Exemplo n.º 1
0
static void
ginVacuumPostingTree(GinVacuumState *gvs, BlockNumber rootBlkno)
{
	Buffer		rootBuffer = InvalidBuffer;
	DataPageDeleteStack root,
			   *ptr,
			   *tmp;

	if (ginVacuumPostingTreeLeaves(gvs, rootBlkno, TRUE, &rootBuffer) == FALSE)
	{
		Assert(rootBuffer == InvalidBuffer);
		return;
	}

	memset(&root, 0, sizeof(DataPageDeleteStack));
	root.leftBlkno = InvalidBlockNumber;
	root.isRoot = TRUE;

	vacuum_delay_point();

	ginScanToDelete(gvs, rootBlkno, TRUE, &root, InvalidOffsetNumber);

	ptr = root.child;
	while (ptr)
	{
		tmp = ptr->child;
		pfree(ptr);
		ptr = tmp;
	}

	UnlockReleaseBuffer(rootBuffer);
}
Exemplo n.º 2
0
/*
 * Post-VACUUM cleanup.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
blvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
	Relation	index = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;

	if (info->analyze_only)
		return stats;

	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));

	/*
	 * Iterate over the pages: insert deleted pages into FSM and collect
	 * statistics.
	 */
	npages = RelationGetNumberOfBlocks(index);
	totFreePages = 0;
	for (blkno = BLOOM_HEAD_BLKNO; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, BUFFER_LOCK_SHARE);
		page = BufferGetPage(buffer, NULL, NULL, BGP_NO_SNAPSHOT_TEST);

		if (BloomPageIsDeleted(page))
		{
			RecordFreeIndexPage(index, blkno);
			totFreePages++;
		}
		else
		{
			stats->num_index_tuples += BloomPageGetMaxOffset(page);
			stats->estimated_count += BloomPageGetMaxOffset(page);
		}

		UnlockReleaseBuffer(buffer);
	}

	IndexFreeSpaceMapVacuum(info->index);
	stats->pages_free = totFreePages;
	stats->num_pages = RelationGetNumberOfBlocks(index);

	return stats;
}
Exemplo n.º 3
0
/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	int			tupindex;
	int			npages;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);
	npages = 0;

	tupindex = 0;

	/* Fetch gp_persistent_relation_node information that will be added to XLOG record. */
	RelationFetchGpRelationNodeForXLog(onerel);

	while (tupindex < vacrelstats->num_dead_tuples)
	{
		BlockNumber tblk;
		Buffer		buf;
		Page		page;

		vacuum_delay_point();

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);

		/* -------- MirroredLock ---------- */
		MIRROREDLOCK_BUFMGR_LOCK;

		buf = ReadBufferWithStrategy(onerel, tblk, vac_strategy);
		LockBufferForCleanup(buf);
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);
		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		lazy_record_free_space(vacrelstats, tblk,
							   PageGetHeapFreeSpace(page));
		UnlockReleaseBuffer(buf);

		MIRROREDLOCK_BUFMGR_UNLOCK;
		/* -------- MirroredLock ---------- */

		npages++;
	}

	ereport(elevel,
			(errmsg("\"%s\": removed %d row versions in %d pages",
					RelationGetRelationName(onerel),
					tupindex, npages),
			 errdetail("%s.",
					   pg_rusage_show(&ru0))));
}
Exemplo n.º 4
0
/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	PGRUsage	ru0;

	pg_rusage_init(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
		BlockNumber tblk;
		Buffer		buf;
		Page		page;
		Size		freespace;

		vacuum_delay_point();

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, tblk, RBM_NORMAL,
								 vac_strategy);
		if (!ConditionalLockBufferForCleanup(buf))
		{
			ReleaseBuffer(buf);
			++tupindex;
			continue;
		}
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);

		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		freespace = PageGetHeapFreeSpace(page);

		UnlockReleaseBuffer(buf);
		RecordPageWithFreeSpace(onerel, tblk, freespace);
		npages++;
	}

	ereport(elevel,
			(errmsg("\"%s\": removed %d row versions in %d pages",
					RelationGetRelationName(onerel),
					tupindex, npages),
			 errdetail("%s.",
					   pg_rusage_show(&ru0))));
}
Exemplo n.º 5
0
/*
 * Helper function to perform deletion of index entries from a bucket.
 *
 * This function expects that the caller has acquired a cleanup lock on the
 * primary bucket page, and will return with a write lock again held on the
 * primary bucket page.  The lock won't necessarily be held continuously,
 * though, because we'll release it when visiting overflow pages.
 *
 * It would be very bad if this function cleaned a page while some other
 * backend was in the midst of scanning it, because hashgettuple assumes
 * that the next valid TID will be greater than or equal to the current
 * valid TID.  There can't be any concurrent scans in progress when we first
 * enter this function because of the cleanup lock we hold on the primary
 * bucket page, but as soon as we release that lock, there might be.  We
 * handle that by conspiring to prevent those scans from passing our cleanup
 * scan.  To do that, we lock the next page in the bucket chain before
 * releasing the lock on the previous page.  (This type of lock chaining is
 * not ideal, so we might want to look for a better solution at some point.)
 *
 * We need to retain a pin on the primary bucket to ensure that no concurrent
 * split can start.
 */
void
hashbucketcleanup(Relation rel, Bucket cur_bucket, Buffer bucket_buf,
				  BlockNumber bucket_blkno, BufferAccessStrategy bstrategy,
				  uint32 maxbucket, uint32 highmask, uint32 lowmask,
				  double *tuples_removed, double *num_index_tuples,
				  bool split_cleanup,
				  IndexBulkDeleteCallback callback, void *callback_state)
{
	BlockNumber blkno;
	Buffer		buf;
	Bucket		new_bucket PG_USED_FOR_ASSERTS_ONLY = InvalidBucket;
	bool		bucket_dirty = false;

	blkno = bucket_blkno;
	buf = bucket_buf;

	if (split_cleanup)
		new_bucket = _hash_get_newbucket_from_oldbucket(rel, cur_bucket,
														lowmask, maxbucket);

	/* Scan each page in bucket */
	for (;;)
	{
		HashPageOpaque opaque;
		OffsetNumber offno;
		OffsetNumber maxoffno;
		Buffer		next_buf;
		Page		page;
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable = 0;
		bool		retain_pin = false;
		bool		clear_dead_marking = false;

		vacuum_delay_point();

		page = BufferGetPage(buf);
		opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		/* Scan each tuple in page */
		maxoffno = PageGetMaxOffsetNumber(page);
		for (offno = FirstOffsetNumber;
			 offno <= maxoffno;
			 offno = OffsetNumberNext(offno))
		{
			ItemPointer htup;
			IndexTuple	itup;
			Bucket		bucket;
			bool		kill_tuple = false;

			itup = (IndexTuple) PageGetItem(page,
											PageGetItemId(page, offno));
			htup = &(itup->t_tid);

			/*
			 * To remove the dead tuples, we strictly want to rely on results
			 * of callback function.  refer btvacuumpage for detailed reason.
			 */
			if (callback && callback(htup, callback_state))
			{
				kill_tuple = true;
				if (tuples_removed)
					*tuples_removed += 1;
			}
			else if (split_cleanup)
			{
				/* delete the tuples that are moved by split. */
				bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup),
											  maxbucket,
											  highmask,
											  lowmask);
				/* mark the item for deletion */
				if (bucket != cur_bucket)
				{
					/*
					 * We expect tuples to either belong to current bucket or
					 * new_bucket.  This is ensured because we don't allow
					 * further splits from bucket that contains garbage. See
					 * comments in _hash_expandtable.
					 */
					Assert(bucket == new_bucket);
					kill_tuple = true;
				}
			}

			if (kill_tuple)
			{
				/* mark the item for deletion */
				deletable[ndeletable++] = offno;
			}
			else
			{
				/* we're keeping it, so count it */
				if (num_index_tuples)
					*num_index_tuples += 1;
			}
		}

		/* retain the pin on primary bucket page till end of bucket scan */
		if (blkno == bucket_blkno)
			retain_pin = true;
		else
			retain_pin = false;

		blkno = opaque->hasho_nextblkno;

		/*
		 * Apply deletions, advance to next page and write page if needed.
		 */
		if (ndeletable > 0)
		{
			/* No ereport(ERROR) until changes are logged */
			START_CRIT_SECTION();

			PageIndexMultiDelete(page, deletable, ndeletable);
			bucket_dirty = true;

			/*
			 * Let us mark the page as clean if vacuum removes the DEAD tuples
			 * from an index page. We do this by clearing
			 * LH_PAGE_HAS_DEAD_TUPLES flag.
			 */
			if (tuples_removed && *tuples_removed > 0 &&
				H_HAS_DEAD_TUPLES(opaque))
			{
				opaque->hasho_flag &= ~LH_PAGE_HAS_DEAD_TUPLES;
				clear_dead_marking = true;
			}

			MarkBufferDirty(buf);

			/* XLOG stuff */
			if (RelationNeedsWAL(rel))
			{
				xl_hash_delete xlrec;
				XLogRecPtr	recptr;

				xlrec.clear_dead_marking = clear_dead_marking;
				xlrec.is_primary_bucket_page = (buf == bucket_buf) ? true : false;

				XLogBeginInsert();
				XLogRegisterData((char *) &xlrec, SizeOfHashDelete);

				/*
				 * bucket buffer needs to be registered to ensure that we can
				 * acquire a cleanup lock on it during replay.
				 */
				if (!xlrec.is_primary_bucket_page)
					XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD | REGBUF_NO_IMAGE);

				XLogRegisterBuffer(1, buf, REGBUF_STANDARD);
				XLogRegisterBufData(1, (char *) deletable,
									ndeletable * sizeof(OffsetNumber));

				recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_DELETE);
				PageSetLSN(BufferGetPage(buf), recptr);
			}

			END_CRIT_SECTION();
		}

		/* bail out if there are no more pages to scan. */
		if (!BlockNumberIsValid(blkno))
			break;

		next_buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
											  LH_OVERFLOW_PAGE,
											  bstrategy);

		/*
		 * release the lock on previous page after acquiring the lock on next
		 * page
		 */
		if (retain_pin)
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		else
			_hash_relbuf(rel, buf);

		buf = next_buf;
	}

	/*
	 * lock the bucket page to clear the garbage flag and squeeze the bucket.
	 * if the current buffer is same as bucket buffer, then we already have
	 * lock on bucket page.
	 */
	if (buf != bucket_buf)
	{
		_hash_relbuf(rel, buf);
		LockBuffer(bucket_buf, BUFFER_LOCK_EXCLUSIVE);
	}

	/*
	 * Clear the garbage flag from bucket after deleting the tuples that are
	 * moved by split.  We purposefully clear the flag before squeeze bucket,
	 * so that after restart, vacuum shouldn't again try to delete the moved
	 * by split tuples.
	 */
	if (split_cleanup)
	{
		HashPageOpaque bucket_opaque;
		Page		page;

		page = BufferGetPage(bucket_buf);
		bucket_opaque = (HashPageOpaque) PageGetSpecialPointer(page);

		/* No ereport(ERROR) until changes are logged */
		START_CRIT_SECTION();

		bucket_opaque->hasho_flag &= ~LH_BUCKET_NEEDS_SPLIT_CLEANUP;
		MarkBufferDirty(bucket_buf);

		/* XLOG stuff */
		if (RelationNeedsWAL(rel))
		{
			XLogRecPtr	recptr;

			XLogBeginInsert();
			XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD);

			recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_CLEANUP);
			PageSetLSN(page, recptr);
		}

		END_CRIT_SECTION();
	}

	/*
	 * If we have deleted anything, try to compact free space.  For squeezing
	 * the bucket, we must have a cleanup lock, else it can impact the
	 * ordering of tuples for a scan that has started before it.
	 */
	if (bucket_dirty && IsBufferCleanupOK(bucket_buf))
		_hash_squeezebucket(rel, cur_bucket, bucket_blkno, bucket_buf,
							bstrategy);
	else
		LockBuffer(bucket_buf, BUFFER_LOCK_UNLOCK);
}
Exemplo n.º 6
0
/*
 * Move tuples from pending pages into regular GIN structure.
 *
 * This can be called concurrently by multiple backends, so it must cope.
 * On first glance it looks completely not concurrent-safe and not crash-safe
 * either.	The reason it's okay is that multiple insertion of the same entry
 * is detected and treated as a no-op by gininsert.c.  If we crash after
 * posting entries to the main index and before removing them from the
 * pending list, it's okay because when we redo the posting later on, nothing
 * bad will happen.  Likewise, if two backends simultaneously try to post
 * a pending entry into the main index, one will succeed and one will do
 * nothing.  We try to notice when someone else is a little bit ahead of
 * us in the process, but that's just to avoid wasting cycles.  Only the
 * action of removing a page from the pending list really needs exclusive
 * lock.
 *
 * vac_delay indicates that ginInsertCleanup is called from vacuum process,
 * so call vacuum_delay_point() periodically.
 * If stats isn't null, we count deleted pending pages into the counts.
 */
void
ginInsertCleanup(GinState *ginstate,
				 bool vac_delay, IndexBulkDeleteResult *stats)
{
	Relation	index = ginstate->index;
	Buffer		metabuffer,
				buffer;
	Page		metapage,
				page;
	GinMetaPageData *metadata;
	MemoryContext opCtx,
				oldCtx;
	BuildAccumulator accum;
	KeyArray	datums;
	BlockNumber blkno;

	metabuffer = ReadBuffer(index, GIN_METAPAGE_BLKNO);
	LockBuffer(metabuffer, GIN_SHARE);
	metapage = BufferGetPage(metabuffer);
	metadata = GinPageGetMeta(metapage);

	if (metadata->head == InvalidBlockNumber)
	{
		/* Nothing to do */
		UnlockReleaseBuffer(metabuffer);
		return;
	}

	/*
	 * Read and lock head of pending list
	 */
	blkno = metadata->head;
	buffer = ReadBuffer(index, blkno);
	LockBuffer(buffer, GIN_SHARE);
	page = BufferGetPage(buffer);

	LockBuffer(metabuffer, GIN_UNLOCK);

	/*
	 * Initialize.	All temporary space will be in opCtx
	 */
	opCtx = AllocSetContextCreate(CurrentMemoryContext,
								  "GIN insert cleanup temporary context",
								  ALLOCSET_DEFAULT_MINSIZE,
								  ALLOCSET_DEFAULT_INITSIZE,
								  ALLOCSET_DEFAULT_MAXSIZE);

	oldCtx = MemoryContextSwitchTo(opCtx);

	initKeyArray(&datums, 128);
	ginInitBA(&accum);
	accum.ginstate = ginstate;

	/*
	 * At the top of this loop, we have pin and lock on the current page of
	 * the pending list.  However, we'll release that before exiting the loop.
	 * Note we also have pin but not lock on the metapage.
	 */
	for (;;)
	{
		if (GinPageIsDeleted(page))
		{
			/* another cleanup process is running concurrently */
			UnlockReleaseBuffer(buffer);
			break;
		}

		/*
		 * read page's datums into accum
		 */
		processPendingPage(&accum, &datums, page, FirstOffsetNumber);

		if (vac_delay)
			vacuum_delay_point();

		/*
		 * Is it time to flush memory to disk?	Flush if we are at the end of
		 * the pending list, or if we have a full row and memory is getting
		 * full.
		 *
		 * XXX using up maintenance_work_mem here is probably unreasonably
		 * much, since vacuum might already be using that much.
		 */
		if (GinPageGetOpaque(page)->rightlink == InvalidBlockNumber ||
			(GinPageHasFullRow(page) &&
			 (accum.allocatedMemory >= maintenance_work_mem * 1024L)))
		{
			ItemPointerData *list;
			uint32		nlist;
			Datum		key;
			GinNullCategory category;
			OffsetNumber maxoff,
						attnum;

			/*
			 * Unlock current page to increase performance. Changes of page
			 * will be checked later by comparing maxoff after completion of
			 * memory flush.
			 */
			maxoff = PageGetMaxOffsetNumber(page);
			LockBuffer(buffer, GIN_UNLOCK);

			/*
			 * Moving collected data into regular structure can take
			 * significant amount of time - so, run it without locking pending
			 * list.
			 */
			ginBeginBAScan(&accum);
			while ((list = ginGetBAEntry(&accum,
								  &attnum, &key, &category, &nlist)) != NULL)
			{
				ginEntryInsert(ginstate, attnum, key, category,
							   list, nlist, NULL);
				if (vac_delay)
					vacuum_delay_point();
			}

			/*
			 * Lock the whole list to remove pages
			 */
			LockBuffer(metabuffer, GIN_EXCLUSIVE);
			LockBuffer(buffer, GIN_SHARE);

			if (GinPageIsDeleted(page))
			{
				/* another cleanup process is running concurrently */
				UnlockReleaseBuffer(buffer);
				LockBuffer(metabuffer, GIN_UNLOCK);
				break;
			}

			/*
			 * While we left the page unlocked, more stuff might have gotten
			 * added to it.  If so, process those entries immediately.	There
			 * shouldn't be very many, so we don't worry about the fact that
			 * we're doing this with exclusive lock. Insertion algorithm
			 * guarantees that inserted row(s) will not continue on next page.
			 * NOTE: intentionally no vacuum_delay_point in this loop.
			 */
			if (PageGetMaxOffsetNumber(page) != maxoff)
			{
				ginInitBA(&accum);
				processPendingPage(&accum, &datums, page, maxoff + 1);

				ginBeginBAScan(&accum);
				while ((list = ginGetBAEntry(&accum,
								  &attnum, &key, &category, &nlist)) != NULL)
					ginEntryInsert(ginstate, attnum, key, category,
								   list, nlist, NULL);
			}

			/*
			 * Remember next page - it will become the new list head
			 */
			blkno = GinPageGetOpaque(page)->rightlink;
			UnlockReleaseBuffer(buffer);		/* shiftList will do exclusive
												 * locking */

			/*
			 * remove readed pages from pending list, at this point all
			 * content of readed pages is in regular structure
			 */
			if (shiftList(index, metabuffer, blkno, stats))
			{
				/* another cleanup process is running concurrently */
				LockBuffer(metabuffer, GIN_UNLOCK);
				break;
			}

			Assert(blkno == metadata->head);
			LockBuffer(metabuffer, GIN_UNLOCK);

			/*
			 * if we removed the whole pending list just exit
			 */
			if (blkno == InvalidBlockNumber)
				break;

			/*
			 * release memory used so far and reinit state
			 */
			MemoryContextReset(opCtx);
			initKeyArray(&datums, datums.maxvalues);
			ginInitBA(&accum);
		}
		else
		{
			blkno = GinPageGetOpaque(page)->rightlink;
			UnlockReleaseBuffer(buffer);
		}

		/*
		 * Read next page in pending list
		 */
		CHECK_FOR_INTERRUPTS();
		buffer = ReadBuffer(index, blkno);
		LockBuffer(buffer, GIN_SHARE);
		page = BufferGetPage(buffer);
	}

	ReleaseBuffer(metabuffer);

	/* Clean up temporary space */
	MemoryContextSwitchTo(oldCtx);
	MemoryContextDelete(opCtx);
}
Exemplo n.º 7
0
/*
 *	compute_tsvector_stats() -- compute statistics for a tsvector column
 *
 *	This functions computes statistics that are useful for determining @@
 *	operations' selectivity, along with the fraction of non-null rows and
 *	average width.
 *
 *	Instead of finding the most common values, as we do for most datatypes,
 *	we're looking for the most common lexemes. This is more useful, because
 *	there most probably won't be any two rows with the same tsvector and thus
 *	the notion of a MCV is a bit bogus with this datatype. With a list of the
 *	most common lexemes we can do a better job at figuring out @@ selectivity.
 *
 *	For the same reasons we assume that tsvector columns are unique when
 *	determining the number of distinct values.
 *
 *	The algorithm used is Lossy Counting, as proposed in the paper "Approximate
 *	frequency counts over data streams" by G. S. Manku and R. Motwani, in
 *	Proceedings of the 28th International Conference on Very Large Data Bases,
 *	Hong Kong, China, August 2002, section 4.2. The paper is available at
 *	http://www.vldb.org/conf/2002/S10P03.pdf
 *
 *	The Lossy Counting (aka LC) algorithm goes like this:
 *	Let s be the threshold frequency for an item (the minimum frequency we
 *	are interested in) and epsilon the error margin for the frequency. Let D
 *	be a set of triples (e, f, delta), where e is an element value, f is that
 *	element's frequency (actually, its current occurrence count) and delta is
 *	the maximum error in f. We start with D empty and process the elements in
 *	batches of size w. (The batch size is also known as "bucket size" and is
 *	equal to 1/epsilon.) Let the current batch number be b_current, starting
 *	with 1. For each element e we either increment its f count, if it's
 *	already in D, or insert a new triple into D with values (e, 1, b_current
 *	- 1). After processing each batch we prune D, by removing from it all
 *	elements with f + delta <= b_current.  After the algorithm finishes we
 *	suppress all elements from D that do not satisfy f >= (s - epsilon) * N,
 *	where N is the total number of elements in the input.  We emit the
 *	remaining elements with estimated frequency f/N.  The LC paper proves
 *	that this algorithm finds all elements with true frequency at least s,
 *	and that no frequency is overestimated or is underestimated by more than
 *	epsilon.  Furthermore, given reasonable assumptions about the input
 *	distribution, the required table size is no more than about 7 times w.
 *
 *	We set s to be the estimated frequency of the K'th word in a natural
 *	language's frequency table, where K is the target number of entries in
 *	the MCELEM array plus an arbitrary constant, meant to reflect the fact
 *	that the most common words in any language would usually be stopwords
 *	so we will not actually see them in the input.  We assume that the
 *	distribution of word frequencies (including the stopwords) follows Zipf's
 *	law with an exponent of 1.
 *
 *	Assuming Zipfian distribution, the frequency of the K'th word is equal
 *	to 1/(K * H(W)) where H(n) is 1/2 + 1/3 + ... + 1/n and W is the number of
 *	words in the language.  Putting W as one million, we get roughly 0.07/K.
 *	Assuming top 10 words are stopwords gives s = 0.07/(K + 10).  We set
 *	epsilon = s/10, which gives bucket width w = (K + 10)/0.007 and
 *	maximum expected hashtable size of about 1000 * (K + 10).
 *
 *	Note: in the above discussion, s, epsilon, and f/N are in terms of a
 *	lexeme's frequency as a fraction of all lexemes seen in the input.
 *	However, what we actually want to store in the finished pg_statistic
 *	entry is each lexeme's frequency as a fraction of all rows that it occurs
 *	in.  Assuming that the input tsvectors are correctly constructed, no
 *	lexeme occurs more than once per tsvector, so the final count f is a
 *	correct estimate of the number of input tsvectors it occurs in, and we
 *	need only change the divisor from N to nonnull_cnt to get the number we
 *	want.
 */
static void
compute_tsvector_stats(VacAttrStats *stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows)
{
	int			num_mcelem;
	int			null_cnt = 0;
	double		total_width = 0;

	/* This is D from the LC algorithm. */
	HTAB	   *lexemes_tab;
	HASHCTL		hash_ctl;
	HASH_SEQ_STATUS scan_status;

	/* This is the current bucket number from the LC algorithm */
	int			b_current;

	/* This is 'w' from the LC algorithm */
	int			bucket_width;
	int			vector_no,
				lexeme_no;
	LexemeHashKey hash_key;
	TrackItem  *item;

	/*
	 * We want statistics_target * 10 lexemes in the MCELEM array.  This
	 * multiplier is pretty arbitrary, but is meant to reflect the fact that
	 * the number of individual lexeme values tracked in pg_statistic ought to
	 * be more than the number of values for a simple scalar column.
	 */
	num_mcelem = stats->attr->attstattarget * 10;

	/*
	 * We set bucket width equal to (num_mcelem + 10) / 0.007 as per the
	 * comment above.
	 */
	bucket_width = (num_mcelem + 10) * 1000 / 7;

	/*
	 * Create the hashtable. It will be in local memory, so we don't need to
	 * worry about overflowing the initial size. Also we don't need to pay any
	 * attention to locking and memory management.
	 */
	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
	hash_ctl.keysize = sizeof(LexemeHashKey);
	hash_ctl.entrysize = sizeof(TrackItem);
	hash_ctl.hash = lexeme_hash;
	hash_ctl.match = lexeme_match;
	hash_ctl.hcxt = CurrentMemoryContext;
	lexemes_tab = hash_create("Analyzed lexemes table",
							  num_mcelem,
							  &hash_ctl,
							  HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);

	/* Initialize counters. */
	b_current = 1;
	lexeme_no = 0;

	/* Loop over the tsvectors. */
	for (vector_no = 0; vector_no < samplerows; vector_no++)
	{
		Datum		value;
		bool		isnull;
		TSVector	vector;
		WordEntry  *curentryptr;
		char	   *lexemesptr;
		int			j;

		vacuum_delay_point();

		value = fetchfunc(stats, vector_no, &isnull);

		/*
		 * Check for null/nonnull.
		 */
		if (isnull)
		{
			null_cnt++;
			continue;
		}

		/*
		 * Add up widths for average-width calculation.  Since it's a
		 * tsvector, we know it's varlena.  As in the regular
		 * compute_minimal_stats function, we use the toasted width for this
		 * calculation.
		 */
		total_width += VARSIZE_ANY(DatumGetPointer(value));

		/*
		 * Now detoast the tsvector if needed.
		 */
		vector = DatumGetTSVector(value);

		/*
		 * We loop through the lexemes in the tsvector and add them to our
		 * tracking hashtable.
		 */
		lexemesptr = STRPTR(vector);
		curentryptr = ARRPTR(vector);
		for (j = 0; j < vector->size; j++)
		{
			bool		found;

			/*
			 * Construct a hash key.  The key points into the (detoasted)
			 * tsvector value at this point, but if a new entry is created, we
			 * make a copy of it.  This way we can free the tsvector value
			 * once we've processed all its lexemes.
			 */
			hash_key.lexeme = lexemesptr + curentryptr->pos;
			hash_key.length = curentryptr->len;

			/* Lookup current lexeme in hashtable, adding it if new */
			item = (TrackItem *) hash_search(lexemes_tab,
											 (const void *) &hash_key,
											 HASH_ENTER, &found);

			if (found)
			{
				/* The lexeme is already on the tracking list */
				item->frequency++;
			}
			else
			{
				/* Initialize new tracking list element */
				item->frequency = 1;
				item->delta = b_current - 1;

				item->key.lexeme = palloc(hash_key.length);
				memcpy(item->key.lexeme, hash_key.lexeme, hash_key.length);
			}

			/* lexeme_no is the number of elements processed (ie N) */
			lexeme_no++;

			/* We prune the D structure after processing each bucket */
			if (lexeme_no % bucket_width == 0)
			{
				prune_lexemes_hashtable(lexemes_tab, b_current);
				b_current++;
			}

			/* Advance to the next WordEntry in the tsvector */
			curentryptr++;
		}

		/* If the vector was toasted, free the detoasted copy. */
		if (TSVectorGetDatum(vector) != value)
			pfree(vector);
	}

	/* We can only compute real stats if we found some non-null values. */
	if (null_cnt < samplerows)
	{
		int			nonnull_cnt = samplerows - null_cnt;
		int			i;
		TrackItem **sort_table;
		int			track_len;
		int			cutoff_freq;
		int			minfreq,
					maxfreq;

		stats->stats_valid = true;
		/* Do the simple null-frac and average width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		stats->stawidth = total_width / (double) nonnull_cnt;

		/* Assume it's a unique column (see notes above) */
		stats->stadistinct = -1.0 * (1.0 - stats->stanullfrac);

		/*
		 * Construct an array of the interesting hashtable items, that is,
		 * those meeting the cutoff frequency (s - epsilon)*N.  Also identify
		 * the minimum and maximum frequencies among these items.
		 *
		 * Since epsilon = s/10 and bucket_width = 1/epsilon, the cutoff
		 * frequency is 9*N / bucket_width.
		 */
		cutoff_freq = 9 * lexeme_no / bucket_width;

		i = hash_get_num_entries(lexemes_tab);	/* surely enough space */
		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * i);

		hash_seq_init(&scan_status, lexemes_tab);
		track_len = 0;
		minfreq = lexeme_no;
		maxfreq = 0;
		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
		{
			if (item->frequency > cutoff_freq)
			{
				sort_table[track_len++] = item;
				minfreq = Min(minfreq, item->frequency);
				maxfreq = Max(maxfreq, item->frequency);
			}
		}
		Assert(track_len <= i);

		/* emit some statistics for debug purposes */
		elog(DEBUG3, "tsvector_stats: target # mces = %d, bucket width = %d, "
			 "# lexemes = %d, hashtable size = %d, usable entries = %d",
			 num_mcelem, bucket_width, lexeme_no, i, track_len);

		/*
		 * If we obtained more lexemes than we really want, get rid of those
		 * with least frequencies.  The easiest way is to qsort the array into
		 * descending frequency order and truncate the array.
		 */
		if (num_mcelem < track_len)
		{
			qsort(sort_table, track_len, sizeof(TrackItem *),
				  trackitem_compare_frequencies_desc);
			/* reset minfreq to the smallest frequency we're keeping */
			minfreq = sort_table[num_mcelem - 1]->frequency;
		}
		else
			num_mcelem = track_len;

		/* Generate MCELEM slot entry */
		if (num_mcelem > 0)
		{
			MemoryContext old_context;
			Datum	   *mcelem_values;
			float4	   *mcelem_freqs;

			/*
			 * We want to store statistics sorted on the lexeme value using
			 * first length, then byte-for-byte comparison. The reason for
			 * doing length comparison first is that we don't care about the
			 * ordering so long as it's consistent, and comparing lengths
			 * first gives us a chance to avoid a strncmp() call.
			 *
			 * This is different from what we do with scalar statistics --
			 * they get sorted on frequencies. The rationale is that we
			 * usually search through most common elements looking for a
			 * specific value, so we can grab its frequency.  When values are
			 * presorted we can employ binary search for that.  See
			 * ts_selfuncs.c for a real usage scenario.
			 */
			qsort(sort_table, num_mcelem, sizeof(TrackItem *),
				  trackitem_compare_lexemes);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);

			/*
			 * We sorted statistics on the lexeme value, but we want to be
			 * able to find out the minimal and maximal frequency without
			 * going through all the values.  We keep those two extra
			 * frequencies in two extra cells in mcelem_freqs.
			 *
			 * (Note: the MCELEM statistics slot definition allows for a third
			 * extra number containing the frequency of nulls, but we don't
			 * create that for a tsvector column, since null elements aren't
			 * possible.)
			 */
			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
			mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));

			/*
			 * See comments above about use of nonnull_cnt as the divisor for
			 * the final frequency estimates.
			 */
			for (i = 0; i < num_mcelem; i++)
			{
				TrackItem  *item = sort_table[i];

				mcelem_values[i] =
					PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
															 item->key.length));
				mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
			}
			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
			mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCELEM;
			stats->staop[0] = TextEqualOperator;
			stats->stacoll[0] = DEFAULT_COLLATION_OID;
			stats->stanumbers[0] = mcelem_freqs;
			/* See above comment about two extra frequency fields */
			stats->numnumbers[0] = num_mcelem + 2;
			stats->stavalues[0] = mcelem_values;
			stats->numvalues[0] = num_mcelem;
			/* We are storing text values */
			stats->statypid[0] = TEXTOID;
			stats->statyplen[0] = -1;	/* typlen, -1 for varlena */
			stats->statypbyval[0] = false;
			stats->statypalign[0] = 'i';
		}
	}
	else
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		stats->stawidth = 0;	/* "unknown" */
		stats->stadistinct = 0.0;	/* "unknown" */
	}

	/*
	 * We don't need to bother cleaning up any of our temporary palloc's. The
	 * hashtable should also go away, as it used a child memory context.
	 */
}
Exemplo n.º 8
0
/*
 * Assumes that the segment file lock is already held.
 * Assumes that the segment file should be compacted.
 */
static bool
AOCSSegmentFileFullCompaction(Relation aorel,
							  AOCSInsertDesc insertDesc,
							  AOCSFileSegInfo *fsinfo,
							  Snapshot snapshot)
{
	const char *relname;
	AppendOnlyVisimap visiMap;
	AOCSScanDesc scanDesc;
	TupleDesc	tupDesc;
	TupleTableSlot *slot;
	int			compact_segno;
	int64		movedTupleCount = 0;
	ResultRelInfo *resultRelInfo;
	MemTupleBinding *mt_bind;
	EState	   *estate;
	bool	   *proj;
	int			i;
	AOTupleId  *aoTupleId;
	int64		tupleCount = 0;
	int64		tuplePerPage = INT_MAX;

	Assert(Gp_role == GP_ROLE_EXECUTE || Gp_role == GP_ROLE_UTILITY);
	Assert(RelationIsAoCols(aorel));
	Assert(insertDesc);

	compact_segno = fsinfo->segno;
	if (fsinfo->varblockcount > 0)
	{
		tuplePerPage = fsinfo->total_tupcount / fsinfo->varblockcount;
	}
	relname = RelationGetRelationName(aorel);

	AppendOnlyVisimap_Init(&visiMap,
						   aorel->rd_appendonly->visimaprelid,
						   aorel->rd_appendonly->visimapidxid,
						   ShareLock,
						   snapshot);

	elogif(Debug_appendonly_print_compaction,
		   LOG, "Compact AO segfile %d, relation %sd",
		   compact_segno, relname);

	proj = palloc0(sizeof(bool) * RelationGetNumberOfAttributes(aorel));
	for (i = 0; i < RelationGetNumberOfAttributes(aorel); ++i)
	{
		proj[i] = true;
	}
	scanDesc = aocs_beginrangescan(aorel,
								   snapshot, snapshot,
								   &compact_segno, 1, NULL, proj);

	tupDesc = RelationGetDescr(aorel);
	slot = MakeSingleTupleTableSlot(tupDesc);
	mt_bind = create_memtuple_binding(tupDesc);

	/*
	 * We need a ResultRelInfo and an EState so we can use the regular
	 * executor's index-entry-making machinery.
	 */
	estate = CreateExecutorState();
	resultRelInfo = makeNode(ResultRelInfo);
	resultRelInfo->ri_RangeTableIndex = 1;	/* dummy */
	resultRelInfo->ri_RelationDesc = aorel;
	resultRelInfo->ri_TrigDesc = NULL;	/* we don't fire triggers */
	ExecOpenIndices(resultRelInfo);
	estate->es_result_relations = resultRelInfo;
	estate->es_num_result_relations = 1;
	estate->es_result_relation_info = resultRelInfo;

	while (aocs_getnext(scanDesc, ForwardScanDirection, slot))
	{
		CHECK_FOR_INTERRUPTS();

		aoTupleId = (AOTupleId *) slot_get_ctid(slot);
		if (AppendOnlyVisimap_IsVisible(&scanDesc->visibilityMap, aoTupleId))
		{
			AOCSMoveTuple(slot,
						  insertDesc,
						  resultRelInfo,
						  estate);
			movedTupleCount++;
		}
		else
		{
			/* Tuple is invisible and needs to be dropped */
			AppendOnlyThrowAwayTuple(aorel,
									 slot,
									 mt_bind);
		}

		/*
		 * Check for vacuum delay point after approximatly a var block
		 */
		tupleCount++;
		if (VacuumCostActive && tupleCount % tuplePerPage == 0)
		{
			vacuum_delay_point();
		}
	}

	SetAOCSFileSegInfoState(aorel, compact_segno,
							AOSEG_STATE_AWAITING_DROP);

	AppendOnlyVisimap_DeleteSegmentFile(&visiMap,
										compact_segno);

	/* Delete all mini pages of the segment files if block directory exists */
	if (OidIsValid(aorel->rd_appendonly->blkdirrelid))
	{
		AppendOnlyBlockDirectory_DeleteSegmentFile(aorel,
												   snapshot,
												   compact_segno,
												   0);
	}

	elogif(Debug_appendonly_print_compaction, LOG,
		   "Finished compaction: "
		   "AO segfile %d, relation %s, moved tuple count " INT64_FORMAT,
		   compact_segno, relname, movedTupleCount);

	AppendOnlyVisimap_Finish(&visiMap, NoLock);

	ExecCloseIndices(resultRelInfo);
	FreeExecutorState(estate);

	ExecDropSingleTupleTableSlot(slot);
	destroy_memtuple_binding(mt_bind);

	aocs_endscan(scanDesc);
	pfree(proj);

	return true;
}
Exemplo n.º 9
0
/*
 * Process the pending-TID list between pages of the main scan
 */
static void
spgprocesspending(spgBulkDeleteState *bds)
{
	Relation	index = bds->info->index;
	spgVacPendingItem *pitem;
	spgVacPendingItem *nitem;
	BlockNumber blkno;
	Buffer		buffer;
	Page		page;

	for (pitem = bds->pendingList; pitem != NULL; pitem = pitem->next)
	{
		if (pitem->done)
			continue;			/* ignore already-done items */

		/* call vacuum_delay_point while not holding any buffer lock */
		vacuum_delay_point();

		/* examine the referenced page */
		blkno = ItemPointerGetBlockNumber(&pitem->tid);
		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, bds->info->strategy);
		LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || SpGistPageIsDeleted(page))
		{
			/* Probably shouldn't happen, but ignore it */
		}
		else if (SpGistPageIsLeaf(page))
		{
			if (SpGistBlockIsRoot(blkno))
			{
				/* this should definitely not happen */
				elog(ERROR, "redirection leads to root page of index \"%s\"",
					 RelationGetRelationName(index));
			}

			/* deal with any deletable tuples */
			vacuumLeafPage(bds, index, buffer, true);
			/* might as well do this while we are here */
			vacuumRedirectAndPlaceholder(index, buffer);

			SpGistSetLastUsedPage(index, buffer);

			/*
			 * We can mark as done not only this item, but any later ones
			 * pointing at the same page, since we vacuumed the whole page.
			 */
			pitem->done = true;
			for (nitem = pitem->next; nitem != NULL; nitem = nitem->next)
			{
				if (ItemPointerGetBlockNumber(&nitem->tid) == blkno)
					nitem->done = true;
			}
		}
		else
		{
			/*
			 * On an inner page, visit the referenced inner tuple and add all
			 * its downlinks to the pending list.  We might have pending items
			 * for more than one inner tuple on the same page (in fact this is
			 * pretty likely given the way space allocation works), so get
			 * them all while we are here.
			 */
			for (nitem = pitem; nitem != NULL; nitem = nitem->next)
			{
				if (nitem->done)
					continue;
				if (ItemPointerGetBlockNumber(&nitem->tid) == blkno)
				{
					OffsetNumber offset;
					SpGistInnerTuple innerTuple;

					offset = ItemPointerGetOffsetNumber(&nitem->tid);
					innerTuple = (SpGistInnerTuple) PageGetItem(page,
												PageGetItemId(page, offset));
					if (innerTuple->tupstate == SPGIST_LIVE)
					{
						SpGistNodeTuple node;
						int			i;

						SGITITERATE(innerTuple, i, node)
						{
							if (ItemPointerIsValid(&node->t_tid))
								spgAddPendingTID(bds, &node->t_tid);
						}
					}
					else if (innerTuple->tupstate == SPGIST_REDIRECT)
					{
						/* transfer attention to redirect point */
						spgAddPendingTID(bds,
								   &((SpGistDeadTuple) innerTuple)->pointer);
					}
					else
						elog(ERROR, "unexpected SPGiST tuple state: %d",
							 innerTuple->tupstate);

					nitem->done = true;
				}
			}
Exemplo n.º 10
0
/*
 * Move tuples from pending pages into regular GIN structure.
 *
 * On first glance it looks completely not crash-safe. But if we crash
 * after posting entries to the main index and before removing them from the
 * pending list, it's okay because when we redo the posting later on, nothing
 * bad will happen.
 *
 * fill_fsm indicates that ginInsertCleanup should add deleted pages
 * to FSM otherwise caller is responsible to put deleted pages into
 * FSM.
 *
 * If stats isn't null, we count deleted pending pages into the counts.
 */
void
ginInsertCleanup(GinState *ginstate, bool full_clean,
				 bool fill_fsm, IndexBulkDeleteResult *stats)
{
	Relation	index = ginstate->index;
	Buffer		metabuffer,
				buffer;
	Page		metapage,
				page;
	GinMetaPageData *metadata;
	MemoryContext opCtx,
				oldCtx;
	BuildAccumulator accum;
	KeyArray	datums;
	BlockNumber blkno,
				blknoFinish;
	bool		cleanupFinish = false;
	bool		fsm_vac = false;
	Size		workMemory;
	bool		inVacuum = (stats == NULL);

	/*
	 * We would like to prevent concurrent cleanup process. For that we will
	 * lock metapage in exclusive mode using LockPage() call. Nobody other
	 * will use that lock for metapage, so we keep possibility of concurrent
	 * insertion into pending list
	 */

	if (inVacuum)
	{
		/*
		 * We are called from [auto]vacuum/analyze or gin_clean_pending_list()
		 * and we would like to wait concurrent cleanup to finish.
		 */
		LockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
		workMemory =
			(IsAutoVacuumWorkerProcess() && autovacuum_work_mem != -1) ?
			autovacuum_work_mem : maintenance_work_mem;
	}
	else
	{
		/*
		 * We are called from regular insert and if we see concurrent cleanup
		 * just exit in hope that concurrent process will clean up pending
		 * list.
		 */
		if (!ConditionalLockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock))
			return;
		workMemory = work_mem;
	}

	metabuffer = ReadBuffer(index, GIN_METAPAGE_BLKNO);
	LockBuffer(metabuffer, GIN_SHARE);
	metapage = BufferGetPage(metabuffer);
	metadata = GinPageGetMeta(metapage);

	if (metadata->head == InvalidBlockNumber)
	{
		/* Nothing to do */
		UnlockReleaseBuffer(metabuffer);
		UnlockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
		return;
	}

	/*
	 * Remember a tail page to prevent infinite cleanup if other backends add
	 * new tuples faster than we can cleanup.
	 */
	blknoFinish = metadata->tail;

	/*
	 * Read and lock head of pending list
	 */
	blkno = metadata->head;
	buffer = ReadBuffer(index, blkno);
	LockBuffer(buffer, GIN_SHARE);
	page = BufferGetPage(buffer);

	LockBuffer(metabuffer, GIN_UNLOCK);

	/*
	 * Initialize.  All temporary space will be in opCtx
	 */
	opCtx = AllocSetContextCreate(CurrentMemoryContext,
								  "GIN insert cleanup temporary context",
								  ALLOCSET_DEFAULT_MINSIZE,
								  ALLOCSET_DEFAULT_INITSIZE,
								  ALLOCSET_DEFAULT_MAXSIZE);

	oldCtx = MemoryContextSwitchTo(opCtx);

	initKeyArray(&datums, 128);
	ginInitBA(&accum);
	accum.ginstate = ginstate;

	/*
	 * At the top of this loop, we have pin and lock on the current page of
	 * the pending list.  However, we'll release that before exiting the loop.
	 * Note we also have pin but not lock on the metapage.
	 */
	for (;;)
	{
		Assert(!GinPageIsDeleted(page));

		/*
		 * Are we walk through the page which as we remember was a tail when
		 * we start our cleanup?  But if caller asks us to clean up whole
		 * pending list then ignore old tail, we will work until list becomes
		 * empty.
		 */
		if (blkno == blknoFinish && full_clean == false)
			cleanupFinish = true;

		/*
		 * read page's datums into accum
		 */
		processPendingPage(&accum, &datums, page, FirstOffsetNumber);

		vacuum_delay_point();

		/*
		 * Is it time to flush memory to disk?	Flush if we are at the end of
		 * the pending list, or if we have a full row and memory is getting
		 * full.
		 */
		if (GinPageGetOpaque(page)->rightlink == InvalidBlockNumber ||
			(GinPageHasFullRow(page) &&
			 (accum.allocatedMemory >= workMemory * 1024L)))
		{
			ItemPointerData *list;
			uint32		nlist;
			Datum		key;
			GinNullCategory category;
			OffsetNumber maxoff,
						attnum;

			/*
			 * Unlock current page to increase performance. Changes of page
			 * will be checked later by comparing maxoff after completion of
			 * memory flush.
			 */
			maxoff = PageGetMaxOffsetNumber(page);
			LockBuffer(buffer, GIN_UNLOCK);

			/*
			 * Moving collected data into regular structure can take
			 * significant amount of time - so, run it without locking pending
			 * list.
			 */
			ginBeginBAScan(&accum);
			while ((list = ginGetBAEntry(&accum,
								  &attnum, &key, &category, &nlist)) != NULL)
			{
				ginEntryInsert(ginstate, attnum, key, category,
							   list, nlist, NULL);
				vacuum_delay_point();
			}

			/*
			 * Lock the whole list to remove pages
			 */
			LockBuffer(metabuffer, GIN_EXCLUSIVE);
			LockBuffer(buffer, GIN_SHARE);

			Assert(!GinPageIsDeleted(page));

			/*
			 * While we left the page unlocked, more stuff might have gotten
			 * added to it.  If so, process those entries immediately.  There
			 * shouldn't be very many, so we don't worry about the fact that
			 * we're doing this with exclusive lock. Insertion algorithm
			 * guarantees that inserted row(s) will not continue on next page.
			 * NOTE: intentionally no vacuum_delay_point in this loop.
			 */
			if (PageGetMaxOffsetNumber(page) != maxoff)
			{
				ginInitBA(&accum);
				processPendingPage(&accum, &datums, page, maxoff + 1);

				ginBeginBAScan(&accum);
				while ((list = ginGetBAEntry(&accum,
								  &attnum, &key, &category, &nlist)) != NULL)
					ginEntryInsert(ginstate, attnum, key, category,
								   list, nlist, NULL);
			}

			/*
			 * Remember next page - it will become the new list head
			 */
			blkno = GinPageGetOpaque(page)->rightlink;
			UnlockReleaseBuffer(buffer);		/* shiftList will do exclusive
												 * locking */

			/*
			 * remove read pages from pending list, at this point all content
			 * of read pages is in regular structure
			 */
			shiftList(index, metabuffer, blkno, fill_fsm, stats);

			/* At this point, some pending pages have been freed up */
			fsm_vac = true;

			Assert(blkno == metadata->head);
			LockBuffer(metabuffer, GIN_UNLOCK);

			/*
			 * if we removed the whole pending list or we cleanup tail (which
			 * we remembered on start our cleanup process) then just exit
			 */
			if (blkno == InvalidBlockNumber || cleanupFinish)
				break;

			/*
			 * release memory used so far and reinit state
			 */
			MemoryContextReset(opCtx);
			initKeyArray(&datums, datums.maxvalues);
			ginInitBA(&accum);
		}
		else
		{
			blkno = GinPageGetOpaque(page)->rightlink;
			UnlockReleaseBuffer(buffer);
		}

		/*
		 * Read next page in pending list
		 */
		vacuum_delay_point();
		buffer = ReadBuffer(index, blkno);
		LockBuffer(buffer, GIN_SHARE);
		page = BufferGetPage(buffer);
	}

	UnlockPage(index, GIN_METAPAGE_BLKNO, ExclusiveLock);
	ReleaseBuffer(metabuffer);

	/*
	 * As pending list pages can have a high churn rate, it is desirable to
	 * recycle them immediately to the FreeSpace Map when ordinary backends
	 * clean the list.
	 */
	if (fsm_vac && fill_fsm)
		IndexFreeSpaceMapVacuum(index);


	/* Clean up temporary space */
	MemoryContextSwitchTo(oldCtx);
	MemoryContextDelete(opCtx);
}
Exemplo n.º 11
0
/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we
 * must go back and re-examine previously-scanned pages; this routine
 * recurses when necessary to handle that case.
 *
 * blkno is the page to process.  orig_blkno is the highest block number
 * reached by the outer btvacuumscan loop (the same as blkno, unless we
 * are recursing to re-examine a previous page).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	bool		delete_now;
	BlockNumber recurse_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque = NULL;

restart:
	delete_now = false;
	recurse_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
							 info->strategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);
	if (!PageIsNew(page))
	{
		_bt_checkpage(rel, buf);
		opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	}

	/*
	 * If we are recursing, the only case we want to do anything with is a
	 * live leaf page having the current vacuum cycle ID.  Any other state
	 * implies we already saw the page (eg, deleted it as being empty).
	 */
	if (blkno != orig_blkno)
	{
		if (_bt_page_recyclable(page) ||
			P_IGNORE(opaque) ||
			!P_ISLEAF(opaque) ||
			opaque->btpo_cycleid != vstate->cycleid)
		{
			_bt_relbuf(rel, buf);
			return;
		}
	}

	/* Page is valid, see what to do with it */
	if (_bt_page_recyclable(page))
	{
		/* Okay to recycle this page */
		RecordFreeIndexPage(rel, blkno);
		vstate->totFreePages++;
		stats->pages_deleted++;
	}
	else if (P_ISDELETED(opaque))
	{
		/* Already deleted, but can't recycle yet */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead, try to delete */
		delete_now = true;
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable;
		OffsetNumber offnum,
					minoff,
					maxoff;

		/*
		 * Trade in the initial read lock for a super-exclusive write lock on
		 * this page.  We must get such a lock on every leaf page over the
		 * course of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		LockBufferForCleanup(buf);

		/*
		 * Remember highest leaf page number we've taken cleanup lock on; see
		 * notes in btvacuumscan
		 */
		if (blkno > vstate->lastBlockLocked)
			vstate->lastBlockLocked = blkno;

		/*
		 * Check whether we need to recurse back to earlier pages.  What we
		 * are concerned about is a page split that happened since we started
		 * the vacuum scan.  If the split moved some tuples to a lower page
		 * then we might have missed 'em.  If so, set up for tail recursion.
		 * (Must do this before possibly clearing btpo_cycleid below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < orig_blkno)
			recurse_to = opaque->btpo_next;

		/*
		 * Scan over all items to see which ones need deleted according to the
		 * callback function.
		 */
		ndeletable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		if (callback)
		{
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				htup = &(itup->t_tid);

				/*
				 * During Hot Standby we currently assume that
				 * XLOG_BTREE_VACUUM records do not produce conflicts. That is
				 * only true as long as the callback function depends only
				 * upon whether the index tuple refers to heap tuples removed
				 * in the initial heap scan. When vacuum starts it derives a
				 * value of OldestXmin. Backends taking later snapshots could
				 * have a RecentGlobalXmin with a later xid than the vacuum's
				 * OldestXmin, so it is possible that row versions deleted
				 * after OldestXmin could be marked as killed by other
				 * backends. The callback function *could* look at the index
				 * tuple state in isolation and decide to delete the index
				 * tuple, though currently it does not. If it ever did, we
				 * would need to reconsider whether XLOG_BTREE_VACUUM records
				 * should cause conflicts. If they did cause conflicts they
				 * would be fairly harsh conflicts, since we haven't yet
				 * worked out a way to pass a useful value for
				 * latestRemovedXid on the XLOG_BTREE_VACUUM records. This
				 * applies to *any* type of index that marks index tuples as
				 * killed.
				 */
				if (callback(htup, callback_state))
					deletable[ndeletable++] = offnum;
			}
		}

		/*
		 * Apply any needed deletes.  We issue just one _bt_delitems_vacuum()
		 * call per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0)
		{
			/*
			 * Notice that the issued XLOG_BTREE_VACUUM WAL record includes
			 * all information to the replay code to allow it to get a cleanup
			 * lock on all pages between the previous lastBlockVacuumed and
			 * this page. This ensures that WAL replay locks all leaf pages at
			 * some point, which is important should non-MVCC scans be
			 * requested. This is currently unused on standby, but we record
			 * it anyway, so that the WAL contains the required information.
			 *
			 * Since we can visit leaf pages out-of-order when recursing,
			 * replay might end up locking such pages an extra time, but it
			 * doesn't seem worth the amount of bookkeeping it'd take to avoid
			 * that.
			 */
			_bt_delitems_vacuum(rel, buf, deletable, ndeletable,
								vstate->lastBlockVacuumed);

			/*
			 * Remember highest leaf page number we've issued a
			 * XLOG_BTREE_VACUUM WAL record for.
			 */
			if (blkno > vstate->lastBlockVacuumed)
				vstate->lastBlockVacuumed = blkno;

			stats->tuples_removed += ndeletable;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);
		}
		else
		{
			/*
			 * If the page has been split during this vacuum cycle, it seems
			 * worth expending a write to clear btpo_cycleid even if we don't
			 * have any deletions to do.  (If we do, _bt_delitems_vacuum takes
			 * care of this.)  This ensures we won't process the page again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				MarkBufferDirtyHint(buf, true);
			}
		}

		/*
		 * If it's now empty, try to delete; else count the live tuples. We
		 * don't delete when recursing, though, to avoid putting entries into
		 * freePages out-of-order (doesn't seem worth any extra code to handle
		 * the case).
		 */
		if (minoff > maxoff)
			delete_now = (blkno == orig_blkno);
		else
			stats->num_index_tuples += maxoff - minoff + 1;
	}

	if (delete_now)
	{
		MemoryContext oldcontext;
		int			ndel;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		ndel = _bt_pagedel(rel, buf);

		/* count only this page, else may double-count parent */
		if (ndel)
			stats->pages_deleted++;

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	/*
	 * This is really tail recursion, but if the compiler is too stupid to
	 * optimize it as such, we'd eat an uncomfortably large amount of stack
	 * space per recursion level (due to the deletable[] array). A failure is
	 * improbable since the number of levels isn't likely to be large ... but
	 * just in case, let's hand-optimize into a loop.
	 */
	if (recurse_to != P_NONE)
	{
		blkno = recurse_to;
		goto restart;
	}
}
Exemplo n.º 12
0
/*
 *	compute_tsvector_stats() -- compute statistics for a tsvector column
 *
 *	This functions computes statistics that are useful for determining @@
 *	operations' selectivity, along with the fraction of non-null rows and
 *	average width.
 *
 *	Instead of finding the most common values, as we do for most datatypes,
 *	we're looking for the most common lexemes. This is more useful, because
 *	there most probably won't be any two rows with the same tsvector and thus
 *	the notion of a MCV is a bit bogus with this datatype. With a list of the
 *	most common lexemes we can do a better job at figuring out @@ selectivity.
 *
 *	For the same reasons we assume that tsvector columns are unique when
 *	determining the number of distinct values.
 *
 *	The algorithm used is Lossy Counting, as proposed in the paper "Approximate
 *	frequency counts over data streams" by G. S. Manku and R. Motwani, in
 *	Proceedings of the 28th International Conference on Very Large Data Bases,
 *	Hong Kong, China, August 2002, section 4.2. The paper is available at
 *	http://www.vldb.org/conf/2002/S10P03.pdf
 *
 *	The Lossy Counting (aka LC) algorithm goes like this:
 *	Let D be a set of triples (e, f, d), where e is an element value, f is
 *	that element's frequency (occurrence count) and d is the maximum error in
 *	f.	We start with D empty and process the elements in batches of size
 *	w. (The batch size is also known as "bucket size".) Let the current batch
 *	number be b_current, starting with 1. For each element e we either
 *	increment its f count, if it's already in D, or insert a new triple into D
 *	with values (e, 1, b_current - 1). After processing each batch we prune D,
 *	by removing from it all elements with f + d <= b_current. Finally, we
 *	gather elements with largest f.  The LC paper proves error bounds on f
 *	dependent on the batch size w, and shows that the required table size
 *	is no more than a few times w.
 *
 *	We use a hashtable for the D structure and a bucket width of
 *	statistics_target * 10, where 10 is an arbitrarily chosen constant,
 *	meant to approximate the number of lexemes in a single tsvector.
 */
static void
compute_tsvector_stats(VacAttrStats *stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows)
{
	int			num_mcelem;
	int			null_cnt = 0;
	double		total_width = 0;

	/* This is D from the LC algorithm. */
	HTAB	   *lexemes_tab;
	HASHCTL		hash_ctl;
	HASH_SEQ_STATUS scan_status;

	/* This is the current bucket number from the LC algorithm */
	int			b_current;

	/* This is 'w' from the LC algorithm */
	int			bucket_width;
	int			vector_no,
				lexeme_no;
	LexemeHashKey hash_key;
	TrackItem  *item;

	/* We want statistics_target * 10 lexemes in the MCELEM array */
	num_mcelem = stats->attr->attstattarget * 10;

	/*
	 * We set bucket width equal to the target number of result lexemes. This
	 * is probably about right but perhaps might need to be scaled up or down
	 * a bit?
	 */
	bucket_width = num_mcelem;

	/*
	 * Create the hashtable. It will be in local memory, so we don't need to
	 * worry about initial size too much. Also we don't need to pay any
	 * attention to locking and memory management.
	 */
	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
	hash_ctl.keysize = sizeof(LexemeHashKey);
	hash_ctl.entrysize = sizeof(TrackItem);
	hash_ctl.hash = lexeme_hash;
	hash_ctl.match = lexeme_match;
	hash_ctl.hcxt = CurrentMemoryContext;
	lexemes_tab = hash_create("Analyzed lexemes table",
							  bucket_width * 4,
							  &hash_ctl,
					HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);

	/* Initialize counters. */
	b_current = 1;
	lexeme_no = 1;

	/* Loop over the tsvectors. */
	for (vector_no = 0; vector_no < samplerows; vector_no++)
	{
		Datum		value;
		bool		isnull;
		TSVector	vector;
		WordEntry  *curentryptr;
		char	   *lexemesptr;
		int			j;

		vacuum_delay_point();

		value = fetchfunc(stats, vector_no, &isnull);

		/*
		 * Check for null/nonnull.
		 */
		if (isnull)
		{
			null_cnt++;
			continue;
		}

		/*
		 * Add up widths for average-width calculation.  Since it's a
		 * tsvector, we know it's varlena.  As in the regular
		 * compute_minimal_stats function, we use the toasted width for this
		 * calculation.
		 */
		total_width += VARSIZE_ANY(DatumGetPointer(value));

		/*
		 * Now detoast the tsvector if needed.
		 */
		vector = DatumGetTSVector(value);

		/*
		 * We loop through the lexemes in the tsvector and add them to our
		 * tracking hashtable.	Note: the hashtable entries will point into
		 * the (detoasted) tsvector value, therefore we cannot free that
		 * storage until we're done.
		 */
		lexemesptr = STRPTR(vector);
		curentryptr = ARRPTR(vector);
		for (j = 0; j < vector->size; j++)
		{
			bool		found;

			/* Construct a hash key */
			hash_key.lexeme = lexemesptr + curentryptr->pos;
			hash_key.length = curentryptr->len;

			/* Lookup current lexeme in hashtable, adding it if new */
			item = (TrackItem *) hash_search(lexemes_tab,
											 (const void *) &hash_key,
											 HASH_ENTER, &found);

			if (found)
			{
				/* The lexeme is already on the tracking list */
				item->frequency++;
			}
			else
			{
				/* Initialize new tracking list element */
				item->frequency = 1;
				item->delta = b_current - 1;
			}

			/* We prune the D structure after processing each bucket */
			if (lexeme_no % bucket_width == 0)
			{
				prune_lexemes_hashtable(lexemes_tab, b_current);
				b_current++;
			}

			/* Advance to the next WordEntry in the tsvector */
			lexeme_no++;
			curentryptr++;
		}
	}

	/* We can only compute real stats if we found some non-null values. */
	if (null_cnt < samplerows)
	{
		int			nonnull_cnt = samplerows - null_cnt;
		int			i;
		TrackItem **sort_table;
		int			track_len;
		int			minfreq,
					maxfreq;

		stats->stats_valid = true;
		/* Do the simple null-frac and average width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		stats->stawidth = total_width / (double) nonnull_cnt;

		/* Assume it's a unique column (see notes above) */
		stats->stadistinct = -1.0;

		/*
		 * Determine the top-N lexemes by simply copying pointers from the
		 * hashtable into an array and applying qsort()
		 */
		track_len = hash_get_num_entries(lexemes_tab);

		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * track_len);

		hash_seq_init(&scan_status, lexemes_tab);
		i = 0;
		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
		{
			sort_table[i++] = item;
		}
		Assert(i == track_len);

		qsort(sort_table, track_len, sizeof(TrackItem *),
			  trackitem_compare_frequencies_desc);

		/* Suppress any single-occurrence items */
		while (track_len > 0)
		{
			if (sort_table[track_len - 1]->frequency > 1)
				break;
			track_len--;
		}

		/* Determine the number of most common lexemes to be stored */
		if (num_mcelem > track_len)
			num_mcelem = track_len;

		/* Generate MCELEM slot entry */
		if (num_mcelem > 0)
		{
			MemoryContext old_context;
			Datum	   *mcelem_values;
			float4	   *mcelem_freqs;

			/* Grab the minimal and maximal frequencies that will get stored */
			minfreq = sort_table[num_mcelem - 1]->frequency;
			maxfreq = sort_table[0]->frequency;

			/*
			 * We want to store statistics sorted on the lexeme value using
			 * first length, then byte-for-byte comparison. The reason for
			 * doing length comparison first is that we don't care about the
			 * ordering so long as it's consistent, and comparing lengths
			 * first gives us a chance to avoid a strncmp() call.
			 *
			 * This is different from what we do with scalar statistics --
			 * they get sorted on frequencies. The rationale is that we
			 * usually search through most common elements looking for a
			 * specific value, so we can grab its frequency.  When values are
			 * presorted we can employ binary search for that.	See
			 * ts_selfuncs.c for a real usage scenario.
			 */
			qsort(sort_table, num_mcelem, sizeof(TrackItem *),
				  trackitem_compare_lexemes);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);

			/*
			 * We sorted statistics on the lexeme value, but we want to be
			 * able to find out the minimal and maximal frequency without
			 * going through all the values.  We keep those two extra
			 * frequencies in two extra cells in mcelem_freqs.
			 */
			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
			mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));

			for (i = 0; i < num_mcelem; i++)
			{
				TrackItem  *item = sort_table[i];

				mcelem_values[i] =
					PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
														  item->key.length));
				mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
			}
			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
			mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCELEM;
			stats->staop[0] = TextEqualOperator;
			stats->stanumbers[0] = mcelem_freqs;
			/* See above comment about two extra frequency fields */
			stats->numnumbers[0] = num_mcelem + 2;
			stats->stavalues[0] = mcelem_values;
			stats->numvalues[0] = num_mcelem;
			/* We are storing text values */
			stats->statypid[0] = TEXTOID;
			stats->statyplen[0] = -1;	/* typlen, -1 for varlena */
			stats->statypbyval[0] = false;
			stats->statypalign[0] = 'i';
		}
	}
	else
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		stats->stawidth = 0;	/* "unknown" */
		stats->stadistinct = 0.0;		/* "unknown" */
	}

	/*
	 * We don't need to bother cleaning up any of our temporary palloc's. The
	 * hashtable should also go away, as it used a child memory context.
	 */
}
Exemplo n.º 13
0
Datum
ginvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	index = info->index;
	bool		needLock;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	GinState	ginstate;
	GinStatsData idxStat;

	/*
	 * In an autovacuum analyze, we want to clean up pending insertions.
	 * Otherwise, an ANALYZE-only call is a no-op.
	 */
	if (info->analyze_only)
	{
		if (IsAutoVacuumWorkerProcess())
		{
			initGinState(&ginstate, index);
			ginInsertCleanup(&ginstate, true, stats);
		}
		PG_RETURN_POINTER(stats);
	}

	/*
	 * Set up all-zero stats and cleanup pending inserts if ginbulkdelete
	 * wasn't called
	 */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		initGinState(&ginstate, index);
		ginInsertCleanup(&ginstate, true, stats);
	}

	memset(&idxStat, 0, sizeof(idxStat));

	/*
	 * XXX we always report the heap tuple count as the number of index
	 * entries.  This is bogus if the index is partial, but it's real hard to
	 * tell how many distinct heap entries are referenced by a GIN index.
	 */
	stats->num_index_tuples = info->num_heap_tuples;
	stats->estimated_count = info->estimated_count;

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(index);

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	totFreePages = 0;

	for (blkno = GIN_ROOT_BLKNO; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIN_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GinPageIsDeleted(page))
		{
			Assert(blkno != GIN_ROOT_BLKNO);
			RecordFreeIndexPage(index, blkno);
			totFreePages++;
		}
		else if (GinPageIsData(page))
		{
			idxStat.nDataPages++;
		}
		else if (!GinPageIsList(page))
		{
			idxStat.nEntryPages++;

			if (GinPageIsLeaf(page))
				idxStat.nEntries += PageGetMaxOffsetNumber(page);
		}

		UnlockReleaseBuffer(buffer);
	}

	/* Update the metapage with accurate page and entry counts */
	idxStat.nTotalPages = npages;
	ginUpdateStats(info->index, &idxStat);

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	stats->pages_free = totFreePages;

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemplo n.º 14
0
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum
rtbulkdelete(PG_FUNCTION_ARGS)
{
	Relation	rel = (Relation) PG_GETARG_POINTER(0);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(1);
	void	   *callback_state = (void *) PG_GETARG_POINTER(2);
	IndexBulkDeleteResult *result;
	BlockNumber num_pages;
	double		tuples_removed;
	double		num_index_tuples;
	IndexScanDesc iscan;

	tuples_removed = 0;
	num_index_tuples = 0;

	/*
	 * Since rtree is not marked "amconcurrent" in pg_am, caller should have
	 * acquired exclusive lock on index relation.  We need no locking here.
	 */

	/*
	 * XXX generic implementation --- should be improved!
	 */

	/* walk through the entire index */
	iscan = index_beginscan(NULL, rel, SnapshotAny, 0, NULL);
	/* including killed tuples */
	iscan->ignore_killed_tuples = false;

	while (index_getnext_indexitem(iscan, ForwardScanDirection))
	{
		vacuum_delay_point();

		if (callback(&iscan->xs_ctup.t_self, callback_state))
		{
			ItemPointerData indextup = iscan->currentItemData;
			BlockNumber blkno;
			OffsetNumber offnum;
			Buffer		buf;
			Page		page;

			blkno = ItemPointerGetBlockNumber(&indextup);
			offnum = ItemPointerGetOffsetNumber(&indextup);

			/* adjust any scans that will be affected by this deletion */
			/* (namely, my own scan) */
			rtadjscans(rel, RTOP_DEL, blkno, offnum);

			/* delete the index tuple */
			buf = ReadBuffer(rel, blkno);
			page = BufferGetPage(buf);

			PageIndexTupleDelete(page, offnum);

			WriteBuffer(buf);

			tuples_removed += 1;
		}
		else
			num_index_tuples += 1;
	}

	index_endscan(iscan);

	/* return statistics */
	num_pages = RelationGetNumberOfBlocks(rel);

	result = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	result->num_pages = num_pages;
	result->num_index_tuples = num_index_tuples;
	result->tuples_removed = tuples_removed;

	PG_RETURN_POINTER(result);
}
Exemplo n.º 15
0
/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 *
 *		If there are no indexes then we just vacuum each dirty page as we
 *		process it, since there's no point in gathering many tuples.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes, List *updated_stats)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
	BlockNumber empty_pages,
				vacuumed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	IndexBulkDeleteResult **indstats;
	int			i;
	int reindex_count = 1;
	PGRUsage	ru0;

	/* Fetch gp_persistent_relation_node information that will be added to XLOG record. */
	RelationFetchGpRelationNodeForXLog(onerel);

	pg_rusage_init(&ru0);

	relname = RelationGetRelationName(onerel);
	ereport(elevel,
			(errmsg("vacuuming \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					relname)));

	empty_pages = vacuumed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	indstats = (IndexBulkDeleteResult **)
		palloc0(nindexes * sizeof(IndexBulkDeleteResult *));

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->nonempty_pages = 0;

	lazy_space_alloc(vacrelstats, nblocks);

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		tupgone,
					hastup;
		int			prev_dead_count;
		OffsetNumber frozen[MaxOffsetNumber];
		int			nfrozen;

		vacuum_delay_point();

		/*
		 * If we are close to overrunning the available space for dead-tuple
		 * TIDs, pause and do a cycle of vacuuming before we tackle this page.
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats);

			reindex_count++;

			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
			vacrelstats->num_index_scans++;
		}

		/* -------- MirroredLock ---------- */
		MIRROREDLOCK_BUFMGR_LOCK;

		buf = ReadBufferWithStrategy(onerel, blkno, vac_strategy);

		/* We need buffer cleanup lock so that we can prune HOT chains. */
		LockBufferForCleanup(buf);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/*
			 * An all-zeroes page could be left over if a backend extends the
			 * relation but crashes before initializing the page. Reclaim such
			 * pages for use.
			 *
			 * We have to be careful here because we could be looking at a
			 * page that someone has just added to the relation and not yet
			 * been able to initialize (see RelationGetBufferForTuple). To
			 * protect against that, release the buffer lock, grab the
			 * relation extension lock momentarily, and re-lock the buffer. If
			 * the page is still uninitialized by then, it must be left over
			 * from a crashed backend, and we can initialize it.
			 *
			 * We don't really need the relation lock when this is a new or
			 * temp relation, but it's probably not worth the code space to
			 * check that, since this surely isn't a critical path.
			 *
			 * Note: the comparable code in vacuum.c need not worry because
			 * it's got exclusive lock on the whole relation.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			/* -------- MirroredLock ---------- */

			LockRelationForExtension(onerel, ExclusiveLock);
			UnlockRelationForExtension(onerel, ExclusiveLock);

			/* -------- MirroredLock ---------- */
			MIRROREDLOCK_BUFMGR_LOCK;

			LockBufferForCleanup(buf);
			if (PageIsNew(page))
			{
				ereport(WARNING,
				(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
						relname, blkno)));
				PageInit(page, BufferGetPageSize(buf), 0);

				/* must record in xlog so that changetracking will know about this change */
				log_heap_newpage(onerel, page, blkno);

				empty_pages++;
				lazy_record_free_space(vacrelstats, blkno,
									   PageGetHeapFreeSpace(page));
			}
			MarkBufferDirty(buf);
			UnlockReleaseBuffer(buf);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			/* -------- MirroredLock ---------- */

			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetHeapFreeSpace(page));
			UnlockReleaseBuffer(buf);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			/* -------- MirroredLock ---------- */

			continue;
		}

		/*
		 * Prune all HOT-update chains in this page.
		 *
		 * We count tuples removed by the pruning step as removed by VACUUM.
		 */
		tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin,
										 false, false);

		/*
		 * Now scan the page to collect vacuumable items and check for tuples
		 * requiring freezing.
		 */
		nfrozen = 0;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;

			itemid = PageGetItemId(page, offnum);

			/* Unused items require no processing, but we count 'em */
			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			/* Redirect items mustn't be touched */
			if (ItemIdIsRedirected(itemid))
			{
				hastup = true;	/* this page won't be truncatable */
				continue;
			}

			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			/*
			 * DEAD item pointers are to be vacuumed normally; but we don't
			 * count them in tups_vacuumed, else we'd be double-counting (at
			 * least in the common case where heap_page_prune() just freed up
			 * a non-HOT tuple).
			 */
			if (ItemIdIsDead(itemid))
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				continue;
			}

			Assert(ItemIdIsNormal(itemid));

			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);

			tupgone = false;

			switch (HeapTupleSatisfiesVacuum(onerel, tuple.t_data, OldestXmin, buf))
			{
				case HEAPTUPLE_DEAD:

					/*
					 * Ordinarily, DEAD tuples would have been removed by
					 * heap_page_prune(), but it's possible that the tuple
					 * state changed since heap_page_prune() looked.  In
					 * particular an INSERT_IN_PROGRESS tuple could have
					 * changed to DEAD if the inserter aborted.  So this
					 * cannot be considered an error condition.
					 *
					 * If the tuple is HOT-updated then it must only be
					 * removed by a prune operation; so we keep it just as if
					 * it were RECENTLY_DEAD.  Also, if it's a heap-only
					 * tuple, we choose to keep it, because it'll be a lot
					 * cheaper to get rid of it in the next pruning pass than
					 * to treat it like an indexed tuple.
					 */
					if (HeapTupleIsHotUpdated(&tuple) ||
						HeapTupleIsHeapOnly(&tuple))
						nkeep += 1;
					else
						tupgone = true; /* we can delete the tuple */
					break;
				case HEAPTUPLE_LIVE:
					/* Tuple is good --- but let's do some validity checks */
					if (onerel->rd_rel->relhasoids &&
						!OidIsValid(HeapTupleGetOid(&tuple)))
						elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
							 relname, blkno, offnum);
					break;
				case HEAPTUPLE_RECENTLY_DEAD:

					/*
					 * If tuple is recently deleted then we must not remove it
					 * from relation.
					 */
					nkeep += 1;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				tups_vacuumed += 1;
			}
			else
			{
				num_tuples += 1;
				hastup = true;

				/*
				 * Each non-removable tuple must be checked to see if it needs
				 * freezing.  Note we already have exclusive buffer lock.
				 */
				if (heap_freeze_tuple(tuple.t_data, &FreezeLimit,
									  InvalidBuffer, false))
					frozen[nfrozen++] = offnum;
			}
		}						/* scan along page */

		/*
		 * If we froze any tuples, mark the buffer dirty, and write a WAL
		 * record recording the changes.  We must log the changes to be
		 * crash-safe against future truncation of CLOG.
		 */
		if (nfrozen > 0)
		{
			MarkBufferDirty(buf);
			/* no XLOG for temp tables, though */
			if (!onerel->rd_istemp)
			{
				XLogRecPtr	recptr;

				recptr = log_heap_freeze(onerel, buf, FreezeLimit,
										 frozen, nfrozen);
				PageSetLSN(page, recptr);
			}
		}

		/*
		 * If there are no indexes then we can vacuum the page right now
		 * instead of doing a second scan.
		 */
		if (nindexes == 0 &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove tuples from heap */
			lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
			vacuumed_pages++;
		}

		/*
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and record
		 * its post-compaction free space.	If not, then we're done with this
		 * page, so remember its free space as-is.	(This path will always be
		 * taken if there are no indexes.)
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
		{
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetHeapFreeSpace(page));
		}

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		UnlockReleaseBuffer(buf);

		MIRROREDLOCK_BUFMGR_UNLOCK;
		/* -------- MirroredLock ---------- */

	}

	/* save stats for use later */
	vacrelstats->rel_tuples = num_tuples;
	vacrelstats->tuples_deleted = tups_vacuumed;

	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min number of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i], &indstats[i], vacrelstats);

		reindex_count++;

		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
		vacrelstats->num_index_scans++;
	}

	/* Do post-vacuum cleanup and statistics update for each index */
	for (i = 0; i < nindexes; i++)
		lazy_cleanup_index(Irel[i], indstats[i], vacrelstats, updated_stats);

	/* If no indexes, make log report that lazy_vacuum_heap would've made */
	if (vacuumed_pages)
		ereport(elevel,
				(errmsg("\"%s\": removed %.0f row versions in %u pages",
						RelationGetRelationName(onerel),
						tups_vacuumed, vacuumed_pages)));

	ereport(elevel,
			(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u pages",
					RelationGetRelationName(onerel),
					tups_vacuumed, num_tuples, nblocks),
			 errdetail("%.0f dead row versions cannot be removed yet.\n"
					   "There were %.0f unused item pointers.\n"
					   "%u pages contain useful free space.\n"
					   "%u pages are entirely empty.\n"
					   "%s.",
					   nkeep,
					   nunused,
					   vacrelstats->tot_free_pages,
					   empty_pages,
					   pg_rusage_show(&ru0))));
}
Exemplo n.º 16
0
Datum
ginvacuumcleanup(PG_FUNCTION_ARGS)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	index = info->index;
	bool		needLock;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages,
				nFreePages,
			   *freePages,
				maxFreePages;
	BlockNumber lastBlock = GIN_ROOT_BLKNO,
				lastFilledBlock = GIN_ROOT_BLKNO;

	/* Set up all-zero stats if ginbulkdelete wasn't called */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));

	/*
	 * XXX we always report the heap tuple count as the number of index
	 * entries.  This is bogus if the index is partial, but it's real hard to
	 * tell how many distinct heap entries are referenced by a GIN index.
	 */
	stats->num_index_tuples = info->num_heap_tuples;

	/*
	 * If vacuum full, we already have exclusive lock on the index. Otherwise,
	 * need lock unless it's local to this backend.
	 */
	if (info->vacuum_full)
		needLock = false;
	else
		needLock = !RELATION_IS_LOCAL(index);

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	maxFreePages = npages;
	if (maxFreePages > MaxFSMPages)
		maxFreePages = MaxFSMPages;

	totFreePages = nFreePages = 0;
	freePages = (BlockNumber *) palloc(sizeof(BlockNumber) * maxFreePages);

	for (blkno = GIN_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();
		
		// -------- MirroredLock ----------
		MIRROREDLOCK_BUFMGR_LOCK;
		
		buffer = ReadBuffer(index, blkno);
		LockBuffer(buffer, GIN_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GinPageIsDeleted(page))
		{
			if (nFreePages < maxFreePages)
				freePages[nFreePages++] = blkno;
			totFreePages++;
		}
		else
			lastFilledBlock = blkno;

		UnlockReleaseBuffer(buffer);
		
		MIRROREDLOCK_BUFMGR_UNLOCK;
		// -------- MirroredLock ----------
		
	}
	lastBlock = npages - 1;

	if (info->vacuum_full && nFreePages > 0)
	{
		/* try to truncate index */
		int			i;

		for (i = 0; i < nFreePages; i++)
			if (freePages[i] >= lastFilledBlock)
			{
				totFreePages = nFreePages = i;
				break;
			}

		if (lastBlock > lastFilledBlock)
			RelationTruncate(
					index, 
					lastFilledBlock + 1,
					/* markPersistentAsPhysicallyTruncated */ true);

		stats->pages_removed = lastBlock - lastFilledBlock;
	}

	RecordIndexFreeSpace(&index->rd_node, totFreePages, nFreePages, freePages);
	stats->pages_free = totFreePages;

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemplo n.º 17
0
Datum
ginbulkdelete(PG_FUNCTION_ARGS)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
	void	   *callback_state = (void *) PG_GETARG_POINTER(3);
	Relation	index = info->index;
	BlockNumber blkno = GIN_ROOT_BLKNO;
	GinVacuumState gvs;
	Buffer		buffer;
	BlockNumber rootOfPostingTree[BLCKSZ / (sizeof(IndexTupleData) + sizeof(ItemId))];
	uint32		nRoot;

	/* first time through? */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	/* we'll re-count the tuples each time */
	stats->num_index_tuples = 0;

	gvs.index = index;
	gvs.result = stats;
	gvs.callback = callback;
	gvs.callback_state = callback_state;
	initGinState(&gvs.ginstate, index);
	
	// -------- MirroredLock ----------
	MIRROREDLOCK_BUFMGR_LOCK;
	
	buffer = ReadBuffer(index, blkno);

	/* find leaf page */
	for (;;)
	{
		Page		page = BufferGetPage(buffer);
		IndexTuple	itup;

		LockBuffer(buffer, GIN_SHARE);

		Assert(!GinPageIsData(page));

		if (GinPageIsLeaf(page))
		{
			LockBuffer(buffer, GIN_UNLOCK);
			LockBuffer(buffer, GIN_EXCLUSIVE);

			if (blkno == GIN_ROOT_BLKNO && !GinPageIsLeaf(page))
			{
				LockBuffer(buffer, GIN_UNLOCK);
				continue;		/* check it one more */
			}
			break;
		}

		Assert(PageGetMaxOffsetNumber(page) >= FirstOffsetNumber);

		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, FirstOffsetNumber));
		blkno = GinItemPointerGetBlockNumber(&(itup)->t_tid);
		Assert(blkno != InvalidBlockNumber);

		LockBuffer(buffer, GIN_UNLOCK);
		buffer = ReleaseAndReadBuffer(buffer, index, blkno);
	}

	/* right now we found leftmost page in entry's BTree */

	for (;;)
	{
		Page		page = BufferGetPage(buffer);
		Page		resPage;
		uint32		i;

		Assert(!GinPageIsData(page));

		resPage = ginVacuumEntryPage(&gvs, buffer, rootOfPostingTree, &nRoot);

		blkno = GinPageGetOpaque(page)->rightlink;

		if (resPage)
		{
			START_CRIT_SECTION();
			PageRestoreTempPage(resPage, page);
			MarkBufferDirty(buffer);
			xlogVacuumPage(gvs.index, buffer);
			UnlockReleaseBuffer(buffer);
			END_CRIT_SECTION();
		}
		else
		{
			UnlockReleaseBuffer(buffer);
		}

		vacuum_delay_point();

		for (i = 0; i < nRoot; i++)
		{
			ginVacuumPostingTree(&gvs, rootOfPostingTree[i]);
			vacuum_delay_point();
		}

		if (blkno == InvalidBlockNumber)		/* rightmost page */
			break;

		buffer = ReadBuffer(index, blkno);
		LockBuffer(buffer, GIN_EXCLUSIVE);
	}
	
	MIRROREDLOCK_BUFMGR_UNLOCK;
	// -------- MirroredLock ----------
	
	PG_RETURN_POINTER(gvs.result);
}
Exemplo n.º 18
0
/*
 * Helper function to perform deletion of index entries from a bucket.
 *
 * This function expects that the caller has acquired a cleanup lock on the
 * primary bucket page, and will return with a write lock again held on the
 * primary bucket page.  The lock won't necessarily be held continuously,
 * though, because we'll release it when visiting overflow pages.
 *
 * It would be very bad if this function cleaned a page while some other
 * backend was in the midst of scanning it, because hashgettuple assumes
 * that the next valid TID will be greater than or equal to the current
 * valid TID.  There can't be any concurrent scans in progress when we first
 * enter this function because of the cleanup lock we hold on the primary
 * bucket page, but as soon as we release that lock, there might be.  We
 * handle that by conspiring to prevent those scans from passing our cleanup
 * scan.  To do that, we lock the next page in the bucket chain before
 * releasing the lock on the previous page.  (This type of lock chaining is
 * not ideal, so we might want to look for a better solution at some point.)
 *
 * We need to retain a pin on the primary bucket to ensure that no concurrent
 * split can start.
 */
void
hashbucketcleanup(Relation rel, Bucket cur_bucket, Buffer bucket_buf,
                  BlockNumber bucket_blkno, BufferAccessStrategy bstrategy,
                  uint32 maxbucket, uint32 highmask, uint32 lowmask,
                  double *tuples_removed, double *num_index_tuples,
                  bool split_cleanup,
                  IndexBulkDeleteCallback callback, void *callback_state)
{
    BlockNumber blkno;
    Buffer		buf;
    Bucket new_bucket PG_USED_FOR_ASSERTS_ONLY = InvalidBucket;
    bool		bucket_dirty = false;

    blkno = bucket_blkno;
    buf = bucket_buf;

    if (split_cleanup)
        new_bucket = _hash_get_newbucket_from_oldbucket(rel, cur_bucket,
                     lowmask, maxbucket);

    /* Scan each page in bucket */
    for (;;)
    {
        HashPageOpaque opaque;
        OffsetNumber offno;
        OffsetNumber maxoffno;
        Buffer		next_buf;
        Page		page;
        OffsetNumber deletable[MaxOffsetNumber];
        int			ndeletable = 0;
        bool		retain_pin = false;
        bool		curr_page_dirty = false;

        vacuum_delay_point();

        page = BufferGetPage(buf);
        opaque = (HashPageOpaque) PageGetSpecialPointer(page);

        /* Scan each tuple in page */
        maxoffno = PageGetMaxOffsetNumber(page);
        for (offno = FirstOffsetNumber;
                offno <= maxoffno;
                offno = OffsetNumberNext(offno))
        {
            ItemPointer htup;
            IndexTuple	itup;
            Bucket		bucket;
            bool		kill_tuple = false;

            itup = (IndexTuple) PageGetItem(page,
                                            PageGetItemId(page, offno));
            htup = &(itup->t_tid);

            /*
             * To remove the dead tuples, we strictly want to rely on results
             * of callback function.  refer btvacuumpage for detailed reason.
             */
            if (callback && callback(htup, callback_state))
            {
                kill_tuple = true;
                if (tuples_removed)
                    *tuples_removed += 1;
            }
            else if (split_cleanup)
            {
                /* delete the tuples that are moved by split. */
                bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup),
                                              maxbucket,
                                              highmask,
                                              lowmask);
                /* mark the item for deletion */
                if (bucket != cur_bucket)
                {
                    /*
                     * We expect tuples to either belong to curent bucket or
                     * new_bucket.  This is ensured because we don't allow
                     * further splits from bucket that contains garbage. See
                     * comments in _hash_expandtable.
                     */
                    Assert(bucket == new_bucket);
                    kill_tuple = true;
                }
            }

            if (kill_tuple)
            {
                /* mark the item for deletion */
                deletable[ndeletable++] = offno;
            }
            else
            {
                /* we're keeping it, so count it */
                if (num_index_tuples)
                    *num_index_tuples += 1;
            }
        }

        /* retain the pin on primary bucket page till end of bucket scan */
        if (blkno == bucket_blkno)
            retain_pin = true;
        else
            retain_pin = false;

        blkno = opaque->hasho_nextblkno;

        /*
         * Apply deletions, advance to next page and write page if needed.
         */
        if (ndeletable > 0)
        {
            PageIndexMultiDelete(page, deletable, ndeletable);
            bucket_dirty = true;
            curr_page_dirty = true;
        }

        /* bail out if there are no more pages to scan. */
        if (!BlockNumberIsValid(blkno))
            break;

        next_buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
                                              LH_OVERFLOW_PAGE,
                                              bstrategy);

        /*
         * release the lock on previous page after acquiring the lock on next
         * page
         */
        if (curr_page_dirty)
        {
            if (retain_pin)
                _hash_chgbufaccess(rel, buf, HASH_WRITE, HASH_NOLOCK);
            else
                _hash_wrtbuf(rel, buf);
            curr_page_dirty = false;
        }
        else if (retain_pin)
            _hash_chgbufaccess(rel, buf, HASH_READ, HASH_NOLOCK);
        else
            _hash_relbuf(rel, buf);

        buf = next_buf;
    }

    /*
     * lock the bucket page to clear the garbage flag and squeeze the bucket.
     * if the current buffer is same as bucket buffer, then we already have
     * lock on bucket page.
     */
    if (buf != bucket_buf)
    {
        _hash_relbuf(rel, buf);
        _hash_chgbufaccess(rel, bucket_buf, HASH_NOLOCK, HASH_WRITE);
    }

    /*
     * Clear the garbage flag from bucket after deleting the tuples that are
     * moved by split.  We purposefully clear the flag before squeeze bucket,
     * so that after restart, vacuum shouldn't again try to delete the moved
     * by split tuples.
     */
    if (split_cleanup)
    {
        HashPageOpaque bucket_opaque;
        Page		page;

        page = BufferGetPage(bucket_buf);
        bucket_opaque = (HashPageOpaque) PageGetSpecialPointer(page);

        bucket_opaque->hasho_flag &= ~LH_BUCKET_NEEDS_SPLIT_CLEANUP;
    }

    /*
     * If we have deleted anything, try to compact free space.  For squeezing
     * the bucket, we must have a cleanup lock, else it can impact the
     * ordering of tuples for a scan that has started before it.
     */
    if (bucket_dirty && IsBufferCleanupOK(bucket_buf))
        _hash_squeezebucket(rel, cur_bucket, bucket_blkno, bucket_buf,
                            bstrategy);
    else
        _hash_chgbufaccess(rel, bucket_buf, HASH_WRITE, HASH_NOLOCK);
}
Exemplo n.º 19
0
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples and
 * check invalid tuples left after upgrade.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
gistbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			   IndexBulkDeleteCallback callback, void *callback_state)
{
	Relation	rel = info->index;
	GistBDItem *stack,
			   *ptr;

	/* first time through? */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	/* we'll re-count the tuples each time */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;

	stack = (GistBDItem *) palloc0(sizeof(GistBDItem));
	stack->blkno = GIST_ROOT_BLKNO;

	while (stack)
	{
		Buffer		buffer;
		Page		page;
		OffsetNumber i,
					maxoff;
		IndexTuple	idxtuple;
		ItemId		iid;

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, stack->blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		gistcheckpage(rel, buffer);
		page = (Page) BufferGetPage(buffer);

		if (GistPageIsLeaf(page))
		{
			OffsetNumber todelete[MaxOffsetNumber];
			int			ntodelete = 0;

			LockBuffer(buffer, GIST_UNLOCK);
			LockBuffer(buffer, GIST_EXCLUSIVE);

			page = (Page) BufferGetPage(buffer);
			if (stack->blkno == GIST_ROOT_BLKNO && !GistPageIsLeaf(page))
			{
				/* only the root can become non-leaf during relock */
				UnlockReleaseBuffer(buffer);
				/* one more check */
				continue;
			}

			/*
			 * check for split proceeded after look at parent, we should check
			 * it after relock
			 */
			pushStackIfSplited(page, stack);

			/*
			 * Remove deletable tuples from page
			 */

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				if (callback(&(idxtuple->t_tid), callback_state))
					todelete[ntodelete++] = i;
				else
					stats->num_index_tuples += 1;
			}

			stats->tuples_removed += ntodelete;

			if (ntodelete)
			{
				START_CRIT_SECTION();

				MarkBufferDirty(buffer);

				PageIndexMultiDelete(page, todelete, ntodelete);
				GistMarkTuplesDeleted(page);

				if (RelationNeedsWAL(rel))
				{
					XLogRecPtr	recptr;

					recptr = gistXLogUpdate(buffer,
											todelete, ntodelete,
											NULL, 0, InvalidBuffer);
					PageSetLSN(page, recptr);
				}
				else
					PageSetLSN(page, gistGetFakeLSN(rel));

				END_CRIT_SECTION();
			}

		}
		else
		{
			/* check for split proceeded after look at parent */
			pushStackIfSplited(page, stack);

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				ptr = (GistBDItem *) palloc(sizeof(GistBDItem));
				ptr->blkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
				ptr->parentlsn = BufferGetLSNAtomic(buffer);
				ptr->next = stack->next;
				stack->next = ptr;

				if (GistTupleIsInvalid(idxtuple))
					ereport(LOG,
							(errmsg("index \"%s\" contains an inner tuple marked as invalid",
									RelationGetRelationName(rel)),
							 errdetail("This is caused by an incomplete page split at crash recovery before upgrading to PostgreSQL 9.1."),
							 errhint("Please REINDEX it.")));
			}
		}

		UnlockReleaseBuffer(buffer);

		ptr = stack->next;
		pfree(stack);
		stack = ptr;

		vacuum_delay_point();
	}

	return stats;
}
Exemplo n.º 20
0
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
hashbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			   IndexBulkDeleteCallback callback, void *callback_state)
{
	Relation	rel = info->index;
	double		tuples_removed;
	double		num_index_tuples;
	double		orig_ntuples;
	Bucket		orig_maxbucket;
	Bucket		cur_maxbucket;
	Bucket		cur_bucket;
	Buffer		metabuf;
	HashMetaPage metap;
	HashMetaPageData local_metapage;

	tuples_removed = 0;
	num_index_tuples = 0;

	/*
	 * Read the metapage to fetch original bucket and tuple counts.  Also, we
	 * keep a copy of the last-seen metapage so that we can use its
	 * hashm_spares[] values to compute bucket page addresses.  This is a bit
	 * hokey but perfectly safe, since the interesting entries in the spares
	 * array cannot change under us; and it beats rereading the metapage for
	 * each bucket.
	 */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));
	orig_maxbucket = metap->hashm_maxbucket;
	orig_ntuples = metap->hashm_ntuples;
	memcpy(&local_metapage, metap, sizeof(local_metapage));
	_hash_relbuf(rel, metabuf);

	/* Scan the buckets that we know exist */
	cur_bucket = 0;
	cur_maxbucket = orig_maxbucket;

loop_top:
	while (cur_bucket <= cur_maxbucket)
	{
		BlockNumber bucket_blkno;
		BlockNumber blkno;
		bool		bucket_dirty = false;

		/* Get address of bucket's start page */
		bucket_blkno = BUCKET_TO_BLKNO(&local_metapage, cur_bucket);

		/* Exclusive-lock the bucket so we can shrink it */
		_hash_getlock(rel, bucket_blkno, HASH_EXCLUSIVE);

		/* Shouldn't have any active scans locally, either */
		if (_hash_has_active_scan(rel, cur_bucket))
			elog(ERROR, "hash index has active scan during VACUUM");

		/* Scan each page in bucket */
		blkno = bucket_blkno;
		while (BlockNumberIsValid(blkno))
		{
			Buffer		buf;
			Page		page;
			HashPageOpaque opaque;
			OffsetNumber offno;
			OffsetNumber maxoffno;
			OffsetNumber deletable[MaxOffsetNumber];
			int			ndeletable = 0;

			vacuum_delay_point();

			buf = _hash_getbuf_with_strategy(rel, blkno, HASH_WRITE,
										   LH_BUCKET_PAGE | LH_OVERFLOW_PAGE,
											 info->strategy);
			page = BufferGetPage(buf);
			opaque = (HashPageOpaque) PageGetSpecialPointer(page);
			Assert(opaque->hasho_bucket == cur_bucket);

			/* Scan each tuple in page */
			maxoffno = PageGetMaxOffsetNumber(page);
			for (offno = FirstOffsetNumber;
				 offno <= maxoffno;
				 offno = OffsetNumberNext(offno))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offno));
				htup = &(itup->t_tid);
				if (callback(htup, callback_state))
				{
					/* mark the item for deletion */
					deletable[ndeletable++] = offno;
					tuples_removed += 1;
				}
				else
					num_index_tuples += 1;
			}

			/*
			 * Apply deletions and write page if needed, advance to next page.
			 */
			blkno = opaque->hasho_nextblkno;

			if (ndeletable > 0)
			{
				PageIndexMultiDelete(page, deletable, ndeletable);
				_hash_wrtbuf(rel, buf);
				bucket_dirty = true;
			}
			else
				_hash_relbuf(rel, buf);
		}

		/* If we deleted anything, try to compact free space */
		if (bucket_dirty)
			_hash_squeezebucket(rel, cur_bucket, bucket_blkno,
								info->strategy);

		/* Release bucket lock */
		_hash_droplock(rel, bucket_blkno, HASH_EXCLUSIVE);

		/* Advance to next bucket */
		cur_bucket++;
	}

	/* Write-lock metapage and check for split since we started */
	metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_WRITE, LH_META_PAGE);
	metap = HashPageGetMeta(BufferGetPage(metabuf));

	if (cur_maxbucket != metap->hashm_maxbucket)
	{
		/* There's been a split, so process the additional bucket(s) */
		cur_maxbucket = metap->hashm_maxbucket;
		memcpy(&local_metapage, metap, sizeof(local_metapage));
		_hash_relbuf(rel, metabuf);
		goto loop_top;
	}

	/* Okay, we're really done.  Update tuple count in metapage. */

	if (orig_maxbucket == metap->hashm_maxbucket &&
		orig_ntuples == metap->hashm_ntuples)
	{
		/*
		 * No one has split or inserted anything since start of scan, so
		 * believe our count as gospel.
		 */
		metap->hashm_ntuples = num_index_tuples;
	}
	else
	{
		/*
		 * Otherwise, our count is untrustworthy since we may have
		 * double-scanned tuples in split buckets.  Proceed by dead-reckoning.
		 * (Note: we still return estimated_count = false, because using this
		 * count is better than not updating reltuples at all.)
		 */
		if (metap->hashm_ntuples > tuples_removed)
			metap->hashm_ntuples -= tuples_removed;
		else
			metap->hashm_ntuples = 0;
		num_index_tuples = metap->hashm_ntuples;
	}

	_hash_wrtbuf(rel, metabuf);

	/* return statistics */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
	stats->estimated_count = false;
	stats->num_index_tuples = num_index_tuples;
	stats->tuples_removed += tuples_removed;
	/* hashvacuumcleanup will fill in num_pages */

	return stats;
}
Exemplo n.º 21
0
/*
 * VACUUM cleanup: update FSM
 */
IndexBulkDeleteResult *
gistvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	bool		needLock;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		return stats;

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		/* use heap's tuple count */
		stats->num_index_tuples = info->num_heap_tuples;
		stats->estimated_count = info->estimated_count;

		/*
		 * XXX the above is wrong if index is partial.  Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	totFreePages = 0;
	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
									info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			totFreePages++;
			RecordFreeIndexPage(rel, blkno);
		}
		UnlockReleaseBuffer(buffer);
	}

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/* return statistics */
	stats->pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	return stats;
}
Exemplo n.º 22
0
/*
 * Scan through posting tree, delete empty tuples from leaf pages.
 * Also, this function collects empty subtrees (with all empty leafs).
 * For parents of these subtrees CleanUp lock is taken, then we call
 * ScanToDelete. This is done for every inner page, which points to
 * empty subtree.
 */
static bool
ginVacuumPostingTreeLeaves(GinVacuumState *gvs, BlockNumber blkno, bool isRoot)
{
	Buffer		buffer;
	Page		page;
	bool		hasVoidPage = FALSE;
	MemoryContext oldCxt;

	buffer = ReadBufferExtended(gvs->index, MAIN_FORKNUM, blkno,
								RBM_NORMAL, gvs->strategy);
	page = BufferGetPage(buffer);

	ginTraverseLock(buffer, false);

	Assert(GinPageIsData(page));

	if (GinPageIsLeaf(page))
	{
		oldCxt = MemoryContextSwitchTo(gvs->tmpCxt);
		ginVacuumPostingTreeLeaf(gvs->index, buffer, gvs);
		MemoryContextSwitchTo(oldCxt);
		MemoryContextReset(gvs->tmpCxt);

		/* if root is a leaf page, we don't desire further processing */
		if (GinDataLeafPageIsEmpty(page))
			hasVoidPage = TRUE;

		UnlockReleaseBuffer(buffer);

		return hasVoidPage;
	}
	else
	{
		OffsetNumber i;
		bool		hasEmptyChild = FALSE;
		bool		hasNonEmptyChild = FALSE;
		OffsetNumber maxoff = GinPageGetOpaque(page)->maxoff;
		BlockNumber *children = palloc(sizeof(BlockNumber) * (maxoff + 1));

		/*
		 * Read all children BlockNumbers. Not sure it is safe if there are
		 * many concurrent vacuums.
		 */

		for (i = FirstOffsetNumber; i <= maxoff; i++)
		{
			PostingItem *pitem = GinDataPageGetPostingItem(page, i);

			children[i] = PostingItemGetBlockNumber(pitem);
		}

		UnlockReleaseBuffer(buffer);

		for (i = FirstOffsetNumber; i <= maxoff; i++)
		{
			if (ginVacuumPostingTreeLeaves(gvs, children[i], FALSE))
				hasEmptyChild = TRUE;
			else
				hasNonEmptyChild = TRUE;
		}

		pfree(children);

		vacuum_delay_point();

		/*
		 * All subtree is empty - just return TRUE to indicate that parent
		 * must do a cleanup. Unless we are ROOT an there is way to go upper.
		 */

		if (hasEmptyChild && !hasNonEmptyChild && !isRoot)
			return TRUE;

		if (hasEmptyChild)
		{
			DataPageDeleteStack root,
					   *ptr,
					   *tmp;

			buffer = ReadBufferExtended(gvs->index, MAIN_FORKNUM, blkno,
										RBM_NORMAL, gvs->strategy);
			LockBufferForCleanup(buffer);

			memset(&root, 0, sizeof(DataPageDeleteStack));
			root.leftBlkno = InvalidBlockNumber;
			root.isRoot = TRUE;

			ginScanToDelete(gvs, blkno, TRUE, &root, InvalidOffsetNumber);

			ptr = root.child;

			while (ptr)
			{
				tmp = ptr->child;
				pfree(ptr);
				ptr = tmp;
			}

			UnlockReleaseBuffer(buffer);
		}

		/* Here we have deleted all empty subtrees */
		return FALSE;
	}
}
Exemplo n.º 23
0
Datum
ginbulkdelete(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
	void	   *callback_state = (void *) PG_GETARG_POINTER(3);
	Relation	index = info->index;
	BlockNumber blkno = GIN_ROOT_BLKNO;
	GinVacuumState gvs;
	Buffer		buffer;
	BlockNumber rootOfPostingTree[BLCKSZ / (sizeof(IndexTupleData) + sizeof(ItemId))];
	uint32		nRoot;

	gvs.index = index;
	gvs.callback = callback;
	gvs.callback_state = callback_state;
	gvs.strategy = info->strategy;
	initGinState(&gvs.ginstate, index);

	/* first time through? */
	if (stats == NULL)
	{
		/* Yes, so initialize stats to zeroes */
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		/* and cleanup any pending inserts */
		ginInsertCleanup(&gvs.ginstate, true, stats);
	}

	/* we'll re-count the tuples each time */
	stats->num_index_tuples = 0;
	gvs.result = stats;

	buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
								RBM_NORMAL, info->strategy);

	/* find leaf page */
	for (;;)
	{
		Page		page = BufferGetPage(buffer);
		IndexTuple	itup;

		LockBuffer(buffer, GIN_SHARE);

		Assert(!GinPageIsData(page));

		if (GinPageIsLeaf(page))
		{
			LockBuffer(buffer, GIN_UNLOCK);
			LockBuffer(buffer, GIN_EXCLUSIVE);

			if (blkno == GIN_ROOT_BLKNO && !GinPageIsLeaf(page))
			{
				LockBuffer(buffer, GIN_UNLOCK);
				continue;		/* check it one more */
			}
			break;
		}

		Assert(PageGetMaxOffsetNumber(page) >= FirstOffsetNumber);

		itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, FirstOffsetNumber));
		blkno = GinGetDownlink(itup);
		Assert(blkno != InvalidBlockNumber);

		UnlockReleaseBuffer(buffer);
		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
	}

	/* right now we found leftmost page in entry's BTree */

	for (;;)
	{
		Page		page = BufferGetPage(buffer);
		Page		resPage;
		uint32		i;

		Assert(!GinPageIsData(page));

		resPage = ginVacuumEntryPage(&gvs, buffer, rootOfPostingTree, &nRoot);

		blkno = GinPageGetOpaque(page)->rightlink;

		if (resPage)
		{
			START_CRIT_SECTION();
			PageRestoreTempPage(resPage, page);
			MarkBufferDirty(buffer);
			xlogVacuumPage(gvs.index, buffer);
			UnlockReleaseBuffer(buffer);
			END_CRIT_SECTION();
		}
		else
		{
			UnlockReleaseBuffer(buffer);
		}

		vacuum_delay_point();

		for (i = 0; i < nRoot; i++)
		{
			ginVacuumPostingTree(&gvs, rootOfPostingTree[i]);
			vacuum_delay_point();
		}

		if (blkno == InvalidBlockNumber)		/* rightmost page */
			break;

		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIN_EXCLUSIVE);
	}

	PG_RETURN_POINTER(gvs.result);
}
Exemplo n.º 24
0
static ArrayTuple
gistVacuumUpdate(GistVacuum *gv, BlockNumber blkno, bool needunion)
{
	ArrayTuple	res = {NULL, 0, false};
	Buffer		buffer;
	Page		page,
				tempPage = NULL;
	OffsetNumber i,
				maxoff;
	ItemId		iid;
	int			lenaddon = 4,
				curlenaddon = 0,
				nOffToDelete = 0,
				nBlkToDelete = 0;
	IndexTuple	idxtuple,
			   *addon = NULL;
	bool		needwrite = false;
	OffsetNumber offToDelete[MaxOffsetNumber];
	BlockNumber blkToDelete[MaxOffsetNumber];
	ItemPointerData *completed = NULL;
	int			ncompleted = 0,
				lencompleted = 16;

	vacuum_delay_point();

	buffer = ReadBufferWithStrategy(gv->index, blkno, gv->strategy);
	LockBuffer(buffer, GIST_EXCLUSIVE);
	gistcheckpage(gv->index, buffer);
	page = (Page) BufferGetPage(buffer);
	maxoff = PageGetMaxOffsetNumber(page);

	if (GistPageIsLeaf(page))
	{
		if (GistTuplesDeleted(page))
			needunion = needwrite = true;
	}
	else
	{
		completed = (ItemPointerData *) palloc(sizeof(ItemPointerData) * lencompleted);
		addon = (IndexTuple *) palloc(sizeof(IndexTuple) * lenaddon);

		/* get copy of page to work */
		tempPage = GistPageGetCopyPage(page);

		for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
		{
			ArrayTuple	chldtuple;
			bool		needchildunion;

			iid = PageGetItemId(tempPage, i);
			idxtuple = (IndexTuple) PageGetItem(tempPage, iid);
			needchildunion = (GistTupleIsInvalid(idxtuple)) ? true : false;

			if (needchildunion)
				elog(DEBUG2, "gistVacuumUpdate: need union for block %u",
					 ItemPointerGetBlockNumber(&(idxtuple->t_tid)));

			chldtuple = gistVacuumUpdate(gv, ItemPointerGetBlockNumber(&(idxtuple->t_tid)),
										 needchildunion);
			if (chldtuple.ituplen || chldtuple.emptypage)
			{
				/* update tuple or/and inserts new */
				if (chldtuple.emptypage)
					blkToDelete[nBlkToDelete++] = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
				offToDelete[nOffToDelete++] = i;
				PageIndexTupleDelete(tempPage, i);
				i--;
				maxoff--;
				needwrite = needunion = true;

				if (chldtuple.ituplen)
				{

					Assert(chldtuple.emptypage == false);
					while (curlenaddon + chldtuple.ituplen >= lenaddon)
					{
						lenaddon *= 2;
						addon = (IndexTuple *) repalloc(addon, sizeof(IndexTuple) * lenaddon);
					}

					memcpy(addon + curlenaddon, chldtuple.itup, chldtuple.ituplen * sizeof(IndexTuple));

					curlenaddon += chldtuple.ituplen;

					if (chldtuple.ituplen > 1)
					{
						/*
						 * child was split, so we need mark completion
						 * insert(split)
						 */
						int			j;

						while (ncompleted + chldtuple.ituplen > lencompleted)
						{
							lencompleted *= 2;
							completed = (ItemPointerData *) repalloc(completed, sizeof(ItemPointerData) * lencompleted);
						}
						for (j = 0; j < chldtuple.ituplen; j++)
						{
							ItemPointerCopy(&(chldtuple.itup[j]->t_tid), completed + ncompleted);
							ncompleted++;
						}
					}
					pfree(chldtuple.itup);
				}
			}
		}

		Assert(maxoff == PageGetMaxOffsetNumber(tempPage));

		if (curlenaddon)
		{
			/* insert updated tuples */
			if (gistnospace(tempPage, addon, curlenaddon, InvalidOffsetNumber, 0))
			{
				/* there is no space on page to insert tuples */
				res = vacuumSplitPage(gv, tempPage, buffer, addon, curlenaddon);
				tempPage = NULL;	/* vacuumSplitPage() free tempPage */
				needwrite = needunion = false;	/* gistSplit already forms
												 * unions and writes pages */
			}
			else
				/* enough free space */
				gistfillbuffer(gv->index, tempPage, addon, curlenaddon, InvalidOffsetNumber);
		}
	}

	/*
	 * If page is empty, we should remove pointer to it before deleting page
	 * (except root)
	 */

	if (blkno != GIST_ROOT_BLKNO && (PageIsEmpty(page) || (tempPage && PageIsEmpty(tempPage))))
	{
		/*
		 * New version of page is empty, so leave it unchanged, upper call
		 * will mark our page as deleted. In case of page split we never will
		 * be here...
		 *
		 * If page was empty it can't become non-empty during processing
		 */
		res.emptypage = true;
		UnlockReleaseBuffer(buffer);
	}
	else
	{
		/* write page and remove its childs if it need */

		START_CRIT_SECTION();

		if (tempPage && needwrite)
		{
			PageRestoreTempPage(tempPage, page);
			tempPage = NULL;
		}

		/* Empty index */
		if (PageIsEmpty(page) && blkno == GIST_ROOT_BLKNO)
		{
			needwrite = true;
			GistPageSetLeaf(page);
		}


		if (needwrite)
		{
			MarkBufferDirty(buffer);
			GistClearTuplesDeleted(page);

			if (!gv->index->rd_istemp)
			{
				XLogRecData *rdata;
				XLogRecPtr	recptr;
				char	   *xlinfo;

				rdata = formUpdateRdata(gv->index->rd_node, buffer,
										offToDelete, nOffToDelete,
										addon, curlenaddon, NULL);
				xlinfo = rdata->next->data;

				recptr = XLogInsert(RM_GIST_ID, XLOG_GIST_PAGE_UPDATE, rdata);
				PageSetLSN(page, recptr);
				PageSetTLI(page, ThisTimeLineID);

				pfree(xlinfo);
				pfree(rdata);
			}
			else
				PageSetLSN(page, XLogRecPtrForTemp);
		}

		END_CRIT_SECTION();

		if (needunion && !PageIsEmpty(page))
		{
			res.itup = (IndexTuple *) palloc(sizeof(IndexTuple));
			res.ituplen = 1;
			res.itup[0] = PageMakeUnionKey(gv, buffer);
		}

		UnlockReleaseBuffer(buffer);

		/* delete empty children, now we havn't any links to pointed subtrees */
		for (i = 0; i < nBlkToDelete; i++)
			gistDeleteSubtree(gv, blkToDelete[i]);

		if (ncompleted && !gv->index->rd_istemp)
			gistxlogInsertCompletion(gv->index->rd_node, completed, ncompleted);
	}


	for (i = 0; i < curlenaddon; i++)
		pfree(addon[i]);
	if (addon)
		pfree(addon);
	if (completed)
		pfree(completed);
	if (tempPage)
		pfree(tempPage);

	return res;
}
Exemplo n.º 25
0
Datum
gistvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	GistBulkDeleteResult *stats = (GistBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages,
				nFreePages,
			   *freePages,
				maxFreePages;
	BlockNumber lastBlock = GIST_ROOT_BLKNO,
				lastFilledBlock = GIST_ROOT_BLKNO;
	bool		needLock;

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (GistBulkDeleteResult *) palloc0(sizeof(GistBulkDeleteResult));
		/* use heap's tuple count */
		Assert(info->num_heap_tuples >= 0);
		stats->std.num_index_tuples = info->num_heap_tuples;

		/*
		 * XXX the above is wrong if index is partial.	Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	/* gistVacuumUpdate may cause hard work */
	if (info->vacuum_full)
	{
		GistVacuum	gv;
		ArrayTuple	res;

		/* note: vacuum.c already acquired AccessExclusiveLock on index */

		gv.index = rel;
		initGISTstate(&(gv.giststate), rel);
		gv.opCtx = createTempGistContext();
		gv.result = stats;
		gv.strategy = info->strategy;

		/* walk through the entire index for update tuples */
		res = gistVacuumUpdate(&gv, GIST_ROOT_BLKNO, false);
		/* cleanup */
		if (res.itup)
		{
			int			i;

			for (i = 0; i < res.ituplen; i++)
				pfree(res.itup[i]);
			pfree(res.itup);
		}
		freeGISTstate(&(gv.giststate));
		MemoryContextDelete(gv.opCtx);
	}
	else if (stats->needFullVacuum)
		ereport(NOTICE,
				(errmsg("index \"%s\" needs VACUUM FULL or REINDEX to finish crash recovery",
						RelationGetRelationName(rel))));

	/*
	 * If vacuum full, we already have exclusive lock on the index. Otherwise,
	 * need lock unless it's local to this backend.
	 */
	if (info->vacuum_full)
		needLock = false;
	else
		needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	maxFreePages = npages;
	if (maxFreePages > MaxFSMPages)
		maxFreePages = MaxFSMPages;

	totFreePages = nFreePages = 0;
	freePages = (BlockNumber *) palloc(sizeof(BlockNumber) * maxFreePages);

	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferWithStrategy(rel, blkno, info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			if (nFreePages < maxFreePages)
				freePages[nFreePages++] = blkno;
			totFreePages++;
		}
		else
			lastFilledBlock = blkno;
		UnlockReleaseBuffer(buffer);
	}
	lastBlock = npages - 1;

	if (info->vacuum_full && nFreePages > 0)
	{							/* try to truncate index */
		int			i;

		for (i = 0; i < nFreePages; i++)
			if (freePages[i] >= lastFilledBlock)
			{
				totFreePages = nFreePages = i;
				break;
			}

		if (lastBlock > lastFilledBlock)
			RelationTruncate(rel, lastFilledBlock + 1);
		stats->std.pages_removed = lastBlock - lastFilledBlock;
	}

	RecordIndexFreeSpace(&rel->rd_node, totFreePages, nFreePages, freePages);
	pfree(freePages);

	/* return statistics */
	stats->std.pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->std.num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemplo n.º 26
0
/*
 * Bulk deletion of all index entries pointing to a set of heap tuples and
 * check invalid tuples after crash recovery.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
Datum
gistbulkdelete(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	GistBulkDeleteResult *stats = (GistBulkDeleteResult *) PG_GETARG_POINTER(1);
	IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
	void	   *callback_state = (void *) PG_GETARG_POINTER(3);
	Relation	rel = info->index;
	GistBDItem *stack,
			   *ptr;

	/* first time through? */
	if (stats == NULL)
		stats = (GistBulkDeleteResult *) palloc0(sizeof(GistBulkDeleteResult));
	/* we'll re-count the tuples each time */
	stats->std.num_index_tuples = 0;

	stack = (GistBDItem *) palloc0(sizeof(GistBDItem));
	stack->blkno = GIST_ROOT_BLKNO;

	while (stack)
	{
		Buffer		buffer = ReadBufferWithStrategy(rel, stack->blkno, info->strategy);
		Page		page;
		OffsetNumber i,
					maxoff;
		IndexTuple	idxtuple;
		ItemId		iid;

		LockBuffer(buffer, GIST_SHARE);
		gistcheckpage(rel, buffer);
		page = (Page) BufferGetPage(buffer);

		if (GistPageIsLeaf(page))
		{
			OffsetNumber todelete[MaxOffsetNumber];
			int			ntodelete = 0;

			LockBuffer(buffer, GIST_UNLOCK);
			LockBuffer(buffer, GIST_EXCLUSIVE);

			page = (Page) BufferGetPage(buffer);
			if (stack->blkno == GIST_ROOT_BLKNO && !GistPageIsLeaf(page))
			{
				/* only the root can become non-leaf during relock */
				UnlockReleaseBuffer(buffer);
				/* one more check */
				continue;
			}

			/*
			 * check for split proceeded after look at parent, we should check
			 * it after relock
			 */
			pushStackIfSplited(page, stack);

			/*
			 * Remove deletable tuples from page
			 */

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				if (callback(&(idxtuple->t_tid), callback_state))
				{
					todelete[ntodelete] = i - ntodelete;
					ntodelete++;
					stats->std.tuples_removed += 1;
				}
				else
					stats->std.num_index_tuples += 1;
			}

			if (ntodelete)
			{
				START_CRIT_SECTION();

				MarkBufferDirty(buffer);

				for (i = 0; i < ntodelete; i++)
					PageIndexTupleDelete(page, todelete[i]);
				GistMarkTuplesDeleted(page);

				if (!rel->rd_istemp)
				{
					XLogRecData *rdata;
					XLogRecPtr	recptr;
					gistxlogPageUpdate *xlinfo;

					rdata = formUpdateRdata(rel->rd_node, buffer,
											todelete, ntodelete,
											NULL, 0,
											NULL);
					xlinfo = (gistxlogPageUpdate *) rdata->next->data;

					recptr = XLogInsert(RM_GIST_ID, XLOG_GIST_PAGE_UPDATE, rdata);
					PageSetLSN(page, recptr);
					PageSetTLI(page, ThisTimeLineID);

					pfree(xlinfo);
					pfree(rdata);
				}
				else
					PageSetLSN(page, XLogRecPtrForTemp);

				END_CRIT_SECTION();
			}

		}
		else
		{
			/* check for split proceeded after look at parent */
			pushStackIfSplited(page, stack);

			maxoff = PageGetMaxOffsetNumber(page);

			for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
			{
				iid = PageGetItemId(page, i);
				idxtuple = (IndexTuple) PageGetItem(page, iid);

				ptr = (GistBDItem *) palloc(sizeof(GistBDItem));
				ptr->blkno = ItemPointerGetBlockNumber(&(idxtuple->t_tid));
				ptr->parentlsn = PageGetLSN(page);
				ptr->next = stack->next;
				stack->next = ptr;

				if (GistTupleIsInvalid(idxtuple))
					stats->needFullVacuum = true;
			}
		}

		UnlockReleaseBuffer(buffer);

		ptr = stack->next;
		pfree(stack);
		stack = ptr;

		vacuum_delay_point();
	}

	PG_RETURN_POINTER(stats);
}
Exemplo n.º 27
0
Arquivo: nbtree.c Projeto: LJoNe/gpdb
/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we
 * must go back and re-examine previously-scanned pages; this routine
 * recurses when necessary to handle that case.
 *
 * blkno is the page to process.  orig_blkno is the highest block number
 * reached by the outer btvacuumscan loop (the same as blkno, unless we
 * are recursing to re-examine a previous page).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	bool		delete_now;
	BlockNumber recurse_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;
restart:
	delete_now = false;
	recurse_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	
	// -------- MirroredLock ----------
	MIRROREDLOCK_BUFMGR_LOCK;
	
	buf = ReadBufferWithStrategy(rel, blkno, info->strategy);
	LockBuffer(buf, BT_READ);
	page = BufferGetPage(buf);
	opaque = (BTPageOpaque) PageGetSpecialPointer(page);
	if (!PageIsNew(page))
		_bt_checkpage(rel, buf);

	/*
	 * If we are recursing, the only case we want to do anything with is a
	 * live leaf page having the current vacuum cycle ID.  Any other state
	 * implies we already saw the page (eg, deleted it as being empty). In
	 * particular, we don't want to risk adding it to freePages twice.
	 */
	if (blkno != orig_blkno)
	{
		if (_bt_page_recyclable(page) ||
			P_IGNORE(opaque) ||
			!P_ISLEAF(opaque) ||
			opaque->btpo_cycleid != vstate->cycleid)
		{
			_bt_relbuf(rel, buf);

			MIRROREDLOCK_BUFMGR_UNLOCK;
			// -------- MirroredLock ----------

			return;
		}
	}

	/* Page is valid, see what to do with it */
	if (_bt_page_recyclable(page))
	{
		/* Okay to recycle this page */
		if (vstate->nFreePages < vstate->maxFreePages)
			vstate->freePages[vstate->nFreePages++] = blkno;
		vstate->totFreePages++;
		stats->pages_deleted++;
	}
	else if (P_ISDELETED(opaque))
	{
		/* Already deleted, but can't recycle yet */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead, try to delete */
		delete_now = true;
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxOffsetNumber];
		int			ndeletable;
		OffsetNumber offnum,
					minoff,
					maxoff;

		/*
		 * Trade in the initial read lock for a super-exclusive write lock on
		 * this page.  We must get such a lock on every leaf page over the
		 * course of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		LockBufferForCleanup(buf);

		/*
		 * Check whether we need to recurse back to earlier pages.	What we
		 * are concerned about is a page split that happened since we started
		 * the vacuum scan.  If the split moved some tuples to a lower page
		 * then we might have missed 'em.  If so, set up for tail recursion.
		 * (Must do this before possibly clearing btpo_cycleid below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < orig_blkno)
			recurse_to = opaque->btpo_next;

		/*
		 * Scan over all items to see which ones need deleted according to the
		 * callback function.
		 */
		ndeletable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		if (callback)
		{
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;
				ItemPointer htup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));
				htup = &(itup->t_tid);
				if (callback(htup, callback_state))
					deletable[ndeletable++] = offnum;
			}
		}

		/*
		 * Apply any needed deletes.  We issue just one _bt_delitems() call
		 * per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0)
		{
			_bt_delitems(rel, buf, deletable, ndeletable, true);
			stats->tuples_removed += ndeletable;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);
		}
		else
		{
			/*
			 * If the page has been split during this vacuum cycle, it seems
			 * worth expending a write to clear btpo_cycleid even if we don't
			 * have any deletions to do.  (If we do, _bt_delitems takes care
			 * of this.)  This ensures we won't process the page again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				SetBufferCommitInfoNeedsSave(buf);
			}
		}

		/*
		 * If it's now empty, try to delete; else count the live tuples. We
		 * don't delete when recursing, though, to avoid putting entries into
		 * freePages out-of-order (doesn't seem worth any extra code to handle
		 * the case).
		 */
		if (minoff > maxoff)
			delete_now = (blkno == orig_blkno);
		else
			stats->num_index_tuples += maxoff - minoff + 1;
	}

	if (delete_now)
	{
		MemoryContext oldcontext;
		int			ndel;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		ndel = _bt_pagedel(rel, buf, NULL, info->vacuum_full);

		/* count only this page, else may double-count parent */
		if (ndel)
			stats->pages_deleted++;

		/*
		 * During VACUUM FULL it's okay to recycle deleted pages immediately,
		 * since there can be no other transactions scanning the index.  Note
		 * that we will only recycle the current page and not any parent pages
		 * that _bt_pagedel might have recursed to; this seems reasonable in
		 * the name of simplicity.	(Trying to do otherwise would mean we'd
		 * have to sort the list of recyclable pages we're building.)
		 */
		if (ndel && info->vacuum_full)
		{
			if (vstate->nFreePages < vstate->maxFreePages)
				vstate->freePages[vstate->nFreePages++] = blkno;
			vstate->totFreePages++;
		}

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	
	MIRROREDLOCK_BUFMGR_UNLOCK;
	// -------- MirroredLock ----------
	
	/*
	 * This is really tail recursion, but if the compiler is too stupid to
	 * optimize it as such, we'd eat an uncomfortably large amount of stack
	 * space per recursion level (due to the deletable[] array). A failure is
	 * improbable since the number of levels isn't likely to be large ... but
	 * just in case, let's hand-optimize into a loop.
	 */
	if (recurse_to != P_NONE)
	{
		blkno = recurse_to;
		goto restart;
	}
}
Exemplo n.º 28
0
/*
 * Process one page during a bulkdelete scan
 */
static void
spgvacuumpage(spgBulkDeleteState *bds, BlockNumber blkno)
{
	Relation	index = bds->info->index;
	Buffer		buffer;
	Page		page;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
								RBM_NORMAL, bds->info->strategy);
	LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
	page = (Page) BufferGetPage(buffer);

	if (PageIsNew(page))
	{
		/*
		 * We found an all-zero page, which could happen if the database
		 * crashed just after extending the file.  Initialize and recycle it.
		 */
		SpGistInitBuffer(buffer, 0);
		SpGistPageSetDeleted(page);
		/* We don't bother to WAL-log this action; easy to redo */
		MarkBufferDirty(buffer);
	}
	else if (SpGistPageIsDeleted(page))
	{
		/* nothing to do */
	}
	else if (SpGistPageIsLeaf(page))
	{
		if (SpGistBlockIsRoot(blkno))
		{
			vacuumLeafRoot(bds, index, buffer);
			/* no need for vacuumRedirectAndPlaceholder */
		}
		else
		{
			vacuumLeafPage(bds, index, buffer, false);
			vacuumRedirectAndPlaceholder(index, buffer);
		}
	}
	else
	{
		/* inner page */
		vacuumRedirectAndPlaceholder(index, buffer);
	}

	/*
	 * The root pages must never be deleted, nor marked as available in FSM,
	 * because we don't want them ever returned by a search for a place to put
	 * a new tuple.  Otherwise, check for empty/deletable page, and make sure
	 * FSM knows about it.
	 */
	if (!SpGistBlockIsRoot(blkno))
	{
		/* If page is now empty, mark it deleted */
		if (PageIsEmpty(page) && !SpGistPageIsDeleted(page))
		{
			SpGistPageSetDeleted(page);
			/* We don't bother to WAL-log this action; easy to redo */
			MarkBufferDirty(buffer);
		}

		if (SpGistPageIsDeleted(page))
		{
			RecordFreeIndexPage(index, blkno);
			bds->stats->pages_deleted++;
		}
		else
			bds->lastFilledBlock = blkno;
	}

	SpGistSetLastUsedPage(index, buffer);

	UnlockReleaseBuffer(buffer);
}
Exemplo n.º 29
0
/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 *
 *		If there are no indexes then we just vacuum each dirty page as we
 *		process it, since there's no point in gathering many tuples.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes, bool scan_all)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
	BlockNumber empty_pages,
				vacuumed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	IndexBulkDeleteResult **indstats;
	int			i;
	PGRUsage	ru0;
	Buffer		vmbuffer = InvalidBuffer;
	BlockNumber next_not_all_visible_block;
	bool		skipping_all_visible_blocks;

	pg_rusage_init(&ru0);

	relname = RelationGetRelationName(onerel);
	ereport(elevel,
			(errmsg("vacuuming \"%s.%s\"",
					get_namespace_name(RelationGetNamespace(onerel)),
					relname)));

	empty_pages = vacuumed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	indstats = (IndexBulkDeleteResult **)
		palloc0(nindexes * sizeof(IndexBulkDeleteResult *));

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->scanned_pages = 0;
	vacrelstats->nonempty_pages = 0;
	vacrelstats->latestRemovedXid = InvalidTransactionId;

	lazy_space_alloc(vacrelstats, nblocks);

	/*
	 * We want to skip pages that don't require vacuuming according to the
	 * visibility map, but only when we can skip at least SKIP_PAGES_THRESHOLD
	 * consecutive pages.  Since we're reading sequentially, the OS should be
	 * doing readahead for us, so there's no gain in skipping a page now and
	 * then; that's likely to disable readahead and so be counterproductive.
	 * Also, skipping even a single page means that we can't update
	 * relfrozenxid, so we only want to do it if we can skip a goodly number
	 * of pages.
	 *
	 * Before entering the main loop, establish the invariant that
	 * next_not_all_visible_block is the next block number >= blkno that's not
	 * all-visible according to the visibility map, or nblocks if there's no
	 * such block.	Also, we set up the skipping_all_visible_blocks flag,
	 * which is needed because we need hysteresis in the decision: once we've
	 * started skipping blocks, we may as well skip everything up to the next
	 * not-all-visible block.
	 *
	 * Note: if scan_all is true, we won't actually skip any pages; but we
	 * maintain next_not_all_visible_block anyway, so as to set up the
	 * all_visible_according_to_vm flag correctly for each page.
	 */
	for (next_not_all_visible_block = 0;
		 next_not_all_visible_block < nblocks;
		 next_not_all_visible_block++)
	{
		if (!visibilitymap_test(onerel, next_not_all_visible_block, &vmbuffer))
			break;
		vacuum_delay_point();
	}
	if (next_not_all_visible_block >= SKIP_PAGES_THRESHOLD)
		skipping_all_visible_blocks = true;
	else
		skipping_all_visible_blocks = false;

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		tupgone,
					hastup;
		int			prev_dead_count;
		OffsetNumber frozen[MaxOffsetNumber];
		int			nfrozen;
		Size		freespace;
		bool		all_visible_according_to_vm;
		bool		all_visible;
		bool		has_dead_tuples;

		if (blkno == next_not_all_visible_block)
		{
			/* Time to advance next_not_all_visible_block */
			for (next_not_all_visible_block++;
				 next_not_all_visible_block < nblocks;
				 next_not_all_visible_block++)
			{
				if (!visibilitymap_test(onerel, next_not_all_visible_block,
										&vmbuffer))
					break;
				vacuum_delay_point();
			}

			/*
			 * We know we can't skip the current block.  But set up
			 * skipping_all_visible_blocks to do the right thing at the
			 * following blocks.
			 */
			if (next_not_all_visible_block - blkno > SKIP_PAGES_THRESHOLD)
				skipping_all_visible_blocks = true;
			else
				skipping_all_visible_blocks = false;
			all_visible_according_to_vm = false;
		}
		else
		{
			/* Current block is all-visible */
			if (skipping_all_visible_blocks && !scan_all)
				continue;
			all_visible_according_to_vm = true;
		}

		vacuum_delay_point();

		vacrelstats->scanned_pages++;

		/*
		 * If we are close to overrunning the available space for dead-tuple
		 * TIDs, pause and do a cycle of vacuuming before we tackle this page.
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Log cleanup info before we touch indexes */
			vacuum_log_cleanup_info(onerel, vacrelstats);

			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i],
								  &indstats[i],
								  vacrelstats);
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacrelstats->num_index_scans++;
		}

		buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
								 RBM_NORMAL, vac_strategy);

		/* We need buffer cleanup lock so that we can prune HOT chains. */
		LockBufferForCleanup(buf);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/*
			 * An all-zeroes page could be left over if a backend extends the
			 * relation but crashes before initializing the page. Reclaim such
			 * pages for use.
			 *
			 * We have to be careful here because we could be looking at a
			 * page that someone has just added to the relation and not yet
			 * been able to initialize (see RelationGetBufferForTuple). To
			 * protect against that, release the buffer lock, grab the
			 * relation extension lock momentarily, and re-lock the buffer. If
			 * the page is still uninitialized by then, it must be left over
			 * from a crashed backend, and we can initialize it.
			 *
			 * We don't really need the relation lock when this is a new or
			 * temp relation, but it's probably not worth the code space to
			 * check that, since this surely isn't a critical path.
			 *
			 * Note: the comparable code in vacuum.c need not worry because
			 * it's got exclusive lock on the whole relation.
			 */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockRelationForExtension(onerel, ExclusiveLock);
			UnlockRelationForExtension(onerel, ExclusiveLock);
			LockBufferForCleanup(buf);
			if (PageIsNew(page))
			{
				ereport(WARNING,
				(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
						relname, blkno)));
				PageInit(page, BufferGetPageSize(buf), 0);
				empty_pages++;
			}
			freespace = PageGetHeapFreeSpace(page);
			MarkBufferDirty(buf);
			UnlockReleaseBuffer(buf);

			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			freespace = PageGetHeapFreeSpace(page);

			if (!PageIsAllVisible(page))
			{
				PageSetAllVisible(page);
				SetBufferCommitInfoNeedsSave(buf);
			}

			LockBuffer(buf, BUFFER_LOCK_UNLOCK);

			/* Update the visibility map */
			if (!all_visible_according_to_vm)
			{
				visibilitymap_pin(onerel, blkno, &vmbuffer);
				LockBuffer(buf, BUFFER_LOCK_SHARE);
				if (PageIsAllVisible(page))
					visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer);
				LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			}

			ReleaseBuffer(buf);
			RecordPageWithFreeSpace(onerel, blkno, freespace);
			continue;
		}

		/*
		 * Prune all HOT-update chains in this page.
		 *
		 * We count tuples removed by the pruning step as removed by VACUUM.
		 */
		tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false,
										 &vacrelstats->latestRemovedXid);

		/*
		 * Now scan the page to collect vacuumable items and check for tuples
		 * requiring freezing.
		 */
		all_visible = true;
		has_dead_tuples = false;
		nfrozen = 0;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;

			itemid = PageGetItemId(page, offnum);

			/* Unused items require no processing, but we count 'em */
			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			/* Redirect items mustn't be touched */
			if (ItemIdIsRedirected(itemid))
			{
				hastup = true;	/* this page won't be truncatable */
				continue;
			}

			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			/*
			 * DEAD item pointers are to be vacuumed normally; but we don't
			 * count them in tups_vacuumed, else we'd be double-counting (at
			 * least in the common case where heap_page_prune() just freed up
			 * a non-HOT tuple).
			 */
			if (ItemIdIsDead(itemid))
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				all_visible = false;
				continue;
			}

			Assert(ItemIdIsNormal(itemid));

			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);

			tupgone = false;

			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin, buf))
			{
				case HEAPTUPLE_DEAD:

					/*
					 * Ordinarily, DEAD tuples would have been removed by
					 * heap_page_prune(), but it's possible that the tuple
					 * state changed since heap_page_prune() looked.  In
					 * particular an INSERT_IN_PROGRESS tuple could have
					 * changed to DEAD if the inserter aborted.  So this
					 * cannot be considered an error condition.
					 *
					 * If the tuple is HOT-updated then it must only be
					 * removed by a prune operation; so we keep it just as if
					 * it were RECENTLY_DEAD.  Also, if it's a heap-only
					 * tuple, we choose to keep it, because it'll be a lot
					 * cheaper to get rid of it in the next pruning pass than
					 * to treat it like an indexed tuple.
					 */
					if (HeapTupleIsHotUpdated(&tuple) ||
						HeapTupleIsHeapOnly(&tuple))
						nkeep += 1;
					else
						tupgone = true; /* we can delete the tuple */
					all_visible = false;
					break;
				case HEAPTUPLE_LIVE:
					/* Tuple is good --- but let's do some validity checks */
					if (onerel->rd_rel->relhasoids &&
						!OidIsValid(HeapTupleGetOid(&tuple)))
						elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
							 relname, blkno, offnum);

					/*
					 * Is the tuple definitely visible to all transactions?
					 *
					 * NB: Like with per-tuple hint bits, we can't set the
					 * PD_ALL_VISIBLE flag if the inserter committed
					 * asynchronously. See SetHintBits for more info. Check
					 * that the HEAP_XMIN_COMMITTED hint bit is set because of
					 * that.
					 */
					if (all_visible)
					{
						TransactionId xmin;

						if (!(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED))
						{
							all_visible = false;
							break;
						}

						/*
						 * The inserter definitely committed. But is it old
						 * enough that everyone sees it as committed?
						 */
						xmin = HeapTupleHeaderGetXmin(tuple.t_data);
						if (!TransactionIdPrecedes(xmin, OldestXmin))
						{
							all_visible = false;
							break;
						}
					}
					break;
				case HEAPTUPLE_RECENTLY_DEAD:

					/*
					 * If tuple is recently deleted then we must not remove it
					 * from relation.
					 */
					nkeep += 1;
					all_visible = false;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					all_visible = false;
					break;
				default:
					elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data,
											 &vacrelstats->latestRemovedXid);
				tups_vacuumed += 1;
				has_dead_tuples = true;
			}
			else
			{
				num_tuples += 1;
				hastup = true;

				/*
				 * Each non-removable tuple must be checked to see if it needs
				 * freezing.  Note we already have exclusive buffer lock.
				 */
				if (heap_freeze_tuple(tuple.t_data, FreezeLimit,
									  InvalidBuffer))
					frozen[nfrozen++] = offnum;
			}
		}						/* scan along page */

		/*
		 * If we froze any tuples, mark the buffer dirty, and write a WAL
		 * record recording the changes.  We must log the changes to be
		 * crash-safe against future truncation of CLOG.
		 */
		if (nfrozen > 0)
		{
			MarkBufferDirty(buf);
			if (RelationNeedsWAL(onerel))
			{
				XLogRecPtr	recptr;

				recptr = log_heap_freeze(onerel, buf, FreezeLimit,
										 frozen, nfrozen);
				PageSetLSN(page, recptr);
				PageSetTLI(page, ThisTimeLineID);
			}
		}

		/*
		 * If there are no indexes then we can vacuum the page right now
		 * instead of doing a second scan.
		 */
		if (nindexes == 0 &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove tuples from heap */
			lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats);

			/*
			 * Forget the now-vacuumed tuples, and press on, but be careful
			 * not to reset latestRemovedXid since we want that value to be
			 * valid.
			 */
			vacrelstats->num_dead_tuples = 0;
			vacuumed_pages++;
		}

		freespace = PageGetHeapFreeSpace(page);

		/* Update the all-visible flag on the page */
		if (!PageIsAllVisible(page) && all_visible)
		{
			PageSetAllVisible(page);
			SetBufferCommitInfoNeedsSave(buf);
		}

		/*
		 * It's possible for the value returned by GetOldestXmin() to move
		 * backwards, so it's not wrong for us to see tuples that appear to
		 * not be visible to everyone yet, while PD_ALL_VISIBLE is already
		 * set. The real safe xmin value never moves backwards, but
		 * GetOldestXmin() is conservative and sometimes returns a value
		 * that's unnecessarily small, so if we see that contradiction it just
		 * means that the tuples that we think are not visible to everyone yet
		 * actually are, and the PD_ALL_VISIBLE flag is correct.
		 *
		 * There should never be dead tuples on a page with PD_ALL_VISIBLE
		 * set, however.
		 */
		else if (PageIsAllVisible(page) && has_dead_tuples)
		{
			elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u",
				 relname, blkno);
			PageClearAllVisible(page);
			SetBufferCommitInfoNeedsSave(buf);

			/*
			 * Normally, we would drop the lock on the heap page before
			 * updating the visibility map, but since this case shouldn't
			 * happen anyway, don't worry about that.
			 */
			visibilitymap_clear(onerel, blkno);
		}

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		/* Update the visibility map */
		if (!all_visible_according_to_vm && all_visible)
		{
			visibilitymap_pin(onerel, blkno, &vmbuffer);
			LockBuffer(buf, BUFFER_LOCK_SHARE);
			if (PageIsAllVisible(page))
				visibilitymap_set(onerel, blkno, PageGetLSN(page), &vmbuffer);
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		}

		ReleaseBuffer(buf);

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		/*
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and record
		 * its post-compaction free space.	If not, then we're done with this
		 * page, so remember its free space as-is.	(This path will always be
		 * taken if there are no indexes.)
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
			RecordPageWithFreeSpace(onerel, blkno, freespace);
	}

	/* save stats for use later */
	vacrelstats->scanned_tuples = num_tuples;
	vacrelstats->tuples_deleted = tups_vacuumed;

	/* now we can compute the new value for pg_class.reltuples */
	vacrelstats->new_rel_tuples = vac_estimate_reltuples(onerel, false,
														 nblocks,
												  vacrelstats->scanned_pages,
														 num_tuples);

	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min number of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Log cleanup info before we touch indexes */
		vacuum_log_cleanup_info(onerel, vacrelstats);

		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i],
							  &indstats[i],
							  vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
		vacrelstats->num_index_scans++;
	}

	/* Release the pin on the visibility map page */
	if (BufferIsValid(vmbuffer))
	{
		ReleaseBuffer(vmbuffer);
		vmbuffer = InvalidBuffer;
	}

	/* Do post-vacuum cleanup and statistics update for each index */
	for (i = 0; i < nindexes; i++)
		lazy_cleanup_index(Irel[i], indstats[i], vacrelstats);

	/* If no indexes, make log report that lazy_vacuum_heap would've made */
	if (vacuumed_pages)
		ereport(elevel,
				(errmsg("\"%s\": removed %.0f row versions in %u pages",
						RelationGetRelationName(onerel),
						tups_vacuumed, vacuumed_pages)));

	ereport(elevel,
			(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages",
					RelationGetRelationName(onerel),
					tups_vacuumed, num_tuples,
					vacrelstats->scanned_pages, nblocks),
			 errdetail("%.0f dead row versions cannot be removed yet.\n"
					   "There were %.0f unused item pointers.\n"
					   "%u pages are entirely empty.\n"
					   "%s.",
					   nkeep,
					   nunused,
					   empty_pages,
					   pg_rusage_show(&ru0))));
}
Exemplo n.º 30
0
/*
 * VACUUM cleanup: update FSM
 */
Datum
gistvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	GistBulkDeleteResult *stats = (GistBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	BlockNumber lastBlock = GIST_ROOT_BLKNO,
				lastFilledBlock = GIST_ROOT_BLKNO;
	bool		needLock;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		PG_RETURN_POINTER(stats);

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (GistBulkDeleteResult *) palloc0(sizeof(GistBulkDeleteResult));
		/* use heap's tuple count */
		stats->std.num_index_tuples = info->num_heap_tuples;
		stats->std.estimated_count = info->estimated_count;

		/*
		 * XXX the above is wrong if index is partial.	Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	if (stats->needReindex)
		ereport(NOTICE,
				(errmsg("index \"%s\" needs VACUUM FULL or REINDEX to finish crash recovery",
						RelationGetRelationName(rel))));

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	totFreePages = 0;
	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
									info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			totFreePages++;
			RecordFreeIndexPage(rel, blkno);
		}
		else
			lastFilledBlock = blkno;
		UnlockReleaseBuffer(buffer);
	}
	lastBlock = npages - 1;

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/* return statistics */
	stats->std.pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->std.num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}