/* ========================================
 * Fill Code: SERVICE
 * ========================================*/
bool filterCallback(lesson_perception::FilterCloud::Request& request,
                   lesson_perception::FilterCloud::Response& response)
{
 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
 pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
 if (request.pcdfilename.empty())
 {
   pcl::fromROSMsg(request.input_cloud, *cloud);
   ROS_INFO_STREAM("cloud size: " <<cloud->size());
   if (cloud->empty())
   {
     ROS_ERROR("input cloud empty");
     response.success = false;
     return false;
   }
 }
 else
 {
   pcl::io::loadPCDFile(request.pcdfilename, *cloud);
 }

 switch (request.operation)
 {

   case lesson_perception::FilterCloud::Request::VOXELGRID :
   {
     filtered_cloud = voxelGrid(cloud, 0.01);
     break;
   }
   default :
   {
     ROS_ERROR("no point cloud found");
     return false;
   }

  }

/*
* SETUP RESPONSE
*/
 pcl::toROSMsg(*filtered_cloud, response.output_cloud);
 response.output_cloud.header=request.input_cloud.header;
 response.output_cloud.header.frame_id="kinect_link";
 response.success = true;
 return true;
}
Exemplo n.º 2
0
void pcCallback(const sensor_msgs::PointCloud2::Ptr &msg)
{
    //sensor_msgs to point cloud
    sensor_msgs::PointCloud2::Ptr cloud = msg;
    rgbcloudPtr convert_cloud(new rgbcloud);
    pcl::fromROSMsg(*cloud, *convert_cloud);

    //点群削減
    rgbcloudPtr vf_cloud(new rgbcloud);
    vf_cloud = voxelGrid(convert_cloud);

    rgbcloudPtr bf_cloud(new rgbcloud);

//     if(vf_cloud->empty()){}
//     else{
//         pcl::search::KdTree<pcl::PointXYZRGB>::Ptr flann(new pcl::search::KdTree<pcl::PointXYZRGB>);
//         pcl::PointCloud<pcl::Normal>::Ptr normals_cloud(new pcl::PointCloud<pcl::Normal>);
//         pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> norm_est;
//         norm_est.setSearchMethod(flann);
//         norm_est.setInputCloud(vf_cloud);
//         norm_est.setRadiusSearch(0.02);
//         norm_est.compute(*normals_cloud);
//
//         pcl::BoundaryEstimation<pcl::PointXYZRGB, pcl::Normal, pcl::Boundary> boundary_est;
//         pcl::BoundaryEstimation<pcl::PointXYZRGB, pcl::Normal, pcl::Boundary>::PointCloudOut boundary;
//         boundary_est.setRadiusSearch(0.02);
//         boundary_est.setInputNormals(normals_cloud);
//
//         boundary_est.setSearchMethod(flann);
//         boundary_est.setInputCloud(vf_cloud);
//         boundary_est.setAngleThreshold(M_PI/6);
//         boundary_est.compute(boundary);
//
//         for(int i = 0; i < boundary.size(); i++){
//             if(boundary.points[i].boundary_point == 0){
//                 bf_cloud->push_back(vf_cloud->points.at(i));
//             }else{
//                 pcl::PointXYZRGB pt = vf_cloud->points.at(i);
//                 pt.x = NAN;
//                 pt.y = NAN;
//                 pt.z = NAN;
//                 bf_cloud->push_back(pt);
//             }
//         }
//     }


    //平面検出+平面除去
    pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
    rgbcloudPtr extract_cloud(new rgbcloud);
    rgbcloudPtr plane_cloud(new rgbcloud);
    extract_cloud = extractindices(vf_cloud, inliers, coefficients, true);

    for(int i= 0; i < 7; i++){
        planeSegmentation(vf_cloud, inliers, coefficients);
        extract_cloud = extractindices(extract_cloud, inliers, coefficients, true);
        //plane_cloud = extractindices(vf_cloud, inliers, coefficients, false);
    }
    //その他の点の除去
    //     rgbcloudPtr removed_outlier_cloud(new rgbcloud);
    //     removed_outlier_cloud = removedCloud(extract_cloud, inliers);

    //クラスタリング
    std::vector<pcl::PointIndices> clusters;
    //clusters = regiongrowing(extract_cloud);
    clusters = euclideanCluster(extract_cloud);

    //std::cout<<"clusters : "<<clusters.size()<<std::endl;
    //std::cout<<"Point Size :"<<extract_cloud->size()<<std::endl;

    rgbcloudPtr tempcloud(new rgbcloud);
    int i = 0;
    for(std::vector<pcl::PointIndices>::const_iterator it = clusters.begin(); it != clusters.end(); ++it){
        for(std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit){
            tempcloud->points.push_back(extract_cloud->points[*pit]);
            if(tempcloud->points.size() > 300){
                pcl::PointXYZRGB pt = extract_cloud->points.at(i);
                pt.x = NAN;
                pt.y = NAN;
                pt.z = NAN;
                tempcloud->push_back(pt);
            }
            tempcloud->width = tempcloud->size();
            tempcloud->height = 1;
            tempcloud->is_dense = true;
        }
    }

    //重心計算
    extract_cloud->header.frame_id = msg->header.frame_id;
    Eigen::Vector4f centroid;
    //centroid = centroidCompute(tempcloud, clusters);

    geometry_msgs::PoseArray objectpoint;
    geometry_msgs::Pose objectpose;
    objectpoint.header.frame_id = msg->header.frame_id;
    objectpoint.header.stamp = ros::Time::now();
    for(int i =0; i < clusters.size(); i++){
        pcl::compute3DCentroid(*extract_cloud, clusters[i].indices, centroid);

        std::cout<<"error no"<<std::endl;

        objectpose.position.x = centroid[0];
        objectpose.position.y = centroid[1];
        objectpose.position.z = centroid[2];

        std::cout<<"[x y z]  = "<<" ["<<i<<" ] "<<"["<<objectpose.position.x<< " , "<<objectpose.position.y <<" , "<<objectpose.position.z <<"]"<<std::endl;

        objectpoint.poses.push_back(objectpose);

        point_pub.publish(objectpoint);
    }

    //ビジュアライズ用
    for(size_t i = 0; i < clusters.size(); i++){
        mark_cluster(extract_cloud, centroid, i);
    }



    std::cout<<"tempcloud"<<tempcloud->width<<" : "<<tempcloud->height<<std::endl;
    std::cout<<"extract_cloud"<<extract_cloud->width<<" :  "<<extract_cloud->height<<std::endl;
#ifdef TEST

    sensor_msgs::PointCloud2 output;
    pcl::toROSMsg(*tempcloud, output);
    std::cout<<"stop"<<std::endl;
    output.header.frame_id = msg->header.frame_id;
    pub.publish(output);
#endif
}