fprintf( stderr, "inited\n"); ufd = usocket_serv( 8 ); fprintf( stderr, "socketd %d\n", ufd ); ulisten( ufd ); fprintf( stderr, "listened\n"); while(1){ int r =uproc(); /* fprintf( stderr, "uproced %d\n" , r);*/ nfd = uaccept( ufd , &cliaddr ,&cliport); if( nfd >= 0 ){ fprintf( stderr, "accepted! nfd:%d %x %d\n" , nfd ,cliaddr , ntohs(cliport) ); break; } } while(1){ int r = uproc(); fprintf( stderr,"." ); if( ureadable( nfd ) ){ char buffer[800]; int r; fprintf( stderr, "REadable!!\n"); bzero( buffer ,sizeof(buffer)); if( (r = uread( nfd, buffer , sizeof( buffer ) )) >= 0 ){ int wr; fprintf( stderr , "ReadData %d: [%s]\n" ,r, buffer ); wr = uwrite( nfd , buffer , r ); fprintf( stderr ,"Wrote %dbytes\n",wr ); } } usleep(100*1000); } }
int BSP_uart_termios_write_com1(int minor, const char *buf, int len) { assert(buf != NULL); if(len <= 0) { return 0; } /* If there TX buffer is busy - something is royally screwed up */ assert((uread(BSP_UART_COM1, LSR) & THRE) != 0); if(termios_stopped_com1) { /* CTS low */ termios_tx_hold_com1 = *buf; termios_tx_hold_valid_com1 = 1; return 0; } /* Write character */ uwrite(BSP_UART_COM1, THR, *buf & 0xff); /* Enable interrupts if necessary */ if(!termios_tx_active_com1) { termios_tx_active_com1 = 1; uwrite(BSP_UART_COM1, IER, (RECEIVE_ENABLE | TRANSMIT_ENABLE | RECEIVER_LINE_ST_ENABLE ) ); } return 0; }
/* * Uart initialization, it is hardcoded to 8 bit, no parity, * one stop bit, FIFO, things to be changed * are baud rate and nad hw flow control, * and longest rx fifo setting */ void BSP_uart_init(int uart, int baud, int hwFlow) { unsigned char tmp; /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); switch(baud) { case 50: case 75: case 110: case 134: case 300: case 600: case 1200: case 2400: case 9600: case 19200: case 38400: case 57600: case 115200: break; default: assert(0); return; } /* Enable UART block */ uwrite(uart, CNT, UART_ENABLE | PAD_ENABLE); /* Set DLAB bit to 1 */ uwrite(uart, LCR, DLAB); /* Set baud rate */ uwrite(uart, DLL, (BSPBaseBaud/baud) & 0xff); uwrite(uart, DLM, ((BSPBaseBaud/baud) >> 8) & 0xff); /* 8-bit, no parity , 1 stop */ uwrite(uart, LCR, CHR_8_BITS); /* Enable FIFO */ uwrite(uart, FCR, FIFO_EN | XMIT_RESET | RCV_RESET | RECEIVE_FIFO_TRIGGER12); /* Disable Interrupts */ uwrite(uart, IER, 0); /* Read status to clear them */ tmp = uread(uart, LSR); tmp = uread(uart, RBR); /* Remember state */ uart_data[uart].hwFlow = hwFlow; uart_data[uart].baud = baud; return; }
int main(int argc, char *argv[]) { char name[64]; int pid, cmd; int pd[2]; while(1){ printf("\n----------------------------------------------\n"); #ifndef _LAB_3_ printf("I am proc %d in U mode with ppid %d: running segment=%x\n",getpid(), getppid(), getcs()); #else printf("I am proc "); getpid(); printf(" in U mode: running segment=%x\n", getcs()); #endif #ifdef _SLEEPER_ while(1) { printf("PID: %d PPID: %d\n", getpid(), getppid()); sleep(5); return 0; } #endif show_menu(); printf("Command? "); gets(name); printf("\n"); if (name[0]==0) continue; cmd = find_cmd(name); switch(cmd){ case 0: getpid(); break; case 1: ps(); break; case 2: chname(); break; case 3: kswitch(); break; case 4: wait(); break; case 5: ufork(); break; case 6: uexec(); break; case 7: exit(); break; case 8: pipe(pd); break; case 9: pfd(); break; case 10: uclose(); break; case 11: uread(); break; case 12: uwrite(); break; case 13: usleep(); break; default:invalid(name);break; } } }
/* * Enable/disable interrupts */ void BSP_uart_intr_ctrl(int uart, int cmd) { assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); switch(cmd) { case BSP_UART_INTR_CTRL_DISABLE: uwrite(uart, IER, INTERRUPT_DISABLE); break; case BSP_UART_INTR_CTRL_ENABLE: uwrite(uart, IER, (RECEIVE_ENABLE | TRANSMIT_ENABLE | RECEIVER_LINE_ST_ENABLE ) ); break; case BSP_UART_INTR_CTRL_TERMIOS: uwrite(uart, IER, (RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE ) ); break; case BSP_UART_INTR_CTRL_GDB: uwrite(uart, IER, RECEIVE_ENABLE); break; default: assert(0); break; } return; }
/* * Polled mode write function */ void BSP_uart_polled_write(int uart, int val) { unsigned char val1; /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); for(;;) { if((val1=uread(uart, LSR)) & THRE) { break; } } if(uart_data[uart].hwFlow) { for(;;) { if(uread(uart, MSR) & CTS) { break; } } } uwrite(uart, THR, val & 0xff); /* * Wait for character to be transmitted. * This ensures that printk and printf play nicely together * when using the same serial port. * Yes, there's a performance hit here, but if we're doing * polled writes to a serial port we're probably not that * interested in efficiency anyway..... */ for(;;) { if((val1=uread(uart, LSR)) & THRE) { break; } } return; }
static char* sendMediaproxyCommand(char *command) { struct sockaddr_un addr; int smpSocket, len; static char buf[1024]; memset(&addr, 0, sizeof(addr)); addr.sun_family = AF_LOCAL; strncpy(addr.sun_path, mediaproxySocket, sizeof(addr.sun_path) - 1); #ifdef HAVE_SOCKADDR_SA_LEN addr.sun_len = strlen(addr.sun_path); #endif smpSocket = socket(AF_LOCAL, SOCK_STREAM, 0); if (smpSocket < 0) { LOG(L_ERR, "error: mediaproxy/sendMediaproxyCommand(): can't create socket\n"); return NULL; } if (connect(smpSocket, (struct sockaddr*)&addr, sizeof(addr)) < 0) { close(smpSocket); LOG(L_ERR, "error: mediaproxy/sendMediaproxyCommand(): can't connect to MediaProxy\n"); return NULL; } len = uwrite(smpSocket, command, strlen(command)); if (len <= 0) { close(smpSocket); LOG(L_ERR, "error: mediaproxy/sendMediaproxyCommand(): can't send command to MediaProxy\n"); return NULL; } len = readall(smpSocket, buf, sizeof(buf)-1); close(smpSocket); if (len < 0) { LOG(L_ERR, "error: mediaproxy/sendMediaproxyCommand(): can't read reply from MediaProxy\n"); return NULL; } buf[len] = 0; return buf; }
int fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp) { uint8_t instr; /* * Distinguish between read or write failures and a changed * instruction. */ if (uread(p, &instr, 1, tp->ftt_pc) != 0) return (0); if (instr != FASTTRAP_INSTR) return (0); if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0) return (-1); return (0); }
int fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp) { /* The thumb patch is a 2 byte instruction regardless of the size of the original instruction */ uint32_t instr; int size = tp->ftt_thumb ? 2 : 4; if (tp->ftt_thumb) { *((uint16_t*) &instr) = FASTTRAP_THUMB_INSTR; } else { instr = FASTTRAP_ARM_INSTR; } if (uwrite(p, &instr, size, tp->ftt_pc) != 0) return (-1); tp->ftt_installed = 1; return (0); }
void BSP_uart_unthrottle(int uart) { unsigned int mcr; assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); if(!uart_data[uart].hwFlow) { /* Should not happen */ assert(0); return; } mcr = uread (uart, MCR); /* RTS up */ mcr |= RTS; uwrite(uart, MCR, mcr); return; }
/* * Polled mode write function */ void BSP_uart_polled_write(int uart, int val) { unsigned char val1; /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); for(;;) { if((val1=uread(uart, LSR)) & THRE) { break; } } uwrite(uart, THR, val & 0xff); return; }
int BSP_uart_termios_read_com2(int uart) { int off = (int)0; char buf[40]; /* read current byte */ while (( off < sizeof(buf) ) && ( uread(BSP_UART_COM2, LSR) & DR )) { buf[off++] = uread(BSP_UART_COM2, RBR); } /* write out data */ if ( off > 0 ) { rtems_termios_enqueue_raw_characters(termios_ttyp_com2, buf, off); } /* enable receive interrupts */ uart_data[BSP_UART_COM2].ier |= (RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE); uwrite(BSP_UART_COM2, IER, uart_data[BSP_UART_COM2].ier); return ( EOF ); }
/* * Uart initialization, it is hardcoded to 8 bit, no parity, * one stop bit, FIFO, things to be changed * are baud rate and nad hw flow control, * and longest rx fifo setting */ void BSP_uart_init ( int uart, unsigned long baud, unsigned long databits, unsigned long parity, unsigned long stopbits, int hwFlow ) { /* Sanity check */ assert(uart == BSP_UART_COM1 || uart == BSP_UART_COM2); switch(baud) { case 50: case 75: case 110: case 134: case 300: case 600: case 1200: case 2400: case 9600: case 19200: case 38400: case 57600: case 115200: break; default: assert(0); return; } /* Set DLAB bit to 1 */ uwrite(uart, LCR, DLAB); /* Set baud rate */ uwrite(uart, DLL, (BSPBaseBaud/baud) & 0xff); uwrite(uart, DLM, ((BSPBaseBaud/baud) >> 8) & 0xff); /* 8-bit, no parity , 1 stop */ uwrite(uart, LCR, databits | parity | stopbits); /* Set DTR, RTS and OUT2 high */ uwrite(uart, MCR, DTR | RTS | OUT_2); /* Enable FIFO */ uwrite(uart, FCR, FIFO_EN | XMIT_RESET | RCV_RESET | RECEIVE_FIFO_TRIGGER12); /* Disable Interrupts */ uwrite(uart, IER, 0); /* Read status to clear them */ uread(uart, LSR); uread(uart, RBR); uread(uart, MSR); /* Remember state */ uart_data[uart].baud = baud; uart_data[uart].databits = databits; uart_data[uart].parity = parity; uart_data[uart].stopbits = stopbits; uart_data[uart].hwFlow = hwFlow; return; }
void BSP_uart_termios_isr_com2(void *ignored) { unsigned char buf[40]; unsigned char val; int off, ret, vect; off = 0; for(;;) { vect = uread(BSP_UART_COM2, IIR) & 0xf; switch(vect) { case MODEM_STATUS : val = uread(BSP_UART_COM2, MSR); if(uart_data[BSP_UART_COM2].hwFlow) { if(val & CTS) { /* CTS high */ termios_stopped_com2 = 0; if(termios_tx_hold_valid_com2) { termios_tx_hold_valid_com2 = 0; BSP_uart_termios_write_com2(0, &termios_tx_hold_com2, 1); } } else { /* CTS low */ termios_stopped_com2 = 1; } } break; case NO_MORE_INTR : /* No more interrupts */ if(off != 0) { /* Update rx buffer */ if( driver_input_handler_com2 ) { driver_input_handler_com2( termios_ttyp_com2, (char *)buf, off ); } else { rtems_termios_enqueue_raw_characters(termios_ttyp_com2, (char *)buf, off); } } return; case TRANSMITTER_HODING_REGISTER_EMPTY : /* * TX holding empty: we have to disable these interrupts * if there is nothing more to send. */ /* If nothing else to send disable interrupts */ ret = rtems_termios_dequeue_characters(termios_ttyp_com2, 1); if ( ret == 0 ) { termios_tx_active_com2 = 0; uart_data[BSP_UART_COM2].ier &= ~(TRANSMIT_ENABLE); uwrite(BSP_UART_COM2, IER, uart_data[BSP_UART_COM2].ier); } break; case RECEIVER_DATA_AVAIL : case CHARACTER_TIMEOUT_INDICATION: if ( uart_data[BSP_UART_COM2].ioMode == TERMIOS_TASK_DRIVEN ) { /* ensure interrupts are enabled */ if ( uart_data[BSP_UART_COM2].ier & RECEIVE_ENABLE ) { /* disable interrupts and notify termios */ uart_data[BSP_UART_COM2].ier &= ~(RECEIVE_ENABLE | RECEIVER_LINE_ST_ENABLE); uwrite(BSP_UART_COM2, IER, uart_data[BSP_UART_COM2].ier); rtems_termios_rxirq_occured(termios_ttyp_com2); } } else { /* RX data ready */ assert(off < sizeof(buf)); buf[off++] = uread(BSP_UART_COM2, RBR); } break; case RECEIVER_ERROR: /* RX error: eat character */ uartError(BSP_UART_COM2); break; default: /* Should not happen */ assert(0); return; } } }
void main(int argc, char **argv) { unsigned long countdown = 0; int wntDiskAdmin = 0; char char0 = 'a'; char defltr = 0; char force = 0; char const *dev_name; int fd_dev; if (argc < 2) { usage(); exit(1); } dev_name = argv[1]; fd_dev = open(dev_name, 0); if (fd_dev < 0) { perror(dev_name); exit(1); } get_sector(fd_dev, &dev_mbr, 0); uread(0, &new_mbr, 5, ".bin hdr"); /* discard header */ uread(0, &new_mbr, sizeof(new_mbr), "new mbr"); /* prototype mbr */ chk_magic(&new_mbr, "new mbr"); for ( (argv+=2), (argc-=2); argc > 0; (++argv), (--argc) ) if ('-'==**argv) { char *value = strchr(*argv, '='); if (0!=value) { *value++ = 0; } if (0==strcmp("-wait", *argv)) { if (0!=value) { countdown = atoi(value); if (0 < countdown && countdown < 4000) { countdown *= 1000000; } } } else if (0==strcmp("-char0", *argv)) { if (0!=value) { char0 = *value; } } else if (0==strcmp("-default", *argv)) { if (0!=value) { defltr = *value; } } else if (0==strcmp("-force", *argv)) { if (0!=value) { force = *value; } } else if (0==strcmp("-WNTDiskAdmin", *argv)) { wntDiskAdmin = 6; } else { fprintf(stderr,"ignoring option %s\n", *argv); } } else { break; } /* Somebody please tell me how to read an .obj symbol table so I can do these magic offsets symbolically! */ #define COUNT 0x184 #define DEFLTR 0x172 #define DESLTR 0x038 #define NAMES 0x19a memcpy(&new_mbr.random[COUNT -4], &countdown, sizeof(countdown)); memcpy(&new_mbr.random[DEFLTR -1], &defltr, sizeof(defltr)); memcpy(&new_mbr.random[DESLTR -2], &char0, sizeof(char0)); memcpy(&new_mbr.random[DESLTR -1], &force, sizeof(force)); if (0==countdown) {/* wait forever: no count at all */ new_mbr.random[COUNT -6] = 0xeb; /* JMP rel8 */ new_mbr.random[COUNT -5] = 0x0d; /* skip to getcWait */ } if (0 < argc) { char *labels = &new_mbr.random[NAMES]; int avail = (0x200 - 2 - 4*16 - wntDiskAdmin) - NAMES; qsort(argv, argc, sizeof(*argv), (qsort_fn_t)strcmp); for ( ; 0!=argc; ++argv, --argc ) { int const len = 1+strlen(2+*argv); if ((avail -= len) < 0) { fprintf(stderr,"Use shorter labels; " "`%c=%s' won't fit.\n", **argv, 2+*argv); } else { strcpy(labels, 2+*argv); labels += len; } if (1 < argc /* not last */ && (1 + *argv[0]) != *argv[1] ) { fprintf(stderr, "letters must be consecutive: %s %s\n", argv[0], argv[1] ); exit(1); } } fprintf(stderr, "%d bytes available.\n", avail); } if (0!=wntDiskAdmin) { /* WindowsNT disk administrator uses these 6 bytes */ memcpy(&new_mbr.random[446-6], &dev_mbr.random[446-6], 6); } memcpy(&new_mbr.part[0], &dev_mbr.part[0], 4*16); uwrite(1, &new_mbr, sizeof(new_mbr), "stdout"); exit(0); }
int main(int argc, char** argv) { #if (defined WIN32 || defined _WIN32) WSADATA wsadata; int rc = WSAStartup(MAKEWORD(2,0), &wsadata); if (rc) return 1; #endif upoll_t* upq = upoll_create(32); intptr_t sd1 = usocket(PF_INET, SOCK_STREAM, IPPROTO_TCP); printf("server: %li\n", sd1); printf("bind: %d\n", ubind(sd1, "127.0.0.1", "1976")); printf("listen: %d\n", ulisten(sd1, 128)); upoll_event_t ev1, ev2; upoll_event_t events[8]; ev1.events = UPOLLIN; ev1.data.fd = sd1; upoll_ctl(upq, UPOLL_CTL_ADD, sd1, &ev1); int r = 0, x = 0; while (1) { int i, e; e = upoll_wait(upq, events, 8, -1); printf("events: %i\n", e); if (x++ == 50) return 0; for (i = 0; i < e; i++) { char buf[4096]; if (events[i].events & UPOLLERR) { printf("ERROR on %li\n", events[i].data.fd); upoll_ctl(upq, UPOLL_CTL_DEL, events[i].data.fd, NULL); uclose(events[i].data.fd); } else if (events[i].events & UPOLLIN) { printf("have POLLIN on %li\n", events[i].data.fd); if (events[i].data.fd == sd1) { int sd2 = uaccept(sd1); printf("uaccept: %i\n", sd2); ev2.events = UPOLLIN; ev2.data.fd = sd2; upoll_ctl(upq, UPOLL_CTL_ADD, sd2, &ev2); } else { int cfd = events[i].data.fd; memset(buf, 0, 4096); printf("client input...\n"); r = uread(cfd, buf, 4096); printf("read %i bytes\n", r); if (r == 0) { printf("EOF DETECTED\n"); upoll_ctl(upq, UPOLL_CTL_DEL, events[i].data.fd, NULL); uclose(events[i].data.fd); } else { ev2.events = UPOLLOUT; upoll_ctl(upq, UPOLL_CTL_MOD, cfd, &ev2); } } } else if (events[i].events & UPOLLOUT) { printf("client writable...\n"); int cfd = events[i].data.fd; int w = uwrite(cfd, buf, r); ev2.events = UPOLLIN; printf("wrote %i bytes, mod for UPOLLIN again\n", w); upoll_ctl(upq, UPOLL_CTL_MOD, cfd, &ev2); } } } #if (defined WIN32 || defined _WIN32) WSACleanup(); #endif return 0; }
static void LCD_WR_DATA_FOR_REG_INIT(RegParaPos pos) { uwrite(InitData+InitDataPos[pos].offset,InitDataPos[pos].len); }
static void common_putc(int fd, int c) { (void)uwrite(fd, &c, 1); }
static int zboot_exec(int fd, u_long *marks, int flags) { char buf[512]; char *p; int tofd; int sz; int i; /* XXX cheating here by assuming that Xboot() was called before. */ tofd = uopen(_PATH_ZBOOT, O_WRONLY); if (tofd == -1) { printf("%s: can't open (errno %d)\n", _PATH_ZBOOT, errno); return 1; } p = cmd.path; for (; *p != '\0'; p++) if (*p == ':') { strlcpy(buf, p+1, sizeof(buf)); break; } if (*p == '\0') strlcpy(buf, cmd.path, sizeof(buf)); p = buf; for (; *p == '/'; p++) ; sz = strlen(p); if (uwrite(tofd, p, sz) != sz) { printf("zboot_exec: argument write error\n"); goto err; } buf[0] = ' '; buf[1] = '-'; if (uwrite(tofd, buf, 2) != 2) { printf("zboot_exec: argument write error\n"); goto err; } i = (cmd.argc > 1 && cmd.argv[1][0] != '-') ? 2 : 1; for (; i < cmd.argc; i++) { p = cmd.argv[i]; if (*p == '-') p++; sz = strlen(p); if (uwrite(tofd, p, sz) != sz) { printf("zboot_exec: argument write error\n"); goto err; } } /* Select UART unit for serial console. */ if (cn_tab && major(cn_tab->cn_dev) == 12) { buf[0] = '0' + minor(cn_tab->cn_dev); if (uwrite(tofd, buf, 1) != 1) { printf("zboot_exec: argument write error\n"); goto err; } } /* Commit boot arguments. */ uclose(tofd); tofd = uopen(_PATH_ZBOOT, O_WRONLY); if (tofd == -1) { printf("%s: can't open (errno %d)\n", _PATH_ZBOOT, errno); return 1; } if (lseek(fd, 0, SEEK_SET) != 0) { printf("%s: seek error\n", _PATH_ZBOOT); goto err; } while ((sz = read(fd, buf, sizeof(buf))) == sizeof(buf)) { if ((sz = uwrite(tofd, buf, sz)) != sizeof(buf)) { printf("%s: write error\n", _PATH_ZBOOT); goto err; } } if (sz < 0) { printf("zboot_exec: read error\n"); goto err; } if (sz >= 0 && uwrite(tofd, buf, sz) != sz) { printf("zboot_exec: write error\n"); goto err; } uclose(tofd); return 0; err: uclose(tofd); return 1; }
int fasttrap_pid_probe(struct reg *rp) { proc_t *p = curproc; uintptr_t pc = rp->r_rip - 1; uintptr_t new_pc = 0; fasttrap_bucket_t *bucket; #if defined(sun) kmutex_t *pid_mtx; #endif fasttrap_tracepoint_t *tp, tp_local; pid_t pid; dtrace_icookie_t cookie; uint_t is_enabled = 0; /* * It's possible that a user (in a veritable orgy of bad planning) * could redirect this thread's flow of control before it reached the * return probe fasttrap. In this case we need to kill the process * since it's in a unrecoverable state. */ if (curthread->t_dtrace_step) { ASSERT(curthread->t_dtrace_on); fasttrap_sigtrap(p, curthread, pc); return (0); } /* * Clear all user tracing flags. */ curthread->t_dtrace_ft = 0; curthread->t_dtrace_pc = 0; curthread->t_dtrace_npc = 0; curthread->t_dtrace_scrpc = 0; curthread->t_dtrace_astpc = 0; #ifdef __amd64 curthread->t_dtrace_regv = 0; #endif #if defined(sun) /* * Treat a child created by a call to vfork(2) as if it were its * parent. We know that there's only one thread of control in such a * process: this one. */ while (p->p_flag & SVFORK) { p = p->p_parent; } #endif PROC_LOCK(p); _PHOLD(p); pid = p->p_pid; #if defined(sun) pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock; mutex_enter(pid_mtx); #endif bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)]; /* * Lookup the tracepoint that the process just hit. */ for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) { if (pid == tp->ftt_pid && pc == tp->ftt_pc && tp->ftt_proc->ftpc_acount != 0) break; } /* * If we couldn't find a matching tracepoint, either a tracepoint has * been inserted without using the pid<pid> ioctl interface (see * fasttrap_ioctl), or somehow we have mislaid this tracepoint. */ if (tp == NULL) { #if defined(sun) mutex_exit(pid_mtx); #endif _PRELE(p); PROC_UNLOCK(p); return (-1); } /* * Set the program counter to the address of the traced instruction * so that it looks right in ustack() output. */ rp->r_rip = pc; if (tp->ftt_ids != NULL) { fasttrap_id_t *id; #ifdef __amd64 if (p->p_model == DATAMODEL_LP64) { for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { fasttrap_probe_t *probe = id->fti_probe; if (id->fti_ptype == DTFTP_ENTRY) { /* * We note that this was an entry * probe to help ustack() find the * first caller. */ cookie = dtrace_interrupt_disable(); DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); dtrace_probe(probe->ftp_id, rp->r_rdi, rp->r_rsi, rp->r_rdx, rp->r_rcx, rp->r_r8); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); dtrace_interrupt_enable(cookie); } else if (id->fti_ptype == DTFTP_IS_ENABLED) { /* * Note that in this case, we don't * call dtrace_probe() since it's only * an artificial probe meant to change * the flow of control so that it * encounters the true probe. */ is_enabled = 1; } else if (probe->ftp_argmap == NULL) { dtrace_probe(probe->ftp_id, rp->r_rdi, rp->r_rsi, rp->r_rdx, rp->r_rcx, rp->r_r8); } else { uintptr_t t[5]; fasttrap_usdt_args64(probe, rp, sizeof (t) / sizeof (t[0]), t); dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); } } } else { #else /* __amd64 */ uintptr_t s0, s1, s2, s3, s4, s5; uint32_t *stack = (uint32_t *)rp->r_esp; /* * In 32-bit mode, all arguments are passed on the * stack. If this is a function entry probe, we need * to skip the first entry on the stack as it * represents the return address rather than a * parameter to the function. */ s0 = fasttrap_fuword32_noerr(&stack[0]); s1 = fasttrap_fuword32_noerr(&stack[1]); s2 = fasttrap_fuword32_noerr(&stack[2]); s3 = fasttrap_fuword32_noerr(&stack[3]); s4 = fasttrap_fuword32_noerr(&stack[4]); s5 = fasttrap_fuword32_noerr(&stack[5]); for (id = tp->ftt_ids; id != NULL; id = id->fti_next) { fasttrap_probe_t *probe = id->fti_probe; if (id->fti_ptype == DTFTP_ENTRY) { /* * We note that this was an entry * probe to help ustack() find the * first caller. */ cookie = dtrace_interrupt_disable(); DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY); dtrace_probe(probe->ftp_id, s1, s2, s3, s4, s5); DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY); dtrace_interrupt_enable(cookie); } else if (id->fti_ptype == DTFTP_IS_ENABLED) { /* * Note that in this case, we don't * call dtrace_probe() since it's only * an artificial probe meant to change * the flow of control so that it * encounters the true probe. */ is_enabled = 1; } else if (probe->ftp_argmap == NULL) { dtrace_probe(probe->ftp_id, s0, s1, s2, s3, s4); } else { uint32_t t[5]; fasttrap_usdt_args32(probe, rp, sizeof (t) / sizeof (t[0]), t); dtrace_probe(probe->ftp_id, t[0], t[1], t[2], t[3], t[4]); } } #endif /* __amd64 */ #ifdef __amd64 } #endif } /* * We're about to do a bunch of work so we cache a local copy of * the tracepoint to emulate the instruction, and then find the * tracepoint again later if we need to light up any return probes. */ tp_local = *tp; PROC_UNLOCK(p); #if defined(sun) mutex_exit(pid_mtx); #endif tp = &tp_local; /* * Set the program counter to appear as though the traced instruction * had completely executed. This ensures that fasttrap_getreg() will * report the expected value for REG_RIP. */ rp->r_rip = pc + tp->ftt_size; /* * If there's an is-enabled probe connected to this tracepoint it * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax' * instruction that was placed there by DTrace when the binary was * linked. As this probe is, in fact, enabled, we need to stuff 1 * into %eax or %rax. Accordingly, we can bypass all the instruction * emulation logic since we know the inevitable result. It's possible * that a user could construct a scenario where the 'is-enabled' * probe was on some other instruction, but that would be a rather * exotic way to shoot oneself in the foot. */ if (is_enabled) { rp->r_rax = 1; new_pc = rp->r_rip; goto done; } /* * We emulate certain types of instructions to ensure correctness * (in the case of position dependent instructions) or optimize * common cases. The rest we have the thread execute back in user- * land. */ switch (tp->ftt_type) { case FASTTRAP_T_RET: case FASTTRAP_T_RET16: { uintptr_t dst = 0; uintptr_t addr = 0; int ret = 0; /* * We have to emulate _every_ facet of the behavior of a ret * instruction including what happens if the load from %esp * fails; in that case, we send a SIGSEGV. */ #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { ret = dst = fasttrap_fulword((void *)rp->r_rsp); addr = rp->r_rsp + sizeof (uintptr_t); } else { #endif #ifdef __i386__ uint32_t dst32; ret = dst32 = fasttrap_fuword32((void *)rp->r_esp); dst = dst32; addr = rp->r_esp + sizeof (uint32_t); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, rp->r_rsp); new_pc = pc; break; } if (tp->ftt_type == FASTTRAP_T_RET16) addr += tp->ftt_dest; rp->r_rsp = addr; new_pc = dst; break; } case FASTTRAP_T_JCC: { uint_t taken = 0; switch (tp->ftt_code) { case FASTTRAP_JO: taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) != 0; break; case FASTTRAP_JNO: taken = (rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0; break; case FASTTRAP_JB: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0; break; case FASTTRAP_JAE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0; break; case FASTTRAP_JE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; break; case FASTTRAP_JNE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; break; case FASTTRAP_JBE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) != 0 || (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0; break; case FASTTRAP_JA: taken = (rp->r_rflags & FASTTRAP_EFLAGS_CF) == 0 && (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0; break; case FASTTRAP_JS: taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) != 0; break; case FASTTRAP_JNS: taken = (rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0; break; case FASTTRAP_JP: taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) != 0; break; case FASTTRAP_JNP: taken = (rp->r_rflags & FASTTRAP_EFLAGS_PF) == 0; break; case FASTTRAP_JL: taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JGE: taken = ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JLE: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 || ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) != ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; case FASTTRAP_JG: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && ((rp->r_rflags & FASTTRAP_EFLAGS_SF) == 0) == ((rp->r_rflags & FASTTRAP_EFLAGS_OF) == 0); break; } if (taken) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_LOOP: { uint_t taken = 0; #ifdef __amd64 greg_t cx = rp->r_rcx--; #else greg_t cx = rp->r_ecx--; #endif switch (tp->ftt_code) { case FASTTRAP_LOOPNZ: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) == 0 && cx != 0; break; case FASTTRAP_LOOPZ: taken = (rp->r_rflags & FASTTRAP_EFLAGS_ZF) != 0 && cx != 0; break; case FASTTRAP_LOOP: taken = (cx != 0); break; } if (taken) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_JCXZ: { #ifdef __amd64 greg_t cx = rp->r_rcx; #else greg_t cx = rp->r_ecx; #endif if (cx == 0) new_pc = tp->ftt_dest; else new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_PUSHL_EBP: { int ret = 0; uintptr_t addr = 0; #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { addr = rp->r_rsp - sizeof (uintptr_t); ret = fasttrap_sulword((void *)addr, &rp->r_rsp); } else { #endif #ifdef __i386__ addr = rp->r_rsp - sizeof (uint32_t); ret = fasttrap_suword32((void *)addr, &rp->r_rsp); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } rp->r_rsp = addr; new_pc = pc + tp->ftt_size; break; } case FASTTRAP_T_NOP: new_pc = pc + tp->ftt_size; break; case FASTTRAP_T_JMP: case FASTTRAP_T_CALL: if (tp->ftt_code == 0) { new_pc = tp->ftt_dest; } else { #ifdef __amd64 uintptr_t value; #endif uintptr_t addr = tp->ftt_dest; if (tp->ftt_base != FASTTRAP_NOREG) addr += fasttrap_getreg(rp, tp->ftt_base); if (tp->ftt_index != FASTTRAP_NOREG) addr += fasttrap_getreg(rp, tp->ftt_index) << tp->ftt_scale; if (tp->ftt_code == 1) { /* * If there's a segment prefix for this * instruction, we'll need to check permissions * and bounds on the given selector, and adjust * the address accordingly. */ if (tp->ftt_segment != FASTTRAP_SEG_NONE && fasttrap_do_seg(tp, rp, &addr) != 0) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { if ((value = fasttrap_fulword((void *)addr)) == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } new_pc = value; } else { #endif #ifdef __i386__ uint32_t value32; addr = (uintptr_t)(uint32_t)addr; if ((value32 = fasttrap_fuword32((void *)addr)) == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } new_pc = value32; #endif } #ifdef __amd64 } else { new_pc = addr; } #endif } /* * If this is a call instruction, we need to push the return * address onto the stack. If this fails, we send the process * a SIGSEGV and reset the pc to emulate what would happen if * this instruction weren't traced. */ if (tp->ftt_type == FASTTRAP_T_CALL) { int ret = 0; uintptr_t addr = 0, pcps; #ifdef __amd64 if (p->p_model == DATAMODEL_NATIVE) { addr = rp->r_rsp - sizeof (uintptr_t); pcps = pc + tp->ftt_size; ret = fasttrap_sulword((void *)addr, &pcps); } else { #endif #ifdef __i386__ addr = rp->r_rsp - sizeof (uint32_t); pcps = (uint32_t)(pc + tp->ftt_size); ret = fasttrap_suword32((void *)addr, &pcps); #endif #ifdef __amd64 } #endif if (ret == -1) { fasttrap_sigsegv(p, curthread, addr); new_pc = pc; break; } rp->r_rsp = addr; } break; case FASTTRAP_T_COMMON: { uintptr_t addr; #if defined(__amd64) uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22]; #else uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7]; #endif uint_t i = 0; #if defined(sun) klwp_t *lwp = ttolwp(curthread); #endif /* * Compute the address of the ulwp_t and step over the * ul_self pointer. The method used to store the user-land * thread pointer is very different on 32- and 64-bit * kernels. */ #if defined(sun) #if defined(__amd64) if (p->p_model == DATAMODEL_LP64) { addr = lwp->lwp_pcb.pcb_fsbase; addr += sizeof (void *); } else { addr = lwp->lwp_pcb.pcb_gsbase; addr += sizeof (caddr32_t); } #else addr = USD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc); addr += sizeof (void *); #endif #endif /* sun */ #ifdef __i386__ addr = USD_GETBASE(&curthread->td_pcb->pcb_gsd); #else addr = curthread->td_pcb->pcb_gsbase; #endif addr += sizeof (void *); /* * Generic Instruction Tracing * --------------------------- * * This is the layout of the scratch space in the user-land * thread structure for our generated instructions. * * 32-bit mode bytes * ------------------------ ----- * a: <original instruction> <= 15 * jmp <pc + tp->ftt_size> 5 * b: <original instruction> <= 15 * int T_DTRACE_RET 2 * ----- * <= 37 * * 64-bit mode bytes * ------------------------ ----- * a: <original instruction> <= 15 * jmp 0(%rip) 6 * <pc + tp->ftt_size> 8 * b: <original instruction> <= 15 * int T_DTRACE_RET 2 * ----- * <= 46 * * The %pc is set to a, and curthread->t_dtrace_astpc is set * to b. If we encounter a signal on the way out of the * kernel, trap() will set %pc to curthread->t_dtrace_astpc * so that we execute the original instruction and re-enter * the kernel rather than redirecting to the next instruction. * * If there are return probes (so we know that we're going to * need to reenter the kernel after executing the original * instruction), the scratch space will just contain the * original instruction followed by an interrupt -- the same * data as at b. * * %rip-relative Addressing * ------------------------ * * There's a further complication in 64-bit mode due to %rip- * relative addressing. While this is clearly a beneficial * architectural decision for position independent code, it's * hard not to see it as a personal attack against the pid * provider since before there was a relatively small set of * instructions to emulate; with %rip-relative addressing, * almost every instruction can potentially depend on the * address at which it's executed. Rather than emulating * the broad spectrum of instructions that can now be * position dependent, we emulate jumps and others as in * 32-bit mode, and take a different tack for instructions * using %rip-relative addressing. * * For every instruction that uses the ModRM byte, the * in-kernel disassembler reports its location. We use the * ModRM byte to identify that an instruction uses * %rip-relative addressing and to see what other registers * the instruction uses. To emulate those instructions, * we modify the instruction to be %rax-relative rather than * %rip-relative (or %rcx-relative if the instruction uses * %rax; or %r8- or %r9-relative if the REX.B is present so * we don't have to rewrite the REX prefix). We then load * the value that %rip would have been into the scratch * register and generate an instruction to reset the scratch * register back to its original value. The instruction * sequence looks like this: * * 64-mode %rip-relative bytes * ------------------------ ----- * a: <modified instruction> <= 15 * movq $<value>, %<scratch> 6 * jmp 0(%rip) 6 * <pc + tp->ftt_size> 8 * b: <modified instruction> <= 15 * int T_DTRACE_RET 2 * ----- * 52 * * We set curthread->t_dtrace_regv so that upon receiving * a signal we can reset the value of the scratch register. */ ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE); curthread->t_dtrace_scrpc = addr; bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); i += tp->ftt_size; #ifdef __amd64 if (tp->ftt_ripmode != 0) { greg_t *reg = NULL; ASSERT(p->p_model == DATAMODEL_LP64); ASSERT(tp->ftt_ripmode & (FASTTRAP_RIP_1 | FASTTRAP_RIP_2)); /* * If this was a %rip-relative instruction, we change * it to be either a %rax- or %rcx-relative * instruction (depending on whether those registers * are used as another operand; or %r8- or %r9- * relative depending on the value of REX.B). We then * set that register and generate a movq instruction * to reset the value. */ if (tp->ftt_ripmode & FASTTRAP_RIP_X) scratch[i++] = FASTTRAP_REX(1, 0, 0, 1); else scratch[i++] = FASTTRAP_REX(1, 0, 0, 0); if (tp->ftt_ripmode & FASTTRAP_RIP_1) scratch[i++] = FASTTRAP_MOV_EAX; else scratch[i++] = FASTTRAP_MOV_ECX; switch (tp->ftt_ripmode) { case FASTTRAP_RIP_1: reg = &rp->r_rax; curthread->t_dtrace_reg = REG_RAX; break; case FASTTRAP_RIP_2: reg = &rp->r_rcx; curthread->t_dtrace_reg = REG_RCX; break; case FASTTRAP_RIP_1 | FASTTRAP_RIP_X: reg = &rp->r_r8; curthread->t_dtrace_reg = REG_R8; break; case FASTTRAP_RIP_2 | FASTTRAP_RIP_X: reg = &rp->r_r9; curthread->t_dtrace_reg = REG_R9; break; } /* LINTED - alignment */ *(uint64_t *)&scratch[i] = *reg; curthread->t_dtrace_regv = *reg; *reg = pc + tp->ftt_size; i += sizeof (uint64_t); } #endif /* * Generate the branch instruction to what would have * normally been the subsequent instruction. In 32-bit mode, * this is just a relative branch; in 64-bit mode this is a * %rip-relative branch that loads the 64-bit pc value * immediately after the jmp instruction. */ #ifdef __amd64 if (p->p_model == DATAMODEL_LP64) { scratch[i++] = FASTTRAP_GROUP5_OP; scratch[i++] = FASTTRAP_MODRM(0, 4, 5); /* LINTED - alignment */ *(uint32_t *)&scratch[i] = 0; i += sizeof (uint32_t); /* LINTED - alignment */ *(uint64_t *)&scratch[i] = pc + tp->ftt_size; i += sizeof (uint64_t); } else { #endif #ifdef __i386__ /* * Set up the jmp to the next instruction; note that * the size of the traced instruction cancels out. */ scratch[i++] = FASTTRAP_JMP32; /* LINTED - alignment */ *(uint32_t *)&scratch[i] = pc - addr - 5; i += sizeof (uint32_t); #endif #ifdef __amd64 } #endif curthread->t_dtrace_astpc = addr + i; bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size); i += tp->ftt_size; scratch[i++] = FASTTRAP_INT; scratch[i++] = T_DTRACE_RET; ASSERT(i <= sizeof (scratch)); #if defined(sun) if (fasttrap_copyout(scratch, (char *)addr, i)) { #else if (uwrite(curproc, scratch, i, addr)) { #endif fasttrap_sigtrap(p, curthread, pc); new_pc = pc; break; } if (tp->ftt_retids != NULL) { curthread->t_dtrace_step = 1; curthread->t_dtrace_ret = 1; new_pc = curthread->t_dtrace_astpc; } else { new_pc = curthread->t_dtrace_scrpc; } curthread->t_dtrace_pc = pc; curthread->t_dtrace_npc = pc + tp->ftt_size; curthread->t_dtrace_on = 1; break; } default: panic("fasttrap: mishandled an instruction"); } done: /* * If there were no return probes when we first found the tracepoint, * we should feel no obligation to honor any return probes that were * subsequently enabled -- they'll just have to wait until the next * time around. */ if (tp->ftt_retids != NULL) { /* * We need to wait until the results of the instruction are * apparent before invoking any return probes. If this * instruction was emulated we can just call * fasttrap_return_common(); if it needs to be executed, we * need to wait until the user thread returns to the kernel. */ if (tp->ftt_type != FASTTRAP_T_COMMON) { /* * Set the program counter to the address of the traced * instruction so that it looks right in ustack() * output. We had previously set it to the end of the * instruction to simplify %rip-relative addressing. */ rp->r_rip = pc; fasttrap_return_common(rp, pc, pid, new_pc); } else { ASSERT(curthread->t_dtrace_ret != 0); ASSERT(curthread->t_dtrace_pc == pc); ASSERT(curthread->t_dtrace_scrpc != 0); ASSERT(new_pc == curthread->t_dtrace_astpc); } } rp->r_rip = new_pc; PROC_LOCK(p); proc_write_regs(curthread, rp); _PRELE(p); PROC_UNLOCK(p); return (0); } int fasttrap_return_probe(struct reg *rp) { proc_t *p = curproc; uintptr_t pc = curthread->t_dtrace_pc; uintptr_t npc = curthread->t_dtrace_npc; curthread->t_dtrace_pc = 0; curthread->t_dtrace_npc = 0; curthread->t_dtrace_scrpc = 0; curthread->t_dtrace_astpc = 0; #if defined(sun) /* * Treat a child created by a call to vfork(2) as if it were its * parent. We know that there's only one thread of control in such a * process: this one. */ while (p->p_flag & SVFORK) { p = p->p_parent; } #endif /* * We set rp->r_rip to the address of the traced instruction so * that it appears to dtrace_probe() that we're on the original * instruction, and so that the user can't easily detect our * complex web of lies. dtrace_return_probe() (our caller) * will correctly set %pc after we return. */ rp->r_rip = pc; fasttrap_return_common(rp, pc, p->p_pid, npc); return (0); }