Exemplo n.º 1
0
void test_nmf(std::size_t m, std::size_t k, std::size_t n)
{
    std::vector<ScalarType> stl_w(m * k);
    std::vector<ScalarType> stl_h(k * n);

    viennacl::matrix<ScalarType> v_ref(m, n);
    viennacl::matrix<ScalarType> w_ref(m, k);
    viennacl::matrix<ScalarType> h_ref(k, n);

    fill_random(stl_w);
    fill_random(stl_h);

    viennacl::fast_copy(&stl_w[0], &stl_w[0] + stl_w.size(), w_ref);
    viennacl::fast_copy(&stl_h[0], &stl_h[0] + stl_h.size(), h_ref);

    v_ref = viennacl::linalg::prod(w_ref, h_ref);  //reference

    // Fill again with random numbers:
    fill_random(stl_w);
    fill_random(stl_h);

    viennacl::matrix<ScalarType> w_nmf(m, k);
    viennacl::matrix<ScalarType> h_nmf(k, n);

    viennacl::fast_copy(&stl_w[0], &stl_w[0] + stl_w.size(), w_nmf);
    viennacl::fast_copy(&stl_h[0], &stl_h[0] + stl_h.size(), h_nmf);



    viennacl::linalg::nmf_config conf;
    viennacl::linalg::nmf(v_ref, w_nmf, h_nmf, conf);

    viennacl::matrix<ScalarType> v_nmf = viennacl::linalg::prod(w_nmf, h_nmf);

    float diff  = matrix_compare(v_ref, v_nmf);
    bool diff_ok = fabs(diff) < EPS;

    long iterations = static_cast<long>(conf.iters());
    printf("%6s [%lux%lux%lu] diff = %.6f (%ld iterations)\n", diff_ok ? "[[OK]]":"[FAIL]", m, k, n, diff, iterations);

    if (!diff_ok)
      exit(EXIT_FAILURE);
}
Exemplo n.º 2
0
BOOST_AUTO_TEST_CASE_TEMPLATE( adjacent_difference, DeviceType,
                               DTK_SEARCH_DEVICE_TYPES )
{
    Kokkos::View<int[5], DeviceType> v( "v" );
    auto v_host = Kokkos::create_mirror_view( v );
    v_host( 0 ) = 2;
    v_host( 1 ) = 4;
    v_host( 2 ) = 6;
    v_host( 3 ) = 8;
    v_host( 4 ) = 10;
    Kokkos::deep_copy( v, v_host );
    // In-place operation is not allowed
    BOOST_CHECK_THROW( ArborX::adjacentDifference( v, v ),
                       ArborX::SearchException );
    auto w = Kokkos::create_mirror( DeviceType(), v );
    BOOST_CHECK_NO_THROW( ArborX::adjacentDifference( v, w ) );
    auto w_host = Kokkos::create_mirror_view( w );
    Kokkos::deep_copy( w_host, w );
    std::vector<int> w_ref( 5, 2 );
    BOOST_TEST( w_host == w_ref, tt::per_element() );

    Kokkos::View<float *, DeviceType> x( "x", 10 );
    Kokkos::deep_copy( x, 3.14 );
    BOOST_CHECK_THROW( ArborX::adjacentDifference( x, x ),
                       ArborX::SearchException );
    Kokkos::View<float[10], DeviceType> y( "y" );
    BOOST_CHECK_NO_THROW( ArborX::adjacentDifference( x, y ) );
    std::vector<float> y_ref( 10 );
    y_ref[0] = 3.14;
    auto y_host = Kokkos::create_mirror_view( y );
    Kokkos::deep_copy( y_host, y );
    BOOST_TEST( y_host == y_ref, tt::per_element() );

    Kokkos::resize( x, 5 );
    BOOST_CHECK_THROW( ArborX::adjacentDifference( y, x ),
                       ArborX::SearchException );
}
Exemplo n.º 3
0
/* Subroutine */ HYPRE_Int dlatrd_(const char *uplo, integer *n, integer *nb, doublereal *
	a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, 
	integer *ldw)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLATRD reduces NB rows and columns of a real symmetric matrix A to   
    symmetric tridiagonal form by an orthogonal similarity   
    transformation Q' * A * Q, and returns the matrices V and W which are   
    needed to apply the transformation to the unreduced part of A.   

    If UPLO = 'U', DLATRD reduces the last NB rows and columns of a   
    matrix, of which the upper triangle is supplied;   
    if UPLO = 'L', DLATRD reduces the first NB rows and columns of a   
    matrix, of which the lower triangle is supplied.   

    This is an auxiliary routine called by DSYTRD.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER   
            Specifies whether the upper or lower triangular part of the   
            symmetric matrix A is stored:   
            = 'U': Upper triangular   
            = 'L': Lower triangular   

    N       (input) INTEGER   
            The order of the matrix A.   

    NB      (input) INTEGER   
            The number of rows and columns to be reduced.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            n-by-n upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading n-by-n lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit:   
            if UPLO = 'U', the last NB columns have been reduced to   
              tridiagonal form, with the diagonal elements overwriting   
              the diagonal elements of A; the elements above the diagonal   
              with the array TAU, represent the orthogonal matrix Q as a   
              product of elementary reflectors;   
            if UPLO = 'L', the first NB columns have been reduced to   
              tridiagonal form, with the diagonal elements overwriting   
              the diagonal elements of A; the elements below the diagonal   
              with the array TAU, represent the  orthogonal matrix Q as a   
              product of elementary reflectors.   
            See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= (1,N).   

    E       (output) DOUBLE PRECISION array, dimension (N-1)   
            If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal   
            elements of the last NB columns of the reduced matrix;   
            if UPLO = 'L', E(1:nb) contains the subdiagonal elements of   
            the first NB columns of the reduced matrix.   

    TAU     (output) DOUBLE PRECISION array, dimension (N-1)   
            The scalar factors of the elementary reflectors, stored in   
            TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.   
            See Further Details.   

    W       (output) DOUBLE PRECISION array, dimension (LDW,NB)   
            The n-by-nb matrix W required to update the unreduced part   
            of A.   

    LDW     (input) INTEGER   
            The leading dimension of the array W. LDW >= max(1,N).   

    Further Details   
    ===============   

    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n) H(n-1) . . . H(n-nb+1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),   
    and tau in TAU(i-1).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(nb).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),   
    and tau in TAU(i).   

    The elements of the vectors v together form the n-by-nb matrix V   
    which is needed, with W, to apply the transformation to the unreduced   
    part of the matrix, using a symmetric rank-2k update of the form:   
    A := A - V*W' - W*V'.   

    The contents of A on exit are illustrated by the following examples   
    with n = 5 and nb = 2:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  a   a   a   v4  v5 )              (  d                  )   
      (      a   a   v4  v5 )              (  1   d              )   
      (          a   1   v5 )              (  v1  1   a          )   
      (              d   1  )              (  v1  v2  a   a      )   
      (                  d  )              (  v1  v2  a   a   a  )   

    where d denotes a diagonal element of the reduced matrix, a denotes   
    an element of the original matrix that is unchanged, and vi denotes   
    an element of the vector defining H(i).   

    =====================================================================   


       Quick return if possible   

       Parameter adjustments */
    /* Table of constant values */
    static doublereal c_b5 = -1.;
    static doublereal c_b6 = 1.;
    static integer c__1 = 1;
    static doublereal c_b16 = 0.;
    
    /* System generated locals */
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3;
    /* Local variables */
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    static integer i__;
    static doublereal alpha;
    extern /* Subroutine */ HYPRE_Int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern logical lsame_(const char *,const char *);
    extern /* Subroutine */ HYPRE_Int dgemv_(const char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), daxpy_(integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
	    dsymv_(const char *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *,
	     doublereal *);
    static integer iw;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define w_ref(a_1,a_2) w[(a_2)*w_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --e;
    --tau;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1 * 1;
    w -= w_offset;

    /* Function Body */
    if (*n <= 0) {
	return 0;
    }

    if (lsame_(uplo, "U")) {

/*        Reduce last NB columns of upper triangle */

	i__1 = *n - *nb + 1;
	for (i__ = *n; i__ >= i__1; --i__) {
	    iw = i__ - *n + *nb;
	    if (i__ < *n) {

/*              Update A(1:i,i) */

		i__2 = *n - i__;
		dgemv_("No transpose", &i__, &i__2, &c_b5, &a_ref(1, i__ + 1),
			 lda, &w_ref(i__, iw + 1), ldw, &c_b6, &a_ref(1, i__),
			 &c__1);
		i__2 = *n - i__;
		dgemv_("No transpose", &i__, &i__2, &c_b5, &w_ref(1, iw + 1), 
			ldw, &a_ref(i__, i__ + 1), lda, &c_b6, &a_ref(1, i__),
			 &c__1);
	    }
	    if (i__ > 1) {

/*              Generate elementary reflector H(i) to annihilate   
                A(1:i-2,i) */

		i__2 = i__ - 1;
		dlarfg_(&i__2, &a_ref(i__ - 1, i__), &a_ref(1, i__), &c__1, &
			tau[i__ - 1]);
		e[i__ - 1] = a_ref(i__ - 1, i__);
		a_ref(i__ - 1, i__) = 1.;

/*              Compute W(1:i-1,i) */

		i__2 = i__ - 1;
		dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a_ref(1, 
			i__), &c__1, &c_b16, &w_ref(1, iw), &c__1);
		if (i__ < *n) {
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(1, iw + 1)
			    , ldw, &a_ref(1, i__), &c__1, &c_b16, &w_ref(i__ 
			    + 1, iw), &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(1, i__ 
			    + 1), lda, &w_ref(i__ + 1, iw), &c__1, &c_b6, &
			    w_ref(1, iw), &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    dgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(1, i__ + 
			    1), lda, &a_ref(1, i__), &c__1, &c_b16, &w_ref(
			    i__ + 1, iw), &c__1);
		    i__2 = i__ - 1;
		    i__3 = *n - i__;
		    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(1, iw 
			    + 1), ldw, &w_ref(i__ + 1, iw), &c__1, &c_b6, &
			    w_ref(1, iw), &c__1);
		}
		i__2 = i__ - 1;
		dscal_(&i__2, &tau[i__ - 1], &w_ref(1, iw), &c__1);
		i__2 = i__ - 1;
		alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w_ref(1, iw), &
			c__1, &a_ref(1, i__), &c__1);
		i__2 = i__ - 1;
		daxpy_(&i__2, &alpha, &a_ref(1, i__), &c__1, &w_ref(1, iw), &
			c__1);
	    }

/* L10: */
	}
    } else {

/*        Reduce first NB columns of lower triangle */

	i__1 = *nb;
	for (i__ = 1; i__ <= i__1; ++i__) {

/*           Update A(i:n,i) */

	    i__2 = *n - i__ + 1;
	    i__3 = i__ - 1;
	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__, 1), lda, &
		    w_ref(i__, 1), ldw, &c_b6, &a_ref(i__, i__), &c__1);
	    i__2 = *n - i__ + 1;
	    i__3 = i__ - 1;
	    dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__, 1), ldw, &
		    a_ref(i__, 1), lda, &c_b6, &a_ref(i__, i__), &c__1);
	    if (i__ < *n) {

/*              Generate elementary reflector H(i) to annihilate   
                A(i+2:n,i)   

   Computing MIN */
		i__2 = i__ + 2;
		i__3 = *n - i__;
		dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*n), i__)
			, &c__1, &tau[i__]);
		e[i__] = a_ref(i__ + 1, i__);
		a_ref(i__ + 1, i__) = 1.;

/*              Compute W(i+1:n,i) */

		i__2 = *n - i__;
		dsymv_("Lower", &i__2, &c_b6, &a_ref(i__ + 1, i__ + 1), lda, &
			a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(i__ + 1, 
			i__), &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		dgemv_("Transpose", &i__2, &i__3, &c_b6, &w_ref(i__ + 1, 1), 
			ldw, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1, 
			i__), &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a_ref(i__ + 1, 1)
			, lda, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1, 
			i__), &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		dgemv_("Transpose", &i__2, &i__3, &c_b6, &a_ref(i__ + 1, 1), 
			lda, &a_ref(i__ + 1, i__), &c__1, &c_b16, &w_ref(1, 
			i__), &c__1);
		i__2 = *n - i__;
		i__3 = i__ - 1;
		dgemv_("No transpose", &i__2, &i__3, &c_b5, &w_ref(i__ + 1, 1)
			, ldw, &w_ref(1, i__), &c__1, &c_b6, &w_ref(i__ + 1, 
			i__), &c__1);
		i__2 = *n - i__;
		dscal_(&i__2, &tau[i__], &w_ref(i__ + 1, i__), &c__1);
		i__2 = *n - i__;
		alpha = tau[i__] * -.5 * ddot_(&i__2, &w_ref(i__ + 1, i__), &
			c__1, &a_ref(i__ + 1, i__), &c__1);
		i__2 = *n - i__;
		daxpy_(&i__2, &alpha, &a_ref(i__ + 1, i__), &c__1, &w_ref(i__ 
			+ 1, i__), &c__1);
	    }

/* L20: */
	}
    }

    return 0;

/*     End of DLATRD */

} /* dlatrd_ */
Exemplo n.º 4
0
/* Subroutine */ int zlahef_(char *uplo, integer *n, integer *nb, integer *kb,
	 doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *w, 
	integer *ldw, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZLAHEF computes a partial factorization of a complex Hermitian   
    matrix A using the Bunch-Kaufman diagonal pivoting method. The   
    partial factorization has the form:   

    A  =  ( I  U12 ) ( A11  0  ) (  I    0   )  if UPLO = 'U', or:   
          ( 0  U22 ) (  0   D  ) ( U12' U22' )   

    A  =  ( L11  0 ) (  D   0  ) ( L11' L21' )  if UPLO = 'L'   
          ( L21  I ) (  0  A22 ) (  0    I   )   

    where the order of D is at most NB. The actual order is returned in   
    the argument KB, and is either NB or NB-1, or N if N <= NB.   
    Note that U' denotes the conjugate transpose of U.   

    ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code   
    (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or   
    A22 (if UPLO = 'L').   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            Hermitian matrix A is stored:   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    NB      (input) INTEGER   
            The maximum number of columns of the matrix A that should be   
            factored.  NB should be at least 2 to allow for 2-by-2 pivot   
            blocks.   

    KB      (output) INTEGER   
            The number of columns of A that were actually factored.   
            KB is either NB-1 or NB, or N if N <= NB.   

    A       (input/output) COMPLEX*16 array, dimension (LDA,N)   
            On entry, the Hermitian matrix A.  If UPLO = 'U', the leading   
            n-by-n upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading n-by-n lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, A contains details of the partial factorization.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    IPIV    (output) INTEGER array, dimension (N)   
            Details of the interchanges and the block structure of D.   
            If UPLO = 'U', only the last KB elements of IPIV are set;   
            if UPLO = 'L', only the first KB elements are set.   

            If IPIV(k) > 0, then rows and columns k and IPIV(k) were   
            interchanged and D(k,k) is a 1-by-1 diagonal block.   
            If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and   
            columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)   
            is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =   
            IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were   
            interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.   

    W       (workspace) COMPLEX*16 array, dimension (LDW,NB)   

    LDW     (input) INTEGER   
            The leading dimension of the array W.  LDW >= max(1,N).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            > 0: if INFO = k, D(k,k) is exactly zero.  The factorization   
                 has been completed, but the block diagonal matrix D is   
                 exactly singular.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
    static doublecomplex c_b1 = {1.,0.};
    static integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
    doublereal d__1, d__2, d__3, d__4;
    doublecomplex z__1, z__2, z__3, z__4;
    /* Builtin functions */
    double sqrt(doublereal), d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *), z_div(doublecomplex *, 
	    doublecomplex *, doublecomplex *);
    /* Local variables */
    static integer imax, jmax, j, k;
    static doublereal t, alpha;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    static integer kstep;
    extern /* Subroutine */ int zgemv_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *);
    static doublereal r1;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zswap_(integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);
    static doublecomplex d11, d21, d22;
    static integer jb, jj, kk, jp, kp;
    static doublereal absakk;
    static integer kw;
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
	    doublecomplex *, integer *);
    static doublereal colmax;
    extern /* Subroutine */ int zlacgv_(integer *, doublecomplex *, integer *)
	    ;
    extern integer izamax_(integer *, doublecomplex *, integer *);
    static doublereal rowmax;
    static integer kkw;
#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define w_subscr(a_1,a_2) (a_2)*w_dim1 + a_1
#define w_ref(a_1,a_2) w[w_subscr(a_1,a_2)]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --ipiv;
    w_dim1 = *ldw;
    w_offset = 1 + w_dim1 * 1;
    w -= w_offset;

    /* Function Body */
    *info = 0;

/*     Initialize ALPHA for use in choosing pivot block size. */

    alpha = (sqrt(17.) + 1.) / 8.;

    if (lsame_(uplo, "U")) {

/*        Factorize the trailing columns of A using the upper triangle   
          of A and working backwards, and compute the matrix W = U12*D   
          for use in updating A11 (note that conjg(W) is actually stored)   

          K is the main loop index, decreasing from N in steps of 1 or 2   

          KW is the column of W which corresponds to column K of A */

	k = *n;
L10:
	kw = *nb + k - *n;

/*        Exit from loop */

	if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
	    goto L30;
	}

/*        Copy column K of A to column KW of W and update it */

	i__1 = k - 1;
	zcopy_(&i__1, &a_ref(1, k), &c__1, &w_ref(1, kw), &c__1);
	i__1 = w_subscr(k, kw);
	i__2 = a_subscr(k, k);
	d__1 = a[i__2].r;
	w[i__1].r = d__1, w[i__1].i = 0.;
	if (k < *n) {
	    i__1 = *n - k;
	    z__1.r = -1., z__1.i = 0.;
	    zgemv_("No transpose", &k, &i__1, &z__1, &a_ref(1, k + 1), lda, &
		    w_ref(k, kw + 1), ldw, &c_b1, &w_ref(1, kw), &c__1);
	    i__1 = w_subscr(k, kw);
	    i__2 = w_subscr(k, kw);
	    d__1 = w[i__2].r;
	    w[i__1].r = d__1, w[i__1].i = 0.;
	}

	kstep = 1;

/*        Determine rows and columns to be interchanged and whether   
          a 1-by-1 or 2-by-2 pivot block will be used */

	i__1 = w_subscr(k, kw);
	absakk = (d__1 = w[i__1].r, abs(d__1));

/*        IMAX is the row-index of the largest off-diagonal element in   
          column K, and COLMAX is its absolute value */

	if (k > 1) {
	    i__1 = k - 1;
	    imax = izamax_(&i__1, &w_ref(1, kw), &c__1);
	    i__1 = w_subscr(imax, kw);
	    colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w_ref(
		    imax, kw)), abs(d__2));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	    i__1 = a_subscr(k, k);
	    i__2 = a_subscr(k, k);
	    d__1 = a[i__2].r;
	    a[i__1].r = d__1, a[i__1].i = 0.;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column KW-1 of W and update it */

		i__1 = imax - 1;
		zcopy_(&i__1, &a_ref(1, imax), &c__1, &w_ref(1, kw - 1), &
			c__1);
		i__1 = w_subscr(imax, kw - 1);
		i__2 = a_subscr(imax, imax);
		d__1 = a[i__2].r;
		w[i__1].r = d__1, w[i__1].i = 0.;
		i__1 = k - imax;
		zcopy_(&i__1, &a_ref(imax, imax + 1), lda, &w_ref(imax + 1, 
			kw - 1), &c__1);
		i__1 = k - imax;
		zlacgv_(&i__1, &w_ref(imax + 1, kw - 1), &c__1);
		if (k < *n) {
		    i__1 = *n - k;
		    z__1.r = -1., z__1.i = 0.;
		    zgemv_("No transpose", &k, &i__1, &z__1, &a_ref(1, k + 1),
			     lda, &w_ref(imax, kw + 1), ldw, &c_b1, &w_ref(1, 
			    kw - 1), &c__1);
		    i__1 = w_subscr(imax, kw - 1);
		    i__2 = w_subscr(imax, kw - 1);
		    d__1 = w[i__2].r;
		    w[i__1].r = d__1, w[i__1].i = 0.;
		}

/*              JMAX is the column-index of the largest off-diagonal   
                element in row IMAX, and ROWMAX is its absolute value */

		i__1 = k - imax;
		jmax = imax + izamax_(&i__1, &w_ref(imax + 1, kw - 1), &c__1);
		i__1 = w_subscr(jmax, kw - 1);
		rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
			w_ref(jmax, kw - 1)), abs(d__2));
		if (imax > 1) {
		    i__1 = imax - 1;
		    jmax = izamax_(&i__1, &w_ref(1, kw - 1), &c__1);
/* Computing MAX */
		    i__1 = w_subscr(jmax, kw - 1);
		    d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
			    d__2 = d_imag(&w_ref(jmax, kw - 1)), abs(d__2));
		    rowmax = max(d__3,d__4);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else /* if(complicated condition) */ {
		    i__1 = w_subscr(imax, kw - 1);
		    if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1   
                   pivot block */

			kp = imax;

/*                 copy column KW-1 of W to column KW */

			zcopy_(&k, &w_ref(1, kw - 1), &c__1, &w_ref(1, kw), &
				c__1);
		    } else {

/*                 interchange rows and columns K-1 and IMAX, use 2-by-2   
                   pivot block */

			kp = imax;
			kstep = 2;
		    }
		}
	    }

	    kk = k - kstep + 1;
	    kkw = *nb + kk - *n;

/*           Updated column KP is already stored in column KKW of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		i__1 = a_subscr(kp, kp);
		i__2 = a_subscr(kk, kk);
		d__1 = a[i__2].r;
		a[i__1].r = d__1, a[i__1].i = 0.;
		i__1 = kk - 1 - kp;
		zcopy_(&i__1, &a_ref(kp + 1, kk), &c__1, &a_ref(kp, kp + 1), 
			lda);
		i__1 = kk - 1 - kp;
		zlacgv_(&i__1, &a_ref(kp, kp + 1), lda);
		i__1 = kp - 1;
		zcopy_(&i__1, &a_ref(1, kk), &c__1, &a_ref(1, kp), &c__1);

/*              Interchange rows KK and KP in last KK columns of A and W */

		if (kk < *n) {
		    i__1 = *n - kk;
		    zswap_(&i__1, &a_ref(kk, kk + 1), lda, &a_ref(kp, kk + 1),
			     lda);
		}
		i__1 = *n - kk + 1;
		zswap_(&i__1, &w_ref(kk, kkw), ldw, &w_ref(kp, kkw), ldw);
	    }

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column KW of W now holds   

                W(k) = U(k)*D(k)   

                where U(k) is the k-th column of U   

                Store U(k) in column k of A */

		zcopy_(&k, &w_ref(1, kw), &c__1, &a_ref(1, k), &c__1);
		i__1 = a_subscr(k, k);
		r1 = 1. / a[i__1].r;
		i__1 = k - 1;
		zdscal_(&i__1, &r1, &a_ref(1, k), &c__1);

/*              Conjugate W(k) */

		i__1 = k - 1;
		zlacgv_(&i__1, &w_ref(1, kw), &c__1);
	    } else {

/*              2-by-2 pivot block D(k): columns KW and KW-1 of W now   
                hold   

                ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)   

                where U(k) and U(k-1) are the k-th and (k-1)-th columns   
                of U */

		if (k > 2) {

/*                 Store U(k) and U(k-1) in columns k and k-1 of A */

		    i__1 = w_subscr(k - 1, kw);
		    d21.r = w[i__1].r, d21.i = w[i__1].i;
		    d_cnjg(&z__2, &d21);
		    z_div(&z__1, &w_ref(k, kw), &z__2);
		    d11.r = z__1.r, d11.i = z__1.i;
		    z_div(&z__1, &w_ref(k - 1, kw - 1), &d21);
		    d22.r = z__1.r, d22.i = z__1.i;
		    z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r * 
			    d22.i + d11.i * d22.r;
		    t = 1. / (z__1.r - 1.);
		    z__2.r = t, z__2.i = 0.;
		    z_div(&z__1, &z__2, &d21);
		    d21.r = z__1.r, d21.i = z__1.i;
		    i__1 = k - 2;
		    for (j = 1; j <= i__1; ++j) {
			i__2 = a_subscr(j, k - 1);
			i__3 = w_subscr(j, kw - 1);
			z__3.r = d11.r * w[i__3].r - d11.i * w[i__3].i, 
				z__3.i = d11.r * w[i__3].i + d11.i * w[i__3]
				.r;
			i__4 = w_subscr(j, kw);
			z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
				.i;
			z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = 
				d21.r * z__2.i + d21.i * z__2.r;
			a[i__2].r = z__1.r, a[i__2].i = z__1.i;
			i__2 = a_subscr(j, k);
			d_cnjg(&z__2, &d21);
			i__3 = w_subscr(j, kw);
			z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i, 
				z__4.i = d22.r * w[i__3].i + d22.i * w[i__3]
				.r;
			i__4 = w_subscr(j, kw - 1);
			z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
				.i;
			z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = 
				z__2.r * z__3.i + z__2.i * z__3.r;
			a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L20: */
		    }
		}

/*              Copy D(k) to A */

		i__1 = a_subscr(k - 1, k - 1);
		i__2 = w_subscr(k - 1, kw - 1);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
		i__1 = a_subscr(k - 1, k);
		i__2 = w_subscr(k - 1, kw);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
		i__1 = a_subscr(k, k);
		i__2 = w_subscr(k, kw);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;

/*              Conjugate W(k) and W(k-1) */

		i__1 = k - 1;
		zlacgv_(&i__1, &w_ref(1, kw), &c__1);
		i__1 = k - 2;
		zlacgv_(&i__1, &w_ref(1, kw - 1), &c__1);
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k - 1] = -kp;
	}

/*        Decrease K and return to the start of the main loop */

	k -= kstep;
	goto L10;

L30:

/*        Update the upper triangle of A11 (= A(1:k,1:k)) as   

          A11 := A11 - U12*D*U12' = A11 - U12*W'   

          computing blocks of NB columns at a time (note that conjg(W) is   
          actually stored) */

	i__1 = -(*nb);
	for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += 
		i__1) {
/* Computing MIN */
	    i__2 = *nb, i__3 = k - j + 1;
	    jb = min(i__2,i__3);

/*           Update the upper triangle of the diagonal block */

	    i__2 = j + jb - 1;
	    for (jj = j; jj <= i__2; ++jj) {
		i__3 = a_subscr(jj, jj);
		i__4 = a_subscr(jj, jj);
		d__1 = a[i__4].r;
		a[i__3].r = d__1, a[i__3].i = 0.;
		i__3 = jj - j + 1;
		i__4 = *n - k;
		z__1.r = -1., z__1.i = 0.;
		zgemv_("No transpose", &i__3, &i__4, &z__1, &a_ref(j, k + 1), 
			lda, &w_ref(jj, kw + 1), ldw, &c_b1, &a_ref(j, jj), &
			c__1);
		i__3 = a_subscr(jj, jj);
		i__4 = a_subscr(jj, jj);
		d__1 = a[i__4].r;
		a[i__3].r = d__1, a[i__3].i = 0.;
/* L40: */
	    }

/*           Update the rectangular superdiagonal block */

	    i__2 = j - 1;
	    i__3 = *n - k;
	    z__1.r = -1., z__1.i = 0.;
	    zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1, &
		    a_ref(1, k + 1), lda, &w_ref(j, kw + 1), ldw, &c_b1, &
		    a_ref(1, j), lda);
/* L50: */
	}

/*        Put U12 in standard form by partially undoing the interchanges   
          in columns k+1:n */

	j = k + 1;
L60:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    ++j;
	}
	++j;
	if (jp != jj && j <= *n) {
	    i__1 = *n - j + 1;
	    zswap_(&i__1, &a_ref(jp, j), lda, &a_ref(jj, j), lda);
	}
	if (j <= *n) {
	    goto L60;
	}

/*        Set KB to the number of columns factorized */

	*kb = *n - k;

    } else {

/*        Factorize the leading columns of A using the lower triangle   
          of A and working forwards, and compute the matrix W = L21*D   
          for use in updating A22 (note that conjg(W) is actually stored)   

          K is the main loop index, increasing from 1 in steps of 1 or 2 */

	k = 1;
L70:

/*        Exit from loop */

	if (k >= *nb && *nb < *n || k > *n) {
	    goto L90;
	}

/*        Copy column K of A to column K of W and update it */

	i__1 = w_subscr(k, k);
	i__2 = a_subscr(k, k);
	d__1 = a[i__2].r;
	w[i__1].r = d__1, w[i__1].i = 0.;
	if (k < *n) {
	    i__1 = *n - k;
	    zcopy_(&i__1, &a_ref(k + 1, k), &c__1, &w_ref(k + 1, k), &c__1);
	}
	i__1 = *n - k + 1;
	i__2 = k - 1;
	z__1.r = -1., z__1.i = 0.;
	zgemv_("No transpose", &i__1, &i__2, &z__1, &a_ref(k, 1), lda, &w_ref(
		k, 1), ldw, &c_b1, &w_ref(k, k), &c__1);
	i__1 = w_subscr(k, k);
	i__2 = w_subscr(k, k);
	d__1 = w[i__2].r;
	w[i__1].r = d__1, w[i__1].i = 0.;

	kstep = 1;

/*        Determine rows and columns to be interchanged and whether   
          a 1-by-1 or 2-by-2 pivot block will be used */

	i__1 = w_subscr(k, k);
	absakk = (d__1 = w[i__1].r, abs(d__1));

/*        IMAX is the row-index of the largest off-diagonal element in   
          column K, and COLMAX is its absolute value */

	if (k < *n) {
	    i__1 = *n - k;
	    imax = k + izamax_(&i__1, &w_ref(k + 1, k), &c__1);
	    i__1 = w_subscr(imax, k);
	    colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w_ref(
		    imax, k)), abs(d__2));
	} else {
	    colmax = 0.;
	}

	if (max(absakk,colmax) == 0.) {

/*           Column K is zero: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	    i__1 = a_subscr(k, k);
	    i__2 = a_subscr(k, k);
	    d__1 = a[i__2].r;
	    a[i__1].r = d__1, a[i__1].i = 0.;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              Copy column IMAX to column K+1 of W and update it */

		i__1 = imax - k;
		zcopy_(&i__1, &a_ref(imax, k), lda, &w_ref(k, k + 1), &c__1);
		i__1 = imax - k;
		zlacgv_(&i__1, &w_ref(k, k + 1), &c__1);
		i__1 = w_subscr(imax, k + 1);
		i__2 = a_subscr(imax, imax);
		d__1 = a[i__2].r;
		w[i__1].r = d__1, w[i__1].i = 0.;
		if (imax < *n) {
		    i__1 = *n - imax;
		    zcopy_(&i__1, &a_ref(imax + 1, imax), &c__1, &w_ref(imax 
			    + 1, k + 1), &c__1);
		}
		i__1 = *n - k + 1;
		i__2 = k - 1;
		z__1.r = -1., z__1.i = 0.;
		zgemv_("No transpose", &i__1, &i__2, &z__1, &a_ref(k, 1), lda,
			 &w_ref(imax, 1), ldw, &c_b1, &w_ref(k, k + 1), &c__1);
		i__1 = w_subscr(imax, k + 1);
		i__2 = w_subscr(imax, k + 1);
		d__1 = w[i__2].r;
		w[i__1].r = d__1, w[i__1].i = 0.;

/*              JMAX is the column-index of the largest off-diagonal   
                element in row IMAX, and ROWMAX is its absolute value */

		i__1 = imax - k;
		jmax = k - 1 + izamax_(&i__1, &w_ref(k, k + 1), &c__1);
		i__1 = w_subscr(jmax, k + 1);
		rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&
			w_ref(jmax, k + 1)), abs(d__2));
		if (imax < *n) {
		    i__1 = *n - imax;
		    jmax = imax + izamax_(&i__1, &w_ref(imax + 1, k + 1), &
			    c__1);
/* Computing MAX */
		    i__1 = w_subscr(jmax, k + 1);
		    d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + (
			    d__2 = d_imag(&w_ref(jmax, k + 1)), abs(d__2));
		    rowmax = max(d__3,d__4);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else /* if(complicated condition) */ {
		    i__1 = w_subscr(imax, k + 1);
		    if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1   
                   pivot block */

			kp = imax;

/*                 copy column K+1 of W to column K */

			i__1 = *n - k + 1;
			zcopy_(&i__1, &w_ref(k, k + 1), &c__1, &w_ref(k, k), &
				c__1);
		    } else {

/*                 interchange rows and columns K+1 and IMAX, use 2-by-2   
                   pivot block */

			kp = imax;
			kstep = 2;
		    }
		}
	    }

	    kk = k + kstep - 1;

/*           Updated column KP is already stored in column KK of W */

	    if (kp != kk) {

/*              Copy non-updated column KK to column KP */

		i__1 = a_subscr(kp, kp);
		i__2 = a_subscr(kk, kk);
		d__1 = a[i__2].r;
		a[i__1].r = d__1, a[i__1].i = 0.;
		i__1 = kp - kk - 1;
		zcopy_(&i__1, &a_ref(kk + 1, kk), &c__1, &a_ref(kp, kk + 1), 
			lda);
		i__1 = kp - kk - 1;
		zlacgv_(&i__1, &a_ref(kp, kk + 1), lda);
		if (kp < *n) {
		    i__1 = *n - kp;
		    zcopy_(&i__1, &a_ref(kp + 1, kk), &c__1, &a_ref(kp + 1, 
			    kp), &c__1);
		}

/*              Interchange rows KK and KP in first KK columns of A and W */

		i__1 = kk - 1;
		zswap_(&i__1, &a_ref(kk, 1), lda, &a_ref(kp, 1), lda);
		zswap_(&kk, &w_ref(kk, 1), ldw, &w_ref(kp, 1), ldw);
	    }

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column k of W now holds   

                W(k) = L(k)*D(k)   

                where L(k) is the k-th column of L   

                Store L(k) in column k of A */

		i__1 = *n - k + 1;
		zcopy_(&i__1, &w_ref(k, k), &c__1, &a_ref(k, k), &c__1);
		if (k < *n) {
		    i__1 = a_subscr(k, k);
		    r1 = 1. / a[i__1].r;
		    i__1 = *n - k;
		    zdscal_(&i__1, &r1, &a_ref(k + 1, k), &c__1);

/*                 Conjugate W(k) */

		    i__1 = *n - k;
		    zlacgv_(&i__1, &w_ref(k + 1, k), &c__1);
		}
	    } else {

/*              2-by-2 pivot block D(k): columns k and k+1 of W now hold   

                ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)   

                where L(k) and L(k+1) are the k-th and (k+1)-th columns   
                of L */

		if (k < *n - 1) {

/*                 Store L(k) and L(k+1) in columns k and k+1 of A */

		    i__1 = w_subscr(k + 1, k);
		    d21.r = w[i__1].r, d21.i = w[i__1].i;
		    z_div(&z__1, &w_ref(k + 1, k + 1), &d21);
		    d11.r = z__1.r, d11.i = z__1.i;
		    d_cnjg(&z__2, &d21);
		    z_div(&z__1, &w_ref(k, k), &z__2);
		    d22.r = z__1.r, d22.i = z__1.i;
		    z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r * 
			    d22.i + d11.i * d22.r;
		    t = 1. / (z__1.r - 1.);
		    z__2.r = t, z__2.i = 0.;
		    z_div(&z__1, &z__2, &d21);
		    d21.r = z__1.r, d21.i = z__1.i;
		    i__1 = *n;
		    for (j = k + 2; j <= i__1; ++j) {
			i__2 = a_subscr(j, k);
			d_cnjg(&z__2, &d21);
			i__3 = w_subscr(j, k);
			z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i, 
				z__4.i = d11.r * w[i__3].i + d11.i * w[i__3]
				.r;
			i__4 = w_subscr(j, k + 1);
			z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4]
				.i;
			z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = 
				z__2.r * z__3.i + z__2.i * z__3.r;
			a[i__2].r = z__1.r, a[i__2].i = z__1.i;
			i__2 = a_subscr(j, k + 1);
			i__3 = w_subscr(j, k + 1);
			z__3.r = d22.r * w[i__3].r - d22.i * w[i__3].i, 
				z__3.i = d22.r * w[i__3].i + d22.i * w[i__3]
				.r;
			i__4 = w_subscr(j, k);
			z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4]
				.i;
			z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = 
				d21.r * z__2.i + d21.i * z__2.r;
			a[i__2].r = z__1.r, a[i__2].i = z__1.i;
/* L80: */
		    }
		}

/*              Copy D(k) to A */

		i__1 = a_subscr(k, k);
		i__2 = w_subscr(k, k);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
		i__1 = a_subscr(k + 1, k);
		i__2 = w_subscr(k + 1, k);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;
		i__1 = a_subscr(k + 1, k + 1);
		i__2 = w_subscr(k + 1, k + 1);
		a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i;

/*              Conjugate W(k) and W(k+1) */

		i__1 = *n - k;
		zlacgv_(&i__1, &w_ref(k + 1, k), &c__1);
		i__1 = *n - k - 1;
		zlacgv_(&i__1, &w_ref(k + 2, k + 1), &c__1);
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k + 1] = -kp;
	}

/*        Increase K and return to the start of the main loop */

	k += kstep;
	goto L70;

L90:

/*        Update the lower triangle of A22 (= A(k:n,k:n)) as   

          A22 := A22 - L21*D*L21' = A22 - L21*W'   

          computing blocks of NB columns at a time (note that conjg(W) is   
          actually stored) */

	i__1 = *n;
	i__2 = *nb;
	for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = *nb, i__4 = *n - j + 1;
	    jb = min(i__3,i__4);

/*           Update the lower triangle of the diagonal block */

	    i__3 = j + jb - 1;
	    for (jj = j; jj <= i__3; ++jj) {
		i__4 = a_subscr(jj, jj);
		i__5 = a_subscr(jj, jj);
		d__1 = a[i__5].r;
		a[i__4].r = d__1, a[i__4].i = 0.;
		i__4 = j + jb - jj;
		i__5 = k - 1;
		z__1.r = -1., z__1.i = 0.;
		zgemv_("No transpose", &i__4, &i__5, &z__1, &a_ref(jj, 1), 
			lda, &w_ref(jj, 1), ldw, &c_b1, &a_ref(jj, jj), &c__1);
		i__4 = a_subscr(jj, jj);
		i__5 = a_subscr(jj, jj);
		d__1 = a[i__5].r;
		a[i__4].r = d__1, a[i__4].i = 0.;
/* L100: */
	    }

/*           Update the rectangular subdiagonal block */

	    if (j + jb <= *n) {
		i__3 = *n - j - jb + 1;
		i__4 = k - 1;
		z__1.r = -1., z__1.i = 0.;
		zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1, 
			&a_ref(j + jb, 1), lda, &w_ref(j, 1), ldw, &c_b1, &
			a_ref(j + jb, j), lda);
	    }
/* L110: */
	}

/*        Put L21 in standard form by partially undoing the interchanges   
          in columns 1:k-1 */

	j = k - 1;
L120:
	jj = j;
	jp = ipiv[j];
	if (jp < 0) {
	    jp = -jp;
	    --j;
	}
	--j;
	if (jp != jj && j >= 1) {
	    zswap_(&j, &a_ref(jp, 1), lda, &a_ref(jj, 1), lda);
	}
	if (j >= 1) {
	    goto L120;
	}

/*        Set KB to the number of columns factorized */

	*kb = k - 1;

    }
    return 0;

/*     End of ZLAHEF */

} /* zlahef_ */