Exemplo n.º 1
0
STATIC int compile_and_save(const char *file, const char *output_file, const char *source_file) {
    mp_lexer_t *lex = mp_lexer_new_from_file(file);
    if (lex == NULL) {
        printf("could not open file '%s' for reading\n", file);
        return 1;
    }

    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        qstr source_name;
        if (source_file == NULL) {
            source_name = lex->source_name;
        } else {
            source_name = qstr_from_str(source_file);
        }

        #if MICROPY_PY___FILE__
        if (input_kind == MP_PARSE_FILE_INPUT) {
            mp_store_global(MP_QSTR___file__, MP_OBJ_NEW_QSTR(source_name));
        }
        #endif

        mp_parse_tree_t parse_tree = mp_parse(lex, MP_PARSE_FILE_INPUT);
        mp_raw_code_t *rc = mp_compile_to_raw_code(&parse_tree, source_name, emit_opt, false);

        vstr_t vstr;
        vstr_init(&vstr, 16);
        if (output_file == NULL) {
            vstr_add_str(&vstr, file);
            vstr_cut_tail_bytes(&vstr, 2);
            vstr_add_str(&vstr, "mpy");
        } else {
            vstr_add_str(&vstr, output_file);
        }
        mp_raw_code_save_file(rc, vstr_null_terminated_str(&vstr));
        vstr_clear(&vstr);

        nlr_pop();
        return 0;
    } else {
        // uncaught exception
        mp_obj_print_exception(&mp_stderr_print, (mp_obj_t)nlr.ret_val);
        return 1;
    }
}
Exemplo n.º 2
0
STATIC mp_import_stat_t stat_dir_or_file(vstr_t *path) {
    mp_import_stat_t stat = mp_import_stat_any(vstr_null_terminated_str(path));
    DEBUG_printf("stat %s: %d\n", vstr_str(path), stat);
    if (stat == MP_IMPORT_STAT_DIR) {
        return stat;
    }

    // not a directory, add .py and try as a file
    vstr_add_str(path, ".py");
    return stat_file_py_or_mpy(path);
}
Exemplo n.º 3
0
STATIC mp_import_stat_t stat_dir_or_file(vstr_t *path) {
    mp_import_stat_t stat = mp_import_stat(vstr_null_terminated_str(path));
    DEBUG_printf("stat %s: %d\n", vstr_str(path), stat);
    if (stat == MP_IMPORT_STAT_DIR) {
        return stat;
    }
    vstr_add_str(path, ".py");
    stat = mp_import_stat(vstr_null_terminated_str(path));
    if (stat == MP_IMPORT_STAT_FILE) {
        return stat;
    }
    return MP_IMPORT_STAT_NO_EXIST;
}
Exemplo n.º 4
0
STATIC mp_import_stat_t stat_dir_or_file(vstr_t *path) {
    //printf("stat %s\n", vstr_str(path));
    mp_import_stat_t stat = mp_import_stat(vstr_str(path));
    if (stat == MP_IMPORT_STAT_DIR) {
        return stat;
    }
    vstr_add_str(path, ".py");
    stat = mp_import_stat(vstr_str(path));
    if (stat == MP_IMPORT_STAT_FILE) {
        return stat;
    }
    return MP_IMPORT_STAT_NO_EXIST;
}
Exemplo n.º 5
0
STATIC mp_import_stat_t stat_dir_or_file(vstr_t *path) {
    mp_import_stat_t stat = mp_import_stat(vstr_null_terminated_str(path));
    DEBUG_printf("stat %s: %d\n", vstr_str(path), stat);
    if (stat == MP_IMPORT_STAT_DIR) {
        return stat;
    }

    vstr_add_str(path, ".py");
    stat = mp_import_stat(vstr_null_terminated_str(path));
    if (stat == MP_IMPORT_STAT_FILE) {
        return stat;
    }

    #if MICROPY_PERSISTENT_CODE_LOAD
    vstr_ins_byte(path, path->len - 2, 'm');
    stat = mp_import_stat(vstr_null_terminated_str(path));
    if (stat == MP_IMPORT_STAT_FILE) {
        return stat;
    }
    #endif

    return MP_IMPORT_STAT_NO_EXIST;
}
Exemplo n.º 6
0
mp_obj_t mp_builtin___import__(mp_uint_t n_args, const mp_obj_t *args) {
#if DEBUG_PRINT
    DEBUG_printf("__import__:\n");
    for (mp_uint_t i = 0; i < n_args; i++) {
        DEBUG_printf("  ");
        mp_obj_print(args[i], PRINT_REPR);
        DEBUG_printf("\n");
    }
#endif

    mp_obj_t module_name = args[0];
    mp_obj_t fromtuple = mp_const_none;
    mp_int_t level = 0;
    if (n_args >= 4) {
        fromtuple = args[3];
        if (n_args >= 5) {
            level = MP_OBJ_SMALL_INT_VALUE(args[4]);
        }
    }

    mp_uint_t mod_len;
    const char *mod_str = mp_obj_str_get_data(module_name, &mod_len);

    if (level != 0) {
        // What we want to do here is to take name of current module,
        // chop <level> trailing components, and concatenate with passed-in
        // module name, thus resolving relative import name into absolue.
        // This even appears to be correct per
        // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
        // "Relative imports use a module's __name__ attribute to determine that
        // module's position in the package hierarchy."
        level--;
        mp_obj_t this_name_q = mp_obj_dict_get(mp_globals_get(), MP_OBJ_NEW_QSTR(MP_QSTR___name__));
        assert(this_name_q != MP_OBJ_NULL);
        #if MICROPY_CPYTHON_COMPAT
        if (MP_OBJ_QSTR_VALUE(this_name_q) == MP_QSTR___main__) {
            // This is a module run by -m command-line switch, get its real name from backup attribute
            this_name_q = mp_obj_dict_get(mp_globals_get(), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
        }
        #endif
        mp_map_t *globals_map = mp_obj_dict_get_map(mp_globals_get());
        mp_map_elem_t *elem = mp_map_lookup(globals_map, MP_OBJ_NEW_QSTR(MP_QSTR___path__), MP_MAP_LOOKUP);
        bool is_pkg = (elem != NULL);

#if DEBUG_PRINT
        DEBUG_printf("Current module/package: ");
        mp_obj_print(this_name_q, PRINT_REPR);
        DEBUG_printf(", is_package: %d", is_pkg);
        DEBUG_printf("\n");
#endif

        mp_uint_t this_name_l;
        const char *this_name = mp_obj_str_get_data(this_name_q, &this_name_l);

        const char *p = this_name + this_name_l;
        if (!is_pkg) {
            // We have module, but relative imports are anchored at package, so
            // go there.
            chop_component(this_name, &p);
        }


        uint dots_seen = 0;
        while (level--) {
            chop_component(this_name, &p);
            dots_seen++;
        }

        if (dots_seen == 0 && level >= 1) {
            // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
            // "If the module's name does not contain any package information
            // (e.g. it is set to '__main__') then relative imports are
            // resolved as if the module were a top level module, regardless
            // of where the module is actually located on the file system."
            // Supposedly this if catches this condition and resolve it properly
            // TODO: But nobody knows for sure. This condition happens when
            // package's __init__.py does something like "import .submod". So,
            // maybe we should check for package here? But quote above doesn't
            // talk about packages, it talks about dot-less module names.
            DEBUG_printf("Warning: no dots in current module name and level>0\n");
            p = this_name + this_name_l;
        } else if (level != -1) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ImportError, "Invalid relative import"));
        }

        uint new_mod_l = (mod_len == 0 ? (size_t)(p - this_name) : (size_t)(p - this_name) + 1 + mod_len);
        char *new_mod = alloca(new_mod_l);
        memcpy(new_mod, this_name, p - this_name);
        if (mod_len != 0) {
            new_mod[p - this_name] = '.';
            memcpy(new_mod + (p - this_name) + 1, mod_str, mod_len);
        }

        qstr new_mod_q = qstr_from_strn(new_mod, new_mod_l);
        DEBUG_printf("Resolved base name for relative import: '%s'\n", qstr_str(new_mod_q));
        if (new_mod_q == MP_QSTR_) {
            // CPython raises SystemError
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ImportError, "cannot perform relative import"));
        }
        module_name = MP_OBJ_NEW_QSTR(new_mod_q);
        mod_str = new_mod;
        mod_len = new_mod_l;
    }

    // check if module already exists
    qstr module_name_qstr = mp_obj_str_get_qstr(module_name);
    mp_obj_t module_obj = mp_module_get(module_name_qstr);
    if (module_obj != MP_OBJ_NULL) {
        DEBUG_printf("Module already loaded\n");
        // If it's not a package, return module right away
        char *p = strchr(mod_str, '.');
        if (p == NULL) {
            return module_obj;
        }
        // If fromlist is not empty, return leaf module
        if (fromtuple != mp_const_none) {
            return module_obj;
        }
        // Otherwise, we need to return top-level package
        qstr pkg_name = qstr_from_strn(mod_str, p - mod_str);
        return mp_module_get(pkg_name);
    }
    DEBUG_printf("Module not yet loaded\n");

    #if MICROPY_MODULE_FROZEN
    mp_lexer_t *lex = mp_find_frozen_module(mod_str, mod_len);
    if (lex != NULL) {
        module_obj = mp_obj_new_module(module_name_qstr);
        // if args[3] (fromtuple) has magic value False, set up
        // this module for command-line "-m" option (set module's
        // name to __main__ instead of real name).
        // TODO: Duplicated below too.
        if (fromtuple == mp_const_false) {
            mp_obj_module_t *o = module_obj;
            mp_obj_dict_store(o->globals, MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
        }
        do_load_from_lexer(module_obj, lex, mod_str);
        return module_obj;
    }
    #endif

    uint last = 0;
    VSTR_FIXED(path, MICROPY_ALLOC_PATH_MAX)
    module_obj = MP_OBJ_NULL;
    mp_obj_t top_module_obj = MP_OBJ_NULL;
    mp_obj_t outer_module_obj = MP_OBJ_NULL;
    uint i;
    for (i = 1; i <= mod_len; i++) {
        if (i == mod_len || mod_str[i] == '.') {
            // create a qstr for the module name up to this depth
            qstr mod_name = qstr_from_strn(mod_str, i);
            DEBUG_printf("Processing module: %s\n", qstr_str(mod_name));
            DEBUG_printf("Previous path: =%.*s=\n", vstr_len(&path), vstr_str(&path));

            // find the file corresponding to the module name
            mp_import_stat_t stat;
            if (vstr_len(&path) == 0) {
                // first module in the dotted-name; search for a directory or file
                stat = find_file(mod_str, i, &path);
            } else {
                // latter module in the dotted-name; append to path
                vstr_add_char(&path, PATH_SEP_CHAR);
                vstr_add_strn(&path, mod_str + last, i - last);
                stat = stat_dir_or_file(&path);
            }
            DEBUG_printf("Current path: %.*s\n", vstr_len(&path), vstr_str(&path));

            if (stat == MP_IMPORT_STAT_NO_EXIST) {
                #if MICROPY_MODULE_WEAK_LINKS
                // check if there is a weak link to this module
                if (i == mod_len) {
                    mp_map_elem_t *el = mp_map_lookup((mp_map_t*)&mp_builtin_module_weak_links_map, MP_OBJ_NEW_QSTR(mod_name), MP_MAP_LOOKUP);
                    if (el == NULL) {
                        goto no_exist;
                    }
                    // found weak linked module
                    module_obj = el->value;
                } else {
                    no_exist:
                #else
                {
                #endif
                    // couldn't find the file, so fail
                    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                        nlr_raise(mp_obj_new_exception_msg(&mp_type_ImportError, "module not found"));
                    } else {
                        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError,
                            "no module named '%q'", mod_name));
                    }
                }
            } else {
                // found the file, so get the module
                module_obj = mp_module_get(mod_name);
            }

            if (module_obj == MP_OBJ_NULL) {
                // module not already loaded, so load it!

                module_obj = mp_obj_new_module(mod_name);

                // if args[3] (fromtuple) has magic value False, set up
                // this module for command-line "-m" option (set module's
                // name to __main__ instead of real name).
                if (i == mod_len && fromtuple == mp_const_false) {
                    mp_obj_module_t *o = module_obj;
                    mp_obj_dict_store(o->globals, MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
                    #if MICROPY_CPYTHON_COMPAT
                    // Store real name in "__main__" attribute. Choosen semi-randonly, to reuse existing qstr's.
                    mp_obj_dict_store(o->globals, MP_OBJ_NEW_QSTR(MP_QSTR___main__), MP_OBJ_NEW_QSTR(mod_name));
                    #endif
                }

                if (stat == MP_IMPORT_STAT_DIR) {
                    DEBUG_printf("%.*s is dir\n", vstr_len(&path), vstr_str(&path));
                    // https://docs.python.org/3/reference/import.html
                    // "Specifically, any module that contains a __path__ attribute is considered a package."
                    mp_store_attr(module_obj, MP_QSTR___path__, mp_obj_new_str(vstr_str(&path), vstr_len(&path), false));
                    vstr_add_char(&path, PATH_SEP_CHAR);
                    vstr_add_str(&path, "__init__.py");
                    if (mp_import_stat(vstr_null_terminated_str(&path)) != MP_IMPORT_STAT_FILE) {
                        vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                        mp_warning("%s is imported as namespace package", vstr_str(&path));
                    } else {
                        do_load(module_obj, &path);
                        vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                    }
                } else { // MP_IMPORT_STAT_FILE
                    do_load(module_obj, &path);
                    // TODO: We cannot just break here, at the very least, we must execute
                    // trailer code below. But otherwise if there're remaining components,
                    // that would be (??) object path within module, not modules path within FS.
                    // break;
                }
            }
            if (outer_module_obj != MP_OBJ_NULL) {
                qstr s = qstr_from_strn(mod_str + last, i - last);
                mp_store_attr(outer_module_obj, s, module_obj);
            }
            outer_module_obj = module_obj;
            if (top_module_obj == MP_OBJ_NULL) {
                top_module_obj = module_obj;
            }
            last = i + 1;
        }
    }
Exemplo n.º 7
0
// function to run extra tests for things that can't be checked by scripts
STATIC mp_obj_t extra_coverage(void) {
    // mp_printf (used by ports that don't have a native printf)
    {
        printf("# mp_printf\n");
        mp_printf(&mp_plat_print, "%"); // nothing after percent
        mp_printf(&mp_plat_print, "%d %+d % d\n", -123, 123, 123); // sign
        mp_printf(&mp_plat_print, "%05d\n", -123); // negative number with zero padding
        mp_printf(&mp_plat_print, "%ld\n", 123); // long
        mp_printf(&mp_plat_print, "%X\n", 0x1abcdef); // capital hex
        mp_printf(&mp_plat_print, "%.2s %.3s\n", "abc", "abc"); // fixed string precision
        mp_printf(&mp_plat_print, "%.*s\n", -1, "abc"); // negative string precision
        mp_printf(&mp_plat_print, "%b %b\n", 0, 1); // bools
        mp_printf(&mp_plat_print, "%s\n", NULL); // null string
        mp_printf(&mp_plat_print, "%t\n"); // non-format char
    }

    // vstr
    {
        printf("# vstr\n");
        vstr_t *vstr = vstr_new_size(16);
        vstr_hint_size(vstr, 32);
        vstr_add_str(vstr, "ts");
        vstr_ins_byte(vstr, 1, 'e');
        vstr_ins_char(vstr, 3, 't');
        vstr_ins_char(vstr, 10, 's');
        printf("%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_head_bytes(vstr, 2);
        printf("%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_tail_bytes(vstr, 10);
        printf("%.*s\n", (int)vstr->len, vstr->buf);

        vstr_printf(vstr, "t%cst", 'e');
        printf("%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_out_bytes(vstr, 3, 10);
        printf("%.*s\n", (int)vstr->len, vstr->buf);

        VSTR_FIXED(fix, 4);
        vstr_add_str(&fix, "large");
        printf("%.*s\n", (int)fix.len, fix.buf);
    }

    // repl autocomplete
    {
        printf("# repl\n");

        const char *str;
        mp_uint_t len = mp_repl_autocomplete("__n", 3, &mp_plat_print, &str);
        printf("%.*s\n", (int)len, str);

        mp_store_global(MP_QSTR_sys, mp_import_name(MP_QSTR_sys, mp_const_none, MP_OBJ_NEW_SMALL_INT(0)));
        mp_repl_autocomplete("sys.", 4, &mp_plat_print, &str);
        len = mp_repl_autocomplete("sys.impl", 8, &mp_plat_print, &str);
        printf("%.*s\n", (int)len, str);
    }

    // attrtuple
    {
        printf("# attrtuple\n");

        static const qstr fields[] = {MP_QSTR_start, MP_QSTR_stop, MP_QSTR_step};
        static const mp_obj_t items[] = {MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(2), MP_OBJ_NEW_SMALL_INT(3)};
        mp_obj_print_helper(&mp_plat_print, mp_obj_new_attrtuple(fields, 3, items), PRINT_REPR);
        printf("\n");
    }

    return mp_const_none;
}
Exemplo n.º 8
0
mp_obj_t mp_builtin___import__(uint n_args, mp_obj_t *args) {
#if DEBUG_PRINT
    printf("__import__:\n");
    for (int i = 0; i < n_args; i++) {
        printf("  ");
        mp_obj_print(args[i], PRINT_REPR);
        printf("\n");
    }
#endif

    mp_obj_t module_name = args[0];
    mp_obj_t fromtuple = mp_const_none;
    int level = 0;
    if (n_args >= 4) {
        fromtuple = args[3];
        if (n_args >= 5) {
            level = MP_OBJ_SMALL_INT_VALUE(args[4]);
        }
    }

    uint mod_len;
    const char *mod_str = (const char*)mp_obj_str_get_data(module_name, &mod_len);

    if (level != 0) {
        // What we want to do here is to take name of current module,
        // chop <level> trailing components, and concatenate with passed-in
        // module name, thus resolving relative import name into absolue.
        // This even appears to be correct per
        // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
        // "Relative imports use a module's __name__ attribute to determine that
        // module's position in the package hierarchy."
        mp_obj_t this_name_q = mp_obj_dict_get(mp_globals_get(), MP_OBJ_NEW_QSTR(MP_QSTR___name__));
        assert(this_name_q != MP_OBJ_NULL);
#if DEBUG_PRINT
        printf("Current module: ");
        mp_obj_print(this_name_q, PRINT_REPR);
        printf("\n");
#endif

        uint this_name_l;
        const char *this_name = (const char*)mp_obj_str_get_data(this_name_q, &this_name_l);

        uint dots_seen = 0;
        const char *p = this_name + this_name_l - 1;
        while (p > this_name) {
            if (*p == '.') {
                dots_seen++;
                if (--level == 0) {
                    break;
                }
            }
            p--;
        }

        if (dots_seen == 0 && level == 1) {
            // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
            // "If the module's name does not contain any package information
            // (e.g. it is set to '__main__') then relative imports are
            // resolved as if the module were a top level module, regardless
            // of where the module is actually located on the file system."
            // Supposedly this if catches this condition and resolve it properly
            // TODO: But nobody knows for sure. This condition happens when
            // package's __init__.py does something like "import .submod". So,
            // maybe we should check for package here? But quote above doesn't
            // talk about packages, it talks about dot-less module names.
            p = this_name + this_name_l;
        } else if (level != 0) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_ImportError, "Invalid relative import"));
        }

        uint new_mod_l = (mod_len == 0 ? p - this_name : p - this_name + 1 + mod_len);
        char *new_mod = alloca(new_mod_l);
        memcpy(new_mod, this_name, p - this_name);
        if (mod_len != 0) {
            new_mod[p - this_name] = '.';
            memcpy(new_mod + (p - this_name) + 1, mod_str, mod_len);
        }

        qstr new_mod_q = qstr_from_strn(new_mod, new_mod_l);
        DEBUG_printf("Resolved relative name: %s\n", qstr_str(new_mod_q));
        module_name = MP_OBJ_NEW_QSTR(new_mod_q);
        mod_str = new_mod;
        mod_len = new_mod_l;
    }

    // check if module already exists
    mp_obj_t module_obj = mp_module_get(mp_obj_str_get_qstr(module_name));
    if (module_obj != MP_OBJ_NULL) {
        DEBUG_printf("Module already loaded\n");
        // If it's not a package, return module right away
        char *p = strchr(mod_str, '.');
        if (p == NULL) {
            return module_obj;
        }
        // If fromlist is not empty, return leaf module
        if (fromtuple != mp_const_none) {
            return module_obj;
        }
        // Otherwise, we need to return top-level package
        qstr pkg_name = qstr_from_strn(mod_str, p - mod_str);
        return mp_module_get(pkg_name);
    }
    DEBUG_printf("Module not yet loaded\n");

    uint last = 0;
    VSTR_FIXED(path, MICROPY_ALLOC_PATH_MAX)
    module_obj = MP_OBJ_NULL;
    mp_obj_t top_module_obj = MP_OBJ_NULL;
    mp_obj_t outer_module_obj = MP_OBJ_NULL;
    uint i;
    for (i = 1; i <= mod_len; i++) {
        if (i == mod_len || mod_str[i] == '.') {
            // create a qstr for the module name up to this depth
            qstr mod_name = qstr_from_strn(mod_str, i);
            DEBUG_printf("Processing module: %s\n", qstr_str(mod_name));
            DEBUG_printf("Previous path: %s\n", vstr_str(&path));

            // find the file corresponding to the module name
            mp_import_stat_t stat;
            if (vstr_len(&path) == 0) {
                // first module in the dotted-name; search for a directory or file
                stat = find_file(mod_str, i, &path);
            } else {
                // latter module in the dotted-name; append to path
                vstr_add_char(&path, PATH_SEP_CHAR);
                vstr_add_strn(&path, mod_str + last, i - last);
                stat = stat_dir_or_file(&path);
            }
            DEBUG_printf("Current path: %s\n", vstr_str(&path));

            // fail if we couldn't find the file
            if (stat == MP_IMPORT_STAT_NO_EXIST) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "No module named '%s'", qstr_str(mod_name)));
            }

            module_obj = mp_module_get(mod_name);
            if (module_obj == MP_OBJ_NULL) {
                // module not already loaded, so load it!

                module_obj = mp_obj_new_module(mod_name);

                if (stat == MP_IMPORT_STAT_DIR) {
                    DEBUG_printf("%s is dir\n", vstr_str(&path));
                    // https://docs.python.org/3/reference/import.html
                    // "Specifically, any module that contains a __path__ attribute is considered a package."
                    mp_store_attr(module_obj, MP_QSTR___path__, mp_obj_new_str(vstr_str(&path), vstr_len(&path), false));
                    vstr_add_char(&path, PATH_SEP_CHAR);
                    vstr_add_str(&path, "__init__.py");
                    if (mp_import_stat(vstr_str(&path)) != MP_IMPORT_STAT_FILE) {
                        vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                        printf("Notice: %s is imported as namespace package\n", vstr_str(&path));
                    } else {
                        do_load(module_obj, &path);
                        vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                    }
                } else { // MP_IMPORT_STAT_FILE
                    do_load(module_obj, &path);
                    // TODO: We cannot just break here, at the very least, we must execute
                    // trailer code below. But otherwise if there're remaining components,
                    // that would be (??) object path within module, not modules path within FS.
                    // break;
                }
            }
            if (outer_module_obj != MP_OBJ_NULL) {
                qstr s = qstr_from_strn(mod_str + last, i - last);
                mp_store_attr(outer_module_obj, s, module_obj);
            }
            outer_module_obj = module_obj;
            if (top_module_obj == MP_OBJ_NULL) {
                top_module_obj = module_obj;
            }
            last = i + 1;
        }
    }

    if (i < mod_len) {
        // we loaded a package, now need to load objects from within that package
        // TODO
        assert(0);
    }

    // If fromlist is not empty, return leaf module
    if (fromtuple != mp_const_none) {
        return module_obj;
    }
    // Otherwise, we need to return top-level package
    return top_module_obj;
}
Exemplo n.º 9
0
int main(void) {
    // TODO disable JTAG

    // update the SystemCoreClock variable
    SystemCoreClockUpdate();

    // set interrupt priority config to use all 4 bits for pre-empting
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);

    // enable the CCM RAM and the GPIO's
    RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN;

#if MICROPY_HW_HAS_SDCARD
    {
        // configure SDIO pins to be high to start with (apparently makes it more robust)
        // FIXME this is not making them high, it just makes them outputs...
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // Configure PD.02 CMD line
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOD, &GPIO_InitStructure);
    }
#endif
#if defined(NETDUINO_PLUS_2)
    {
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

#if MICROPY_HW_HAS_SDCARD
        // Turn on the power enable for the sdcard (PB1)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif

        // Turn on the power for the 5V on the expansion header (PB2)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
    }
#endif

    // basic sub-system init
    sys_tick_init();
    pendsv_init();
    led_init();

#if MICROPY_HW_ENABLE_RTC
    rtc_init();
#endif

    // turn on LED to indicate bootup
    led_state(PYB_LED_G1, 1);

    // more sub-system init
#if MICROPY_HW_HAS_SDCARD
    sdcard_init();
#endif
    storage_init();

    // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
    //pyb_usart_global_debug = PYB_USART_YA;
    //usart_init(pyb_usart_global_debug, 115200);

    int first_soft_reset = true;

soft_reset:

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Micro Python init
    qstr_init();
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);

    exti_init();

#if MICROPY_HW_HAS_SWITCH
    switch_init();
#endif

#if MICROPY_HW_HAS_LCD
    // LCD init (just creates class, init hardware by calling LCD())
    lcd_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_TIMER
    // timer
    timer_init();
#endif

#if MICROPY_HW_ENABLE_RNG
    // RNG
    RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
    RNG_Cmd(ENABLE);
#endif

    pin_map_init();

    // add some functions to the builtin Python namespace
    mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help));
    mp_store_name(MP_QSTR_open, mp_make_function_n(2, pyb_io_open));

    // load the pyb module
    mp_module_register(MP_QSTR_pyb, (mp_obj_t)&pyb_module);

    // check if user switch held (initiates reset of filesystem)
    bool reset_filesystem = false;
#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {
        reset_filesystem = true;
        for (int i = 0; i < 50; i++) {
            if (!switch_get()) {
                reset_filesystem = false;
                break;
            }
            sys_tick_delay_ms(10);
        }
    }
#endif
    // local filesystem init
    {
        // try to mount the flash
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (!reset_filesystem && res == FR_OK) {
            // mount sucessful
        } else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
            // no filesystem, so create a fresh one
            // TODO doesn't seem to work correctly when reset_filesystem is true...

            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                __fatal_error("could not create LFS");
            }

            // create src directory
            res = f_mkdir("0:/src");
            // ignore result from mkdir

            // create empty main.py
            FIL fp;
            f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        } else {
            __fatal_error("could not access LFS");
        }
    }

    // make sure we have a /boot.py
    {
        FILINFO fno;
        FRESULT res = f_stat("0:/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file

            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        }
    }

    // run /boot.py
    if (!pyexec_file("0:/boot.py")) {
        flash_error(4);
    }

    if (first_soft_reset) {
#if MICROPY_HW_HAS_MMA7660
        // MMA accel: init and reset address to zero
        accel_init();
#endif
    }

    // turn boot-up LED off
    led_state(PYB_LED_G1, 0);

#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on 1:/
    if (sdcard_is_present()) {
        FRESULT res = f_mount(&fatfs1, "1:", 1);
        if (res != FR_OK) {
            printf("[SD] could not mount SD card\n");
        } else {
            if (first_soft_reset) {
                // use SD card as medium for the USB MSD
                usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD);
            }
        }
    }
#endif

#ifdef USE_HOST_MODE
    // USB host
    pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
    // USB device
    pyb_usb_dev_init(PYB_USB_DEV_VCP_MSC);
#endif

    // run main script
    {
        vstr_t *vstr = vstr_new();
        vstr_add_str(vstr, "0:/");
        if (pyb_config_source_dir == MP_OBJ_NULL) {
            vstr_add_str(vstr, "src");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir));
        }
        vstr_add_char(vstr, '/');
        if (pyb_config_main == MP_OBJ_NULL) {
            vstr_add_str(vstr, "main.py");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
        }
        if (!pyexec_file(vstr_str(vstr))) {
            flash_error(3);
        }
        vstr_free(vstr);
    }


#if MICROPY_HW_HAS_MMA7660
    // HID example
    if (0) {
        uint8_t data[4];
        data[0] = 0;
        data[1] = 1;
        data[2] = -2;
        data[3] = 0;
        for (;;) {
        #if MICROPY_HW_HAS_SWITCH
            if (switch_get()) {
                data[0] = 0x01; // 0x04 is middle, 0x02 is right
            } else {
                data[0] = 0x00;
            }
        #else
            data[0] = 0x00;
        #endif
            accel_start(0x4c /* ACCEL_ADDR */, 1);
            accel_send_byte(0);
            accel_restart(0x4c /* ACCEL_ADDR */, 0);
            for (int i = 0; i <= 1; i++) {
                int v = accel_read_ack() & 0x3f;
                if (v & 0x20) {
                    v |= ~0x1f;
                }
                data[1 + i] = v;
            }
            accel_read_nack();
            usb_hid_send_report(data);
            sys_tick_delay_ms(15);
        }
    }
#endif

#if MICROPY_HW_HAS_WLAN
    // wifi
    pyb_wlan_init();
    pyb_wlan_start();
#endif

    pyexec_repl();

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    first_soft_reset = false;
    goto soft_reset;
}
Exemplo n.º 10
0
mp_obj_t mp_builtin___import__(size_t n_args, const mp_obj_t *args) {
#if DEBUG_PRINT
    DEBUG_printf("__import__:\n");
    for (size_t i = 0; i < n_args; i++) {
        DEBUG_printf("  ");
        mp_obj_print(args[i], PRINT_REPR);
        DEBUG_printf("\n");
    }
#endif

    mp_obj_t module_name = args[0];
    mp_obj_t fromtuple = mp_const_none;
    mp_int_t level = 0;
    if (n_args >= 4) {
        fromtuple = args[3];
        if (n_args >= 5) {
            level = MP_OBJ_SMALL_INT_VALUE(args[4]);
            if (level < 0) {
                mp_raise_ValueError(NULL);
            }
        }
    }

    size_t mod_len;
    const char *mod_str = mp_obj_str_get_data(module_name, &mod_len);

    if (level != 0) {
        // What we want to do here is to take name of current module,
        // chop <level> trailing components, and concatenate with passed-in
        // module name, thus resolving relative import name into absolute.
        // This even appears to be correct per
        // http://legacy.python.org/dev/peps/pep-0328/#relative-imports-and-name
        // "Relative imports use a module's __name__ attribute to determine that
        // module's position in the package hierarchy."
        level--;
        mp_obj_t this_name_q = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___name__));
        assert(this_name_q != MP_OBJ_NULL);
        #if MICROPY_CPYTHON_COMPAT
        if (MP_OBJ_QSTR_VALUE(this_name_q) == MP_QSTR___main__) {
            // This is a module run by -m command-line switch, get its real name from backup attribute
            this_name_q = mp_obj_dict_get(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
        }
        #endif
        mp_map_t *globals_map = &mp_globals_get()->map;
        mp_map_elem_t *elem = mp_map_lookup(globals_map, MP_OBJ_NEW_QSTR(MP_QSTR___path__), MP_MAP_LOOKUP);
        bool is_pkg = (elem != NULL);

#if DEBUG_PRINT
        DEBUG_printf("Current module/package: ");
        mp_obj_print(this_name_q, PRINT_REPR);
        DEBUG_printf(", is_package: %d", is_pkg);
        DEBUG_printf("\n");
#endif

        size_t this_name_l;
        const char *this_name = mp_obj_str_get_data(this_name_q, &this_name_l);

        const char *p = this_name + this_name_l;
        if (!is_pkg) {
            // We have module, but relative imports are anchored at package, so
            // go there.
            chop_component(this_name, &p);
        }

        while (level--) {
            chop_component(this_name, &p);
        }

        // We must have some component left over to import from
        if (p == this_name) {
            mp_raise_ValueError("cannot perform relative import");
        }

        uint new_mod_l = (mod_len == 0 ? (size_t)(p - this_name) : (size_t)(p - this_name) + 1 + mod_len);
        char *new_mod = mp_local_alloc(new_mod_l);
        memcpy(new_mod, this_name, p - this_name);
        if (mod_len != 0) {
            new_mod[p - this_name] = '.';
            memcpy(new_mod + (p - this_name) + 1, mod_str, mod_len);
        }

        qstr new_mod_q = qstr_from_strn(new_mod, new_mod_l);
        mp_local_free(new_mod);
        DEBUG_printf("Resolved base name for relative import: '%s'\n", qstr_str(new_mod_q));
        module_name = MP_OBJ_NEW_QSTR(new_mod_q);
        mod_str = qstr_str(new_mod_q);
        mod_len = new_mod_l;
    }

    // check if module already exists
    qstr module_name_qstr = mp_obj_str_get_qstr(module_name);
    mp_obj_t module_obj = mp_module_get(module_name_qstr);
    if (module_obj != MP_OBJ_NULL) {
        DEBUG_printf("Module already loaded\n");
        // If it's not a package, return module right away
        char *p = strchr(mod_str, '.');
        if (p == NULL) {
            return module_obj;
        }
        // If fromlist is not empty, return leaf module
        if (fromtuple != mp_const_none) {
            return module_obj;
        }
        // Otherwise, we need to return top-level package
        qstr pkg_name = qstr_from_strn(mod_str, p - mod_str);
        return mp_module_get(pkg_name);
    }
    DEBUG_printf("Module not yet loaded\n");

    uint last = 0;
    VSTR_FIXED(path, MICROPY_ALLOC_PATH_MAX)
    module_obj = MP_OBJ_NULL;
    mp_obj_t top_module_obj = MP_OBJ_NULL;
    mp_obj_t outer_module_obj = MP_OBJ_NULL;
    uint i;
    for (i = 1; i <= mod_len; i++) {
        if (i == mod_len || mod_str[i] == '.') {
            // create a qstr for the module name up to this depth
            qstr mod_name = qstr_from_strn(mod_str, i);
            DEBUG_printf("Processing module: %s\n", qstr_str(mod_name));
            DEBUG_printf("Previous path: =%.*s=\n", vstr_len(&path), vstr_str(&path));

            // find the file corresponding to the module name
            mp_import_stat_t stat;
            if (vstr_len(&path) == 0) {
                // first module in the dotted-name; search for a directory or file
                stat = find_file(mod_str, i, &path);
            } else {
                // latter module in the dotted-name; append to path
                vstr_add_char(&path, PATH_SEP_CHAR);
                vstr_add_strn(&path, mod_str + last, i - last);
                stat = stat_dir_or_file(&path);
            }
            DEBUG_printf("Current path: %.*s\n", vstr_len(&path), vstr_str(&path));

            if (stat == MP_IMPORT_STAT_NO_EXIST) {
                #if MICROPY_MODULE_WEAK_LINKS
                // check if there is a weak link to this module
                if (i == mod_len) {
                    mp_map_elem_t *el = mp_map_lookup((mp_map_t*)&mp_builtin_module_weak_links_map, MP_OBJ_NEW_QSTR(mod_name), MP_MAP_LOOKUP);
                    if (el == NULL) {
                        goto no_exist;
                    }
                    // found weak linked module
                    module_obj = el->value;
                    mp_module_call_init(mod_name, module_obj);
                } else {
                    no_exist:
                #else
                {
                #endif
                    // couldn't find the file, so fail
                    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                        mp_raise_msg(&mp_type_ImportError, "module not found");
                    } else {
                        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError,
                            "no module named '%q'", mod_name));
                    }
                }
            } else {
                // found the file, so get the module
                module_obj = mp_module_get(mod_name);
            }

            if (module_obj == MP_OBJ_NULL) {
                // module not already loaded, so load it!

                module_obj = mp_obj_new_module(mod_name);

                // if args[3] (fromtuple) has magic value False, set up
                // this module for command-line "-m" option (set module's
                // name to __main__ instead of real name). Do this only
                // for *modules* however - packages never have their names
                // replaced, instead they're -m'ed using a special __main__
                // submodule in them. (This all apparently is done to not
                // touch package name itself, which is important for future
                // imports).
                if (i == mod_len && fromtuple == mp_const_false && stat != MP_IMPORT_STAT_DIR) {
                    mp_obj_module_t *o = MP_OBJ_TO_PTR(module_obj);
                    mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
                    #if MICROPY_CPYTHON_COMPAT
                    // Store module as "__main__" in the dictionary of loaded modules (returned by sys.modules).
                    mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_loaded_modules_dict)), MP_OBJ_NEW_QSTR(MP_QSTR___main__), module_obj);
                    // Store real name in "__main__" attribute. Chosen semi-randonly, to reuse existing qstr's.
                    mp_obj_dict_store(MP_OBJ_FROM_PTR(o->globals), MP_OBJ_NEW_QSTR(MP_QSTR___main__), MP_OBJ_NEW_QSTR(mod_name));
                    #endif
                }

                if (stat == MP_IMPORT_STAT_DIR) {
                    DEBUG_printf("%.*s is dir\n", vstr_len(&path), vstr_str(&path));
                    // https://docs.python.org/3/reference/import.html
                    // "Specifically, any module that contains a __path__ attribute is considered a package."
                    mp_store_attr(module_obj, MP_QSTR___path__, mp_obj_new_str(vstr_str(&path), vstr_len(&path)));
                    size_t orig_path_len = path.len;
                    vstr_add_char(&path, PATH_SEP_CHAR);
                    vstr_add_str(&path, "__init__.py");
                    if (stat_file_py_or_mpy(&path) != MP_IMPORT_STAT_FILE) {
                        //mp_warning("%s is imported as namespace package", vstr_str(&path));
                    } else {
                        do_load(module_obj, &path);
                    }
                    path.len = orig_path_len;
                } else { // MP_IMPORT_STAT_FILE
                    do_load(module_obj, &path);
                    // This should be the last component in the import path.  If there are
                    // remaining components then it's an ImportError because the current path
                    // (the module that was just loaded) is not a package.  This will be caught
                    // on the next iteration because the file will not exist.
                }
            }
            if (outer_module_obj != MP_OBJ_NULL) {
                qstr s = qstr_from_strn(mod_str + last, i - last);
                mp_store_attr(outer_module_obj, s, module_obj);
            }
            outer_module_obj = module_obj;
            if (top_module_obj == MP_OBJ_NULL) {
                top_module_obj = module_obj;
            }
            last = i + 1;
        }
    }
mp_obj_t mp_builtin___import__(uint n_args, mp_obj_t *args) {
    /*
    printf("import:\n");
    for (int i = 0; i < n_args; i++) {
        printf("  ");
        mp_obj_print(args[i], PRINT_REPR);
        printf("\n");
    }
    */

    mp_obj_t fromtuple = mp_const_none;
    int level = 0;
    if (n_args >= 4) {
        fromtuple = args[3];
        if (n_args >= 5) {
            level = MP_OBJ_SMALL_INT_VALUE(args[4]);
        }
    }

    if (level != 0) {
        nlr_jump(mp_obj_new_exception_msg(&mp_type_NotImplementedError,
            "Relative import is not implemented"));
    }

    uint mod_len;
    const char *mod_str = (const char*)mp_obj_str_get_data(args[0], &mod_len);

    // check if module already exists
    mp_obj_t module_obj = mp_module_get(mp_obj_str_get_qstr(args[0]));
    if (module_obj != MP_OBJ_NULL) {
        // If it's not a package, return module right away
        char *p = strchr(mod_str, '.');
        if (p == NULL) {
            return module_obj;
        }
        // If fromlist is not empty, return leaf module
        if (fromtuple != mp_const_none) {
            return module_obj;
        }
        // Otherwise, we need to return top-level package
        qstr pkg_name = qstr_from_strn(mod_str, p - mod_str);
        return mp_module_get(pkg_name);
    }

    uint last = 0;
    VSTR_FIXED(path, MICROPY_PATH_MAX)
    module_obj = MP_OBJ_NULL;
    mp_obj_t top_module_obj = MP_OBJ_NULL;
    mp_obj_t outer_module_obj = MP_OBJ_NULL;
    uint i;
    for (i = 1; i <= mod_len; i++) {
        if (i == mod_len || mod_str[i] == '.') {
            // create a qstr for the module name up to this depth
            qstr mod_name = qstr_from_strn(mod_str, i);

            // find the file corresponding to the module name
            mp_import_stat_t stat;
            if (vstr_len(&path) == 0) {
                // first module in the dotted-name; search for a directory or file
                stat = find_file(mod_str, i, &path);
            } else {
                // latter module in the dotted-name; append to path
                vstr_add_char(&path, PATH_SEP_CHAR);
                vstr_add_strn(&path, mod_str + last, i - last);
                stat = stat_dir_or_file(&path);
            }

            // fail if we couldn't find the file
            if (stat == MP_IMPORT_STAT_NO_EXIST) {
                nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "ImportError: No module named '%s'", qstr_str(mod_name)));
            }

            module_obj = mp_module_get(mod_name);
            if (module_obj == MP_OBJ_NULL) {
                // module not already loaded, so load it!

                module_obj = mp_obj_new_module(mod_name);

                if (stat == MP_IMPORT_STAT_DIR) {
                    vstr_add_char(&path, PATH_SEP_CHAR);
                    vstr_add_str(&path, "__init__.py");
                    if (mp_import_stat(vstr_str(&path)) != MP_IMPORT_STAT_FILE) {
                        vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                        nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ImportError,
                            "Per PEP-420 a dir without __init__.py (%s) is a namespace package; "
                            "namespace packages are not supported", vstr_str(&path)));
                    }
                    do_load(module_obj, &path);
                    vstr_cut_tail_bytes(&path, sizeof("/__init__.py") - 1); // cut off /__init__.py
                } else { // MP_IMPORT_STAT_FILE
                    do_load(module_obj, &path);
                    // TODO: We cannot just break here, at the very least, we must execute
                    // trailer code below. But otherwise if there're remaining components,
                    // that would be (??) object path within module, not modules path within FS.
                    // break;
                }
            }
            if (outer_module_obj != MP_OBJ_NULL) {
                qstr s = qstr_from_strn(mod_str + last, i - last);
                mp_store_attr(outer_module_obj, s, module_obj);
            }
            outer_module_obj = module_obj;
            if (top_module_obj == MP_OBJ_NULL) {
                top_module_obj = module_obj;
            }
            last = i + 1;
        }
    }

    if (i < mod_len) {
        // we loaded a package, now need to load objects from within that package
        // TODO
        assert(0);
    }

    // If fromlist is not empty, return leaf module
    if (fromtuple != mp_const_none) {
        return module_obj;
    }
    // Otherwise, we need to return top-level package
    return top_module_obj;
}
Exemplo n.º 12
0
// function to run extra tests for things that can't be checked by scripts
STATIC mp_obj_t extra_coverage(void) {
    // mp_printf (used by ports that don't have a native printf)
    {
        mp_printf(&mp_plat_print, "# mp_printf\n");
        mp_printf(&mp_plat_print, "%d %+d % d\n", -123, 123, 123); // sign
        mp_printf(&mp_plat_print, "%05d\n", -123); // negative number with zero padding
        mp_printf(&mp_plat_print, "%ld\n", 123); // long
        mp_printf(&mp_plat_print, "%X\n", 0x1abcdef); // capital hex
        mp_printf(&mp_plat_print, "%.2s %.3s\n", "abc", "abc"); // fixed string precision
        mp_printf(&mp_plat_print, "%.*s\n", -1, "abc"); // negative string precision
        mp_printf(&mp_plat_print, "%b %b\n", 0, 1); // bools
        mp_printf(&mp_plat_print, "%s\n", NULL); // null string
        mp_printf(&mp_plat_print, "%d\n", 0x80000000); // should print signed
        mp_printf(&mp_plat_print, "%u\n", 0x80000000); // should print unsigned
        mp_printf(&mp_plat_print, "%x\n", 0x80000000); // should print unsigned
        mp_printf(&mp_plat_print, "%X\n", 0x80000000); // should print unsigned
    }

    // vstr
    {
        mp_printf(&mp_plat_print, "# vstr\n");
        vstr_t *vstr = vstr_new(16);
        vstr_hint_size(vstr, 32);
        vstr_add_str(vstr, "ts");
        vstr_ins_byte(vstr, 1, 'e');
        vstr_ins_char(vstr, 3, 't');
        vstr_ins_char(vstr, 10, 's');
        mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_head_bytes(vstr, 2);
        mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_tail_bytes(vstr, 10);
        mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);

        vstr_printf(vstr, "t%cst", 'e');
        mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);

        vstr_cut_out_bytes(vstr, 3, 10);
        mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);

        VSTR_FIXED(fix, 4);
        vstr_add_str(&fix, "large");
        mp_printf(&mp_plat_print, "%.*s\n", (int)fix.len, fix.buf);
    }

    // repl autocomplete
    {
        mp_printf(&mp_plat_print, "# repl\n");

        const char *str;
        mp_uint_t len = mp_repl_autocomplete("__n", 3, &mp_plat_print, &str);
        mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);

        mp_store_global(MP_QSTR_sys, mp_import_name(MP_QSTR_sys, mp_const_none, MP_OBJ_NEW_SMALL_INT(0)));
        mp_repl_autocomplete("sys.", 4, &mp_plat_print, &str);
        len = mp_repl_autocomplete("sys.impl", 8, &mp_plat_print, &str);
        mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
    }

    // attrtuple
    {
        mp_printf(&mp_plat_print, "# attrtuple\n");

        static const qstr fields[] = {MP_QSTR_start, MP_QSTR_stop, MP_QSTR_step};
        static const mp_obj_t items[] = {MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(2), MP_OBJ_NEW_SMALL_INT(3)};
        mp_obj_print_helper(&mp_plat_print, mp_obj_new_attrtuple(fields, 3, items), PRINT_REPR);
        mp_printf(&mp_plat_print, "\n");
    }

    // str
    {
        mp_printf(&mp_plat_print, "# str\n");

        // intern string
        mp_printf(&mp_plat_print, "%d\n", MP_OBJ_IS_QSTR(mp_obj_str_intern(mp_obj_new_str("intern me", 9, false))));
    }

    // mpz
    {
        mp_printf(&mp_plat_print, "# mpz\n");

        mp_uint_t value;
        mpz_t mpz;
        mpz_init_zero(&mpz);

        // mpz_as_uint_checked, with success
        mpz_set_from_int(&mpz, 12345678);
        mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
        mp_printf(&mp_plat_print, "%d\n", (int)value);

        // mpz_as_uint_checked, with negative arg
        mpz_set_from_int(&mpz, -1);
        mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));

        // mpz_as_uint_checked, with overflowing arg
        mpz_set_from_int(&mpz, 1);
        mpz_shl_inpl(&mpz, &mpz, 70);
        mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
    }

    // runtime utils
    {
        mp_printf(&mp_plat_print, "# runtime utils\n");

        // call mp_call_function_1_protected
        mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), MP_OBJ_NEW_SMALL_INT(1));
        // call mp_call_function_1_protected with invalid args
        mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), mp_obj_new_str("abc", 3, false));

        // call mp_call_function_2_protected
        mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(1));
        // call mp_call_function_2_protected with invalid args
        mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), mp_obj_new_str("abc", 3, false), mp_obj_new_str("abc", 3, false));
    }

    // warning
    {
        mp_emitter_warning(MP_PASS_CODE_SIZE, "test");
    }

    // format float
    {
        mp_printf(&mp_plat_print, "# format float\n");

        // format with inadequate buffer size
        char buf[5];
        mp_format_float(1, buf, sizeof(buf), 'g', 0, '+');
        mp_printf(&mp_plat_print, "%s\n", buf);

        // format with just enough buffer so that precision must be
        // set from 0 to 1 twice
        char buf2[8];
        mp_format_float(1, buf2, sizeof(buf2), 'g', 0, '+');
        mp_printf(&mp_plat_print, "%s\n", buf2);

        // format where precision is trimmed to avoid buffer overflow
        mp_format_float(1, buf2, sizeof(buf2), 'e', 0, '+');
        mp_printf(&mp_plat_print, "%s\n", buf2);
    }

    // return a tuple of data for testing on the Python side
    mp_obj_t items[] = {(mp_obj_t)&str_no_hash_obj, (mp_obj_t)&bytes_no_hash_obj};
    return mp_obj_new_tuple(MP_ARRAY_SIZE(items), items);
}
Exemplo n.º 13
0
int main(void) {
    // TODO disable JTAG

    /* STM32F4xx HAL library initialization:
         - Configure the Flash prefetch, instruction and Data caches
         - Configure the Systick to generate an interrupt each 1 msec
         - Set NVIC Group Priority to 4
         - Global MSP (MCU Support Package) initialization
       */
    HAL_Init();

    // set the system clock to be HSE
    SystemClock_Config();

    // enable GPIO clocks
    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();
    __GPIOD_CLK_ENABLE();

    // enable the CCM RAM
    __CCMDATARAMEN_CLK_ENABLE();

#if 0
#if defined(NETDUINO_PLUS_2)
    {
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

#if MICROPY_HW_HAS_SDCARD
        // Turn on the power enable for the sdcard (PB1)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif

        // Turn on the power for the 5V on the expansion header (PB2)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
    }
#endif
#endif

    // basic sub-system init
    pendsv_init();
    timer_tim3_init();
    led_init();
    switch_init0();

    int first_soft_reset = true;

soft_reset:

    // check if user switch held to select the reset mode
    led_state(1, 0);
    led_state(2, 1);
    led_state(3, 0);
    led_state(4, 0);
    uint reset_mode = 1;

#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {
        for (uint i = 0; i < 3000; i++) {
            if (!switch_get()) {
                break;
            }
            HAL_Delay(20);
            if (i % 30 == 29) {
                if (++reset_mode > 3) {
                    reset_mode = 1;
                }
                led_state(2, reset_mode & 1);
                led_state(3, reset_mode & 2);
                led_state(4, reset_mode & 4);
            }
        }
        // flash the selected reset mode
        for (uint i = 0; i < 6; i++) {
            led_state(2, 0);
            led_state(3, 0);
            led_state(4, 0);
            HAL_Delay(50);
            led_state(2, reset_mode & 1);
            led_state(3, reset_mode & 2);
            led_state(4, reset_mode & 4);
            HAL_Delay(50);
        }
        HAL_Delay(400);
    }
#endif

#if MICROPY_HW_ENABLE_RTC
    if (first_soft_reset) {
        rtc_init();
    }
#endif

    // more sub-system init
#if MICROPY_HW_HAS_SDCARD
    if (first_soft_reset) {
        sdcard_init();
    }
#endif
    if (first_soft_reset) {
        storage_init();
    }

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Change #if 0 to #if 1 if you want REPL on USART_6 (or another usart)
    // as well as on USB VCP
#if 0
    pyb_usart_global_debug = pyb_Usart(MP_OBJ_NEW_SMALL_INT(PYB_USART_YA),
                                       MP_OBJ_NEW_SMALL_INT(115200));
#else
    pyb_usart_global_debug = NULL;
#endif

    // Micro Python init
    qstr_init();
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);

    readline_init();

    exti_init();

#if MICROPY_HW_HAS_SWITCH
    // must come after exti_init
    switch_init();
#endif

#if MICROPY_HW_HAS_LCD
    // LCD init (just creates class, init hardware by calling LCD())
    lcd_init();
#endif

    pin_map_init();

    // local filesystem init
    {
        // try to mount the flash
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
            // no filesystem, or asked to reset it, so create a fresh one

            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();

            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                __fatal_error("could not create LFS");
            }

            // create empty main.py
            FIL fp;
            f_open(&fp, "0:/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // create .inf driver file
            f_open(&fp, "0:/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
            f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        } else if (res == FR_OK) {
            // mount sucessful
        } else {
            __fatal_error("could not access LFS");
        }
    }

    // make sure we have a 0:/boot.py
    {
        FILINFO fno;
#if _USE_LFN
        fno.lfname = NULL;
        fno.lfsize = 0;
#endif
        FRESULT res = f_stat("0:/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file

            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();

            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        }
    }

    // root device defaults to internal flash filesystem
    uint root_device = 0;

#if defined(USE_DEVICE_MODE)
    usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH;
#endif

#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on 1:/
    if (reset_mode == 1 && sdcard_is_present()) {
        FRESULT res = f_mount(&fatfs1, "1:", 1);
        if (res != FR_OK) {
            printf("[SD] could not mount SD card\n");
        } else {
            // use SD card as root device
            root_device = 1;

            if (first_soft_reset) {
                // use SD card as medium for the USB MSD
#if defined(USE_DEVICE_MODE)
                usb_medium = USB_STORAGE_MEDIUM_SDCARD;
#endif
            }
        }
    }
#else
    // Get rid of compiler warning if no SDCARD is configured.
    (void)first_soft_reset;
#endif

    // run <root>:/boot.py, if it exists
    if (reset_mode == 1) {
        const char *boot_file;
        if (root_device == 0) {
            boot_file = "0:/boot.py";
        } else {
            boot_file = "1:/boot.py";
        }
        FRESULT res = f_stat(boot_file, NULL);
        if (res == FR_OK) {
            if (!pyexec_file(boot_file)) {
                flash_error(4);
            }
        }
    }

    // turn boot-up LEDs off
    led_state(2, 0);
    led_state(3, 0);
    led_state(4, 0);

#if defined(USE_HOST_MODE)
    // USB host
    pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
    // USB device
    if (reset_mode == 1) {
        usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC;
        if (pyb_config_usb_mode != MP_OBJ_NULL) {
            if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) {
                usb_mode = USB_DEVICE_MODE_CDC_HID;
            }
        }
        pyb_usb_dev_init(usb_mode, usb_medium);
    } else {
        pyb_usb_dev_init(USB_DEVICE_MODE_CDC_MSC, usb_medium);
    }
#endif

#if MICROPY_HW_ENABLE_RNG
    // RNG
    rng_init();
#endif

#if MICROPY_HW_ENABLE_TIMER
    // timer
    //timer_init();
#endif

    // I2C
    i2c_init();

#if MICROPY_HW_HAS_MMA7660
    // MMA accel: init and reset
    accel_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_DAC
    // DAC
    dac_init();
#endif

    // now that everything is initialised, run main script
    if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
        vstr_t *vstr = vstr_new();
        vstr_printf(vstr, "%d:/", root_device);
        if (pyb_config_main == MP_OBJ_NULL) {
            vstr_add_str(vstr, "main.py");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
        }
        FRESULT res = f_stat(vstr_str(vstr), NULL);
        if (res == FR_OK) {
            if (!pyexec_file(vstr_str(vstr))) {
                flash_error(3);
            }
        }
        vstr_free(vstr);
    }

#if 0
#if MICROPY_HW_HAS_WLAN
    // wifi
    pyb_wlan_init();
    pyb_wlan_start();
#endif
#endif

    // enter REPL
    // REPL mode can change, or it can request a soft reset
    for (;;) {
        if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
            if (pyexec_raw_repl() != 0) {
                break;
            }
        } else {
            if (pyexec_friendly_repl() != 0) {
                break;
            }
        }
    }

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    first_soft_reset = false;
    goto soft_reset;
}