Exemplo n.º 1
0
/* Compute noise shaping coefficients and initial gain values */
void silk_noise_shape_analysis_FLP(
    silk_encoder_state_FLP          *psEnc,                             /* I/O  Encoder state FLP                           */
    silk_encoder_control_FLP        *psEncCtrl,                         /* I/O  Encoder control FLP                         */
    const silk_float                *pitch_res,                         /* I    LPC residual from pitch analysis            */
    const silk_float                *x                                  /* I    Input signal [frame_length + la_shape]      */
)
{
    silk_shape_state_FLP *psShapeSt = &psEnc->sShape;
    opus_int     k, nSamples;
    silk_float   SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt;
    silk_float   nrg, pre_nrg, log_energy, log_energy_prev, energy_variation;
    silk_float   delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping;
    silk_float   x_windowed[ SHAPE_LPC_WIN_MAX ];
    silk_float   auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
    const silk_float *x_ptr, *pitch_res_ptr;

    /* Point to start of first LPC analysis block */
    x_ptr = x - psEnc->sCmn.la_shape;

    /****************/
    /* GAIN CONTROL */
    /****************/
    SNR_adj_dB = psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f );

    /* Input quality is the average of the quality in the lowest two VAD bands */
    psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f );

    /* Coding quality level, between 0.0 and 1.0 */
    psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 20.0f ) );

    if( psEnc->sCmn.useCBR == 0 ) {
        /* Reduce coding SNR during low speech activity */
        b = 1.0f - psEnc->sCmn.speech_activity_Q8 * ( 1.0f /  256.0f );
        SNR_adj_dB -= BG_SNR_DECR_dB * psEncCtrl->coding_quality * ( 0.5f + 0.5f * psEncCtrl->input_quality ) * b * b;
    }

    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /* Reduce gains for periodic signals */
        SNR_adj_dB += HARM_SNR_INCR_dB * psEnc->LTPCorr;
    } else {
        /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
        SNR_adj_dB += ( -0.4f * psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) + 6.0f ) * ( 1.0f - psEncCtrl->input_quality );
    }

    /*************************/
    /* SPARSENESS PROCESSING */
    /*************************/
    /* Set quantizer offset */
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /* Initially set to 0; may be overruled in process_gains(..) */
        psEnc->sCmn.indices.quantOffsetType = 0;
        psEncCtrl->sparseness = 0.0f;
    } else {
        /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
        nSamples = 2 * psEnc->sCmn.fs_kHz;
        energy_variation = 0.0f;
        log_energy_prev  = 0.0f;
        pitch_res_ptr = pitch_res;
        for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
            nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples );
            log_energy = silk_log2( nrg );
            if( k > 0 ) {
                energy_variation += silk_abs_float( log_energy - log_energy_prev );
            }
            log_energy_prev = log_energy;
            pitch_res_ptr += nSamples;
        }
        psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) );

        /* Set quantization offset depending on sparseness measure */
        if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) {
            psEnc->sCmn.indices.quantOffsetType = 0;
        } else {
            psEnc->sCmn.indices.quantOffsetType = 1;
        }

        /* Increase coding SNR for sparse signals */
        SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f );
    }

    /*******************************/
    /* Control bandwidth expansion */
    /*******************************/
    /* More BWE for signals with high prediction gain */
    strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain;           /* between 0.0 and 1.0 */
    BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength );
    delta  = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality );
    BWExp1 -= delta;
    BWExp2 += delta;
    /* BWExp1 will be applied after BWExp2, so make it relative */
    BWExp1 /= BWExp2;

    if( psEnc->sCmn.warping_Q16 > 0 ) {
        /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
        warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
    } else {
        warping = 0.0f;
    }

    /********************************************/
    /* Compute noise shaping AR coefs and gains */
    /********************************************/
    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        /* Apply window: sine slope followed by flat part followed by cosine slope */
        opus_int shift, slope_part, flat_part;
        flat_part = psEnc->sCmn.fs_kHz * 3;
        slope_part = ( psEnc->sCmn.shapeWinLength - flat_part ) / 2;

        silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part );
        shift = slope_part;
        silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) );
        shift += flat_part;
        silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part );

        /* Update pointer: next LPC analysis block */
        x_ptr += psEnc->sCmn.subfr_length;

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Calculate warped auto correlation */
            silk_warped_autocorrelation_FLP( auto_corr, x_windowed, warping,
                psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
        } else {
            /* Calculate regular auto correlation */
            silk_autocorrelation_FLP( auto_corr, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
        }

        /* Add white noise, as a fraction of energy */
        auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION;

        /* Convert correlations to prediction coefficients, and compute residual energy */
        nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder );
        psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg );

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Adjust gain for warping */
            psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder );
        }

        /* Bandwidth expansion for synthesis filter shaping */
        silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 );

        /* Compute noise shaping filter coefficients */
        silk_memcpy(
            &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
            &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ],
            psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) );

        /* Bandwidth expansion for analysis filter shaping */
        silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 );

        /* Ratio of prediction gains, in energy domain */
        pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
        nrg     = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
        psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg );

        /* Convert to monic warped prediction coefficients and limit absolute values */
        warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
            warping, 3.999f, psEnc->sCmn.shapingLPCOrder );
    }

    /*****************/
    /* Gain tweaking */
    /*****************/
    /* Increase gains during low speech activity */
    gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB );
    gain_add  = (silk_float)pow( 2.0f,  0.16f * MIN_QGAIN_DB );
    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        psEncCtrl->Gains[ k ] *= gain_mult;
        psEncCtrl->Gains[ k ] += gain_add;
    }

    gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT;
    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        psEncCtrl->GainsPre[ k ] *= gain_mult;
    }

    /************************************************/
    /* Control low-frequency shaping and noise tilt */
    /************************************************/
    /* Less low frequency shaping for noisy inputs */
    strength = LOW_FREQ_SHAPING * ( 1.0f + LOW_QUALITY_LOW_FREQ_SHAPING_DECR * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] * ( 1.0f / 32768.0f ) - 1.0f ) );
    strength *= psEnc->sCmn.speech_activity_Q8 * ( 1.0f /  256.0f );
    if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
        /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
        for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
            b = 0.2f / psEnc->sCmn.fs_kHz + 3.0f / psEncCtrl->pitchL[ k ];
            psEncCtrl->LF_MA_shp[ k ] = -1.0f + b;
            psEncCtrl->LF_AR_shp[ k ] =  1.0f - b - b * strength;
        }
        Tilt = - HP_NOISE_COEF -
            (1 - HP_NOISE_COEF) * HARM_HP_NOISE_COEF * psEnc->sCmn.speech_activity_Q8 * ( 1.0f /  256.0f );
    } else {
        b = 1.3f / psEnc->sCmn.fs_kHz;
        psEncCtrl->LF_MA_shp[ 0 ] = -1.0f + b;
        psEncCtrl->LF_AR_shp[ 0 ] =  1.0f - b - b * strength * 0.6f;
        for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
            psEncCtrl->LF_MA_shp[ k ] = psEncCtrl->LF_MA_shp[ 0 ];
            psEncCtrl->LF_AR_shp[ k ] = psEncCtrl->LF_AR_shp[ 0 ];
        }
        Tilt = -HP_NOISE_COEF;
    }

    /****************************/
    /* HARMONIC SHAPING CONTROL */
    /****************************/
    /* Control boosting of harmonic frequencies */
    HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr;

    /* More harmonic boost for noisy input signals */
    HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality );

    if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
        /* Harmonic noise shaping */
        HarmShapeGain = HARMONIC_SHAPING;

        /* More harmonic noise shaping for high bitrates or noisy input */
        HarmShapeGain += HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING *
            ( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality );

        /* Less harmonic noise shaping for less periodic signals */
        HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr );
    } else {
        HarmShapeGain = 0.0f;
    }

    /*************************/
    /* Smooth over subframes */
    /*************************/
    for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
        psShapeSt->HarmBoost_smth     += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth );
        psEncCtrl->HarmBoost[ k ]      = psShapeSt->HarmBoost_smth;
        psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth );
        psEncCtrl->HarmShapeGain[ k ]  = psShapeSt->HarmShapeGain_smth;
        psShapeSt->Tilt_smth          += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth );
        psEncCtrl->Tilt[ k ]           = psShapeSt->Tilt_smth;
    }
}
void SKP_Silk_noise_shape_analysis_FIX(
    SKP_Silk_encoder_state_FIX      *psEnc,         /* I/O  Encoder state FIX                           */
    SKP_Silk_encoder_control_FIX    *psEncCtrl,     /* I/O  Encoder control FIX                         */
    const SKP_int16                 *pitch_res,     /* I    LPC residual from pitch analysis            */
    const SKP_int16                 *x              /* I    Input signal [ frame_length + la_shape ]    */
)
{
    SKP_Silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
    SKP_int     k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
    SKP_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
    SKP_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
    SKP_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
    SKP_int32   auto_corr[     MAX_SHAPE_LPC_ORDER + 1 ];
    SKP_int32   refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
    SKP_int32   AR1_Q24[       MAX_SHAPE_LPC_ORDER ];
    SKP_int32   AR2_Q24[       MAX_SHAPE_LPC_ORDER ];
    SKP_int16   x_windowed[    SHAPE_LPC_WIN_MAX ];
    const SKP_int16 *x_ptr, *pitch_res_ptr;

    SKP_int32   sqrt_nrg[ NB_SUBFR ], Qnrg_vec[ NB_SUBFR ];

    /* Point to start of first LPC analysis block */
    x_ptr = x - psEnc->sCmn.la_shape;

    /****************/
    /* CONTROL SNR  */
    /****************/
    /* Reduce SNR_dB values if recent bitstream has exceeded TargetRate */
    psEncCtrl->current_SNR_dB_Q7 = psEnc->SNR_dB_Q7 - SKP_SMULWB( SKP_LSHIFT( ( SKP_int32 )psEnc->BufferedInChannel_ms, 7 ), 
        SKP_FIX_CONST( 0.05, 16 ) );

    /* Reduce SNR_dB if inband FEC used */
    if( psEnc->speech_activity_Q8 > SKP_FIX_CONST( LBRR_SPEECH_ACTIVITY_THRES, 8 ) ) {
        psEncCtrl->current_SNR_dB_Q7 -= SKP_RSHIFT( psEnc->inBandFEC_SNR_comp_Q8, 1 );
    }

    /****************/
    /* GAIN CONTROL */
    /****************/
    /* Input quality is the average of the quality in the lowest two VAD bands */
    psEncCtrl->input_quality_Q14 = ( SKP_int )SKP_RSHIFT( ( SKP_int32 )psEncCtrl->input_quality_bands_Q15[ 0 ] 
        + psEncCtrl->input_quality_bands_Q15[ 1 ], 2 );

    /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
    psEncCtrl->coding_quality_Q14 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->current_SNR_dB_Q7 - 
        SKP_FIX_CONST( 18.0, 7 ), 4 ) ), 1 );

    /* Reduce coding SNR during low speech activity */
    b_Q8 = SKP_FIX_CONST( 1.0, 8 ) - psEnc->speech_activity_Q8;
    b_Q8 = SKP_SMULWB( SKP_LSHIFT( b_Q8, 8 ), b_Q8 );
    SNR_adj_dB_Q7 = SKP_SMLAWB( psEncCtrl->current_SNR_dB_Q7,
        SKP_SMULBB( SKP_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ),                                       // Q11
        SKP_SMULWB( SKP_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );     // Q12

    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Reduce gains for periodic signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SKP_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
    } else { 
        /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, 
            SKP_SMLAWB( SKP_FIX_CONST( 6.0, 9 ), -SKP_FIX_CONST( 0.4, 18 ), psEncCtrl->current_SNR_dB_Q7 ),
            SKP_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
    }

    /*************************/
    /* SPARSENESS PROCESSING */
    /*************************/
    /* Set quantizer offset */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Initally set to 0; may be overruled in process_gains(..) */
        psEncCtrl->sCmn.QuantOffsetType = 0;
        psEncCtrl->sparseness_Q8 = 0;
    } else {
        /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
        nSamples = SKP_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
        energy_variation_Q7 = 0;
        log_energy_prev_Q7  = 0;
        pitch_res_ptr = pitch_res;
        for( k = 0; k < FRAME_LENGTH_MS / 2; k++ ) {    
            SKP_Silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
            nrg += SKP_RSHIFT( nSamples, scale );           // Q(-scale)
            
            log_energy_Q7 = SKP_Silk_lin2log( nrg );
            if( k > 0 ) {
                energy_variation_Q7 += SKP_abs( log_energy_Q7 - log_energy_prev_Q7 );
            }
            log_energy_prev_Q7 = log_energy_Q7;
            pitch_res_ptr += nSamples;
        }

        psEncCtrl->sparseness_Q8 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_SMULWB( energy_variation_Q7 - 
            SKP_FIX_CONST( 5.0, 7 ), SKP_FIX_CONST( 0.1, 16 ) ) ), 7 );

        /* Set quantization offset depending on sparseness measure */
        if( psEncCtrl->sparseness_Q8 > SKP_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
            psEncCtrl->sCmn.QuantOffsetType = 0;
        } else {
            psEncCtrl->sCmn.QuantOffsetType = 1;
        }
        
        /* Increase coding SNR for sparse signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SKP_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SKP_FIX_CONST( 0.5, 8 ) );
    }

    /*******************************/
    /* Control bandwidth expansion */
    /*******************************/
    /* More BWE for signals with high prediction gain */
    strength_Q16 = SKP_SMULWB( psEncCtrl->predGain_Q16, SKP_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
    BWExp1_Q16 = BWExp2_Q16 = SKP_DIV32_varQ( SKP_FIX_CONST( BANDWIDTH_EXPANSION, 16 ), 
        SKP_SMLAWW( SKP_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
    delta_Q16  = SKP_SMULWB( SKP_FIX_CONST( 1.0, 16 ) - SKP_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), 
        SKP_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
    BWExp1_Q16 = SKP_SUB32( BWExp1_Q16, delta_Q16 );
    BWExp2_Q16 = SKP_ADD32( BWExp2_Q16, delta_Q16 );
    /* BWExp1 will be applied after BWExp2, so make it relative */
    BWExp1_Q16 = SKP_DIV32_16( SKP_LSHIFT( BWExp1_Q16, 14 ), SKP_RSHIFT( BWExp2_Q16, 2 ) );

    if( psEnc->sCmn.warping_Q16 > 0 ) {
        /* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
        warping_Q16 = SKP_SMLAWB( psEnc->sCmn.warping_Q16, psEncCtrl->coding_quality_Q14, SKP_FIX_CONST( 0.01, 18 ) );
    } else {
        warping_Q16 = 0;
    }

    /********************************************/
    /* Compute noise shaping AR coefs and gains */
    /********************************************/
    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Apply window: sine slope followed by flat part followed by cosine slope */
        SKP_int shift, slope_part, flat_part;
        flat_part = psEnc->sCmn.fs_kHz * 5;
        slope_part = SKP_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );

        SKP_Silk_apply_sine_window_new( x_windowed, x_ptr, 1, slope_part );
        shift = slope_part;
        SKP_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(SKP_int16) );
        shift += flat_part;
        SKP_Silk_apply_sine_window_new( x_windowed + shift, x_ptr + shift, 2, slope_part );
        
        /* Update pointer: next LPC analysis block */
        x_ptr += psEnc->sCmn.subfr_length;

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Calculate warped auto correlation */
            SKP_Silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); 
        } else {
            /* Calculate regular auto correlation */
            SKP_Silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
        }

        /* Add white noise, as a fraction of energy */
        auto_corr[0] = SKP_ADD32( auto_corr[0], SKP_max_32( SKP_SMULWB( SKP_RSHIFT( auto_corr[ 0 ], 4 ), 
            SKP_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); 

        /* Calculate the reflection coefficients using schur */
        nrg = SKP_Silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
        SKP_assert( nrg >= 0 );

        /* Convert reflection coefficients to prediction coefficients */
        SKP_Silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );

        Qnrg = -scale;          // range: -12...30
        SKP_assert( Qnrg >= -12 );
        SKP_assert( Qnrg <=  30 );

        /* Make sure that Qnrg is an even number */
        if( Qnrg & 1 ) {
            Qnrg -= 1;
            nrg >>= 1;
        }

        tmp32 = SKP_Silk_SQRT_APPROX( nrg );
        Qnrg >>= 1;             // range: -6...15

        sqrt_nrg[ k ] = tmp32;
        Qnrg_vec[ k ] = Qnrg;

        psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( tmp32, 16 - Qnrg );

        if( psEnc->sCmn.warping_Q16 > 0 ) {
            /* Adjust gain for warping */
            gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
            SKP_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
            psEncCtrl->Gains_Q16[ k ] = SKP_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
            if( psEncCtrl->Gains_Q16[ k ] < 0 ) {
                psEncCtrl->Gains_Q16[ k ] = SKP_int32_MAX;
            }
        }

        /* Bandwidth expansion for synthesis filter shaping */
        SKP_Silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );

        /* Compute noise shaping filter coefficients */
        SKP_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( SKP_int32 ) );

        /* Bandwidth expansion for analysis filter shaping */
        SKP_assert( BWExp1_Q16 <= SKP_FIX_CONST( 1.0, 16 ) );
        SKP_Silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );

        /* Ratio of prediction gains, in energy domain */
        SKP_Silk_LPC_inverse_pred_gain_Q24( &pre_nrg_Q30, AR2_Q24, psEnc->sCmn.shapingLPCOrder );
        SKP_Silk_LPC_inverse_pred_gain_Q24( &nrg,         AR1_Q24, psEnc->sCmn.shapingLPCOrder );

        //psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;
        pre_nrg_Q30 = SKP_LSHIFT32( SKP_SMULWB( pre_nrg_Q30, SKP_FIX_CONST( 0.7, 15 ) ), 1 );
        psEncCtrl->GainsPre_Q14[ k ] = ( SKP_int ) SKP_FIX_CONST( 0.3, 14 ) + SKP_DIV32_varQ( pre_nrg_Q30, nrg, 14 );

        /* Convert to monic warped prediction coefficients and limit absolute values */
        limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SKP_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );

        /* Convert from Q24 to Q13 and store in int16 */
        for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
            psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
            psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
        }
    }