Bunch* SMPBunchConstructor::ConstructBunch (int) const
{
	SMPBunch* bunch = new SMPBunch(beamdat.p0,beamdat.charge);

	// First, store the dispersion correlations and set them to
	// zero.
	BeamData bd = beamdat;
	bd.Dx=bd.Dxp=bd.Dy=bd.Dyp=0.0;
	double dx = beamdat.Dx;
	double dxp = beamdat.Dxp;
	double dy = beamdat.Dy;
	double dyp = beamdat.Dyp;
	PSmoments S = BeamDataToSigmaMtrx(bd);

	// the macroparticles are constructed to represent the
	// total charge in a bin of width 6sigma/ns

	double q0 = beamdat.charge;
	double qt = 0;

	vector<double> zdist(ns);
	vector<double> dpdist(np);

	MakeDistribution(nSigZ,zdist);
	MakeDistribution(nSigDP,dpdist);

	double dz  = 2*nSigZ*beamdat.sig_z/ns;
	double ddp = 2*nSigDP*beamdat.sig_dp/np;

	double z   =-nSigZ*beamdat.sig_z+dz/2;
	for(size_t nSlice = 0; nSlice<ns; nSlice++, z+=dz)
	{
		double dp = -nSigDP*beamdat.sig_dp+ddp/2.0;
		for(size_t nPart = 0; nPart<np; nPart++,dp+=ddp)
		{
			double q = q0*zdist[nSlice]*dpdist[nPart];
			SliceMacroParticle m(S,z,dp,q);
			// Add dispersion correlations to centroid
			m.x() += dx*dp;
			m.xp()+= dxp*dp;
			m.y() += dy*dp;
			m.yp()+= dyp*dp;
			bunch->AddParticle(m);
			qt+=q;
		}
	}
	//cout<<"total generated charge = "<<qt<<endl;
	PSvector x0;
	bunch->GetCentroid(x0);
	return bunch;
}
Exemplo n.º 2
0
/**
 * Program entry-point.
 *
 */
int main(int argc, char **argv) {
    // parse arguments
    while (true) {
        int index = -1;

        getopt_long(argc, argv, "", options, &index);
        if (index == -1) {
            if (argc != optind + 2) {
                usage();
                return 1;
            }

            input_file = argv[optind++];
            if (access(input_file, R_OK)) {
                fprintf(stderr, "Error: input file not readable: %s\n", input_file);
                return 2;
            }

            output_file = argv[optind++];
            if (access(output_file, W_OK) && errno == EACCES) {
                fprintf(stderr, "Error: output file not writable: %s\n", output_file);
                return 2;
            }
            break;
        }

        switch (index) {
        case OPTION_WIDTH:
            sample_width = atoi(optarg);
            break;
        case OPTION_HEIGHT:
            sample_height = atoi(optarg);
            break;
        case OPTION_COUNT:
            sample_count = atoi(optarg);
            break;

        case OPTION_ROTATE_STDDEV_X:
            rotate_stddev_x = atof(optarg) / 180.0 * M_PI;
            break;
        case OPTION_ROTATE_STDDEV_Y:
            rotate_stddev_y = atof(optarg) / 180.0 * M_PI;
            break;
        case OPTION_ROTATE_STDDEV_Z:
            rotate_stddev_z = atof(optarg) / 180.0 * M_PI;
            break;

        case OPTION_LUMINOSITY_STDDEV:
            luminosity_stddev = atof(optarg);
            break;

        case OPTION_BACKGROUNDS:
            backgrounds_file = optarg;
            if (access(backgrounds_file, R_OK)) {
                fprintf(stderr, "Error: backgrounds file not readable: %s\n", backgrounds_file);
                return 2;
            }
            break;

        default:
            usage();
            return 1;
        }
    }

    // read input files
    std::vector<std::string> samples;

    if (!parseFiles(input_file, samples)) {
        fprintf(stderr, "Error: cannot parse file listing: %s\n", input_file);
        return 2;
    }

    // read background files
    std::vector<std::string> backgrounds;

    if (backgrounds_file != NULL && !parseFiles(backgrounds_file, backgrounds)) {
        fprintf(stderr, "Error: cannot parse file listing: %s\n", backgrounds_file);
        return 2;
    }

    // create output file
    FILE *fp = fopen(output_file, "wb");

    if (fp == NULL) {
        fprintf(stderr, "Error: cannot open output file for writing: %s\n", output_file);
        return 2;
    }
    icvWriteVecHeader(fp, sample_count, sample_width, sample_height);

    // generate distortions
    std::default_random_engine generator(time(NULL));
    std::normal_distribution<double> xdist(0.0, rotate_stddev_x / 3.0);
    std::normal_distribution<double> ydist(0.0, rotate_stddev_y / 3.0);
    std::normal_distribution<double> zdist(0.0, rotate_stddev_z / 3.0);
    std::normal_distribution<double> ldist(0.0, luminosity_stddev / 3.0);
    cv::Mat el = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5, 5));
    int variations = MAX(1, (int)floor((double)sample_count / (double)samples.size()));
    int idx = 0;
    int i = 0;

    while (i < sample_count) {
        // suffle the input lists
        if (idx % samples.size() == 0) {
            std::shuffle(samples.begin(), samples.end(), generator);
            std::shuffle(backgrounds.begin(), backgrounds.end(), generator);
        }

        // read sample image
        auto const &sample_file(samples[idx % samples.size()]);
        cv::Mat sample = cv::imread(sample_file);
        double sampleRatio = (double)sample.cols / (double)sample.rows;
        double outputRatio = (double)sample_width / (double)sample_height;

        // normalize sample
        cv::Mat greySample = sample;
        double min, max;

        if (sample.channels() != 1) {
            cv::cvtColor(sample, greySample, cv::COLOR_RGB2GRAY);
        }
        cv::minMaxIdx(greySample, &min, &max);
        greySample -= min;
        greySample /= (max - min) / 255.0;

        // generate mask
        cv::Mat mask(cv::Mat::ones(greySample.rows, greySample.cols, greySample.type()));

        // enlarge canvas to fit output ratio
        cv::Mat resizedSample, resizedMask;

        if (backgrounds.size() > 0 && sampleRatio < outputRatio) {
            int width = (int)((double)greySample.rows * outputRatio);
            cv::Rect area(
                (width - greySample.cols) / 2,
                0,
                greySample.cols,
                greySample.rows
            );

            resizedSample = cv::Mat::zeros(greySample.rows, width, greySample.type());
            resizedMask = cv::Mat::zeros(greySample.rows, width, greySample.type());
            greySample.copyTo(resizedSample(area));
            mask.copyTo(resizedMask(area));
        } else if (backgrounds.size() > 0 && sampleRatio > outputRatio) {
            int height = (int)((double)greySample.cols / outputRatio);
            cv::Rect area(
                0,
                (height - greySample.rows) / 2,
                greySample.cols,
                greySample.rows
            );

            resizedSample = cv::Mat::zeros(height, greySample.cols, greySample.type());
            resizedMask = cv::Mat::zeros(height, greySample.cols, greySample.type());
            greySample.copyTo(resizedSample(area));
            mask.copyTo(resizedMask(area));
        } else {
            resizedSample = greySample;
            resizedMask = mask;
        }

        // apply distortions
        cv::Mat target(resizedSample.rows, resizedSample.cols, resizedSample.type());
        cv::Mat targetMask(resizedSample.rows, resizedSample.cols, resizedSample.type());
        double halfWidth = resizedSample.cols / 2.0;
        double halfHeight = resizedSample.rows / 2.0;
        cv::Mat rotationVector(3, 1, CV_64FC1);
        cv::Mat rotation4(cv::Mat::eye(4, 4, CV_64FC1));
        cv::Mat translate4(cv::Mat::eye(4, 4, CV_64FC1));
        cv::Mat translate3(cv::Mat::eye(3, 3, CV_64FC1));
        cv::Mat scale3(cv::Mat::eye(3, 3, CV_64FC1));
        int dx = (resizedSample.cols - greySample.cols) / 2;
        int dy = (resizedSample.rows - greySample.rows) / 2;
        cv::Point2f points1[4] = {
            cv::Point2f(dx,              dy),
            cv::Point2f(dx,              greySample.rows),
            cv::Point2f(greySample.cols, greySample.rows),
            cv::Point2f(greySample.cols, dy)
        };
        cv::Point2f points2[4];

        translate4.at<double>(0, 3) = -halfWidth;
        translate4.at<double>(1, 3) = -halfHeight;
        for (int k = 0; k < variations; k++) {
            double rx = k > 0 && rotate_stddev_x > 0.0 ? xdist(generator) : 0.0;
            double ry = k > 0 && rotate_stddev_y > 0.0 ? ydist(generator) : 0.0;
            double rz = k > 0 && rotate_stddev_z > 0.0 ? zdist(generator) : 0.0;
            double rl = k > 0 && luminosity_stddev > 0.0 ? ldist(generator) : 0.0;

            // compute rotation in 3d
            rotationVector.at<double>(0) = rx;
            rotationVector.at<double>(1) = ry;
            rotationVector.at<double>(2) = rz;
            cv::Rodrigues(rotationVector, cv::Mat(rotation4, cv::Rect(0, 0, 3, 3)));

            // compute transformation in 3d
            cv::Mat transform4(rotation4 * translate4);
            double minx = DBL_MAX, miny = DBL_MAX;
            double maxx = DBL_MIN, maxy = DBL_MIN;

            for (int j = 0; j < 4; j++) {
                cv::Mat point(4, 1, CV_64FC1);

                point.at<double>(0) = points1[j].x;
                point.at<double>(1) = points1[j].y;
                point.at<double>(2) = 0.0;
                point.at<double>(3) = 1.0;
                point = transform4 * point;
                points2[j].x = point.at<double>(0);
                points2[j].y = point.at<double>(1);

                if (points2[j].x < minx) {
                    minx = points2[j].x;
                }
                if (points2[j].x > maxx) {
                    maxx = points2[j].x;
                }
                if (points2[j].y < miny) {
                    miny = points2[j].y;
                }
                if (points2[j].y > maxy) {
                    maxy = points2[j].y;
                }
            }

            // compute transformation in 2d
            cv::Mat projection3(cv::getPerspectiveTransform(points1, points2));
            double scalex = (resizedSample.cols - dx) / (maxx - minx);
            double scaley = (resizedSample.rows - dy) / (maxy - miny);

            translate3.at<double>(0, 2) = halfWidth;
            translate3.at<double>(1, 2) = halfHeight;

            scale3.at<double>(0, 0) = scalex; //MIN(scalex, scaley);
            scale3.at<double>(1, 1) = scaley; //MIN(scalex, scaley);

            // transform sample and mask in 2d
            cv::Mat transform3(translate3 * scale3 * projection3);

            cv::warpPerspective(resizedSample, target, transform3, target.size());
            cv::warpPerspective(resizedMask, targetMask, transform3, targetMask.size());

            // apply luminosity change
            if (rl != 0.0) {
                rl += 1.0;
                target *= rl;
            }

            // read background image
            cv::Mat greyBackground;

            if (backgrounds.size() > 0) {
                auto const &background_file(backgrounds[i % backgrounds.size()]);
                cv::Mat background = cv::imread(background_file);

                // normalize background image
                if (background.channels() != 1) {
                    cv::cvtColor(background, greyBackground, cv::COLOR_RGB2GRAY);
                } else {
                    greyBackground = background;
                }
                cv::minMaxIdx(greyBackground, &min, &max);
                greyBackground -= min;
                greyBackground /= (max - min) / 255.0;

                // reshape background to fit output ratio
                double backgroundRatio = (double)greyBackground.cols / (double)greyBackground.rows;
                cv::Mat tmp;

                if (backgroundRatio < outputRatio) {
                    int height = (int)((double)greyBackground.cols / outputRatio);
                    std::uniform_int_distribution<int> hdist(0, greyBackground.rows - height);

                    tmp = greyBackground(
                        cv::Rect(
                            0,
                            hdist(generator),
                            greyBackground.cols,
                            height
                        )
                    );
                } else if (backgroundRatio > outputRatio) {
                    int width = (int)((double)greyBackground.rows * outputRatio);
                    std::uniform_int_distribution<int> wdist(0, greyBackground.cols - width);

                    tmp = greyBackground(
                        cv::Rect(
                            wdist(generator),
                            0,
                            width,
                            greyBackground.rows
                        )
                    );
                } else {
                    tmp = greyBackground;
                }
                cv::resize(tmp, greyBackground, resizedSample.size(), 0, 0, cv::INTER_CUBIC);
            } else {
                // random noise background
                greyBackground = cv::Mat(target.rows, target.cols, CV_8UC1);
                cv::randn(greyBackground, 255.0 / 2, 255.0 / 2 / 3);
                cv::GaussianBlur(greyBackground, greyBackground, cv::Size(5, 5), 10);
            }

            // blend background
            cv::Mat sampleMask, backgroundMask, tmp;

            cv::threshold(targetMask, sampleMask, 0.1, 255.0, cv::THRESH_BINARY);
            cv::erode(sampleMask, tmp, el);
            cv::blur(tmp, sampleMask, cv::Size(5, 5));

            cv::threshold(targetMask, backgroundMask, 0.1, 255.0, cv::THRESH_BINARY_INV);
            cv::dilate(backgroundMask, tmp, el);
            cv::blur(tmp, backgroundMask, cv::Size(5, 5));

            cv::multiply(target, sampleMask, target, 1.0 / 255.0);
            cv::multiply(greyBackground, backgroundMask, greyBackground, 1.0 / 255.0);

            target += greyBackground;

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", target);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", greyBackground);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // sample resize
            cv::Mat finalSample;

            cv::resize(target, finalSample, cv::Size(sample_width, sample_height), 0, 0, cv::INTER_CUBIC);

            // cv::namedWindow("preview", cv::WINDOW_NORMAL);
            // cv::imshow("preview", finalSample);
            // while ((cv::waitKey(0) & 0xff) != '\n');

            // sample save
            CvMat targetfinal_ = finalSample;

            icvWriteVecSample(fp, &targetfinal_);

            i++;
            if (i % 100 == 0) {
                fprintf(stdout, "processed %d images, %d samples\n", idx, i);
                fflush(stdout);
            }
        }
        idx++;
    }

    // close output file
    fclose(fp);
    return 0;
}