// resets position states to last GPS measurement or to zero if in constant position mode void NavEKF2_core::ResetPosition(void) { // Store the position before the reset so that we can record the reset delta posResetNE.x = stateStruct.position.x; posResetNE.y = stateStruct.position.y; // reset the corresponding covariances zeroRows(P,6,7); zeroCols(P,6,7); if (PV_AidingMode != AID_ABSOLUTE) { // reset all position state history to the last known position stateStruct.position.x = lastKnownPositionNE.x; stateStruct.position.y = lastKnownPositionNE.y; // set the variances using the position measurement noise parameter P[6][6] = P[7][7] = sq(frontend->_gpsHorizPosNoise); } else { // Use GPS data as first preference if fresh data is available if (imuSampleTime_ms - lastTimeGpsReceived_ms < 250) { // write to state vector and compensate for offset between last GPS measurement and the EKF time horizon stateStruct.position.x = gpsDataNew.pos.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); stateStruct.position.y = gpsDataNew.pos.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); // set the variances using the position measurement noise parameter P[6][6] = P[7][7] = sq(MAX(gpsPosAccuracy,frontend->_gpsHorizPosNoise)); // clear the timeout flags and counters posTimeout = false; lastPosPassTime_ms = imuSampleTime_ms; } else if (imuSampleTime_ms - rngBcnLast3DmeasTime_ms < 250) { // use the range beacon data as a second preference stateStruct.position.x = receiverPos.x; stateStruct.position.y = receiverPos.y; // set the variances from the beacon alignment filter P[6][6] = receiverPosCov[0][0]; P[7][7] = receiverPosCov[1][1]; // clear the timeout flags and counters rngBcnTimeout = false; lastRngBcnPassTime_ms = imuSampleTime_ms; } } for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].position.x = stateStruct.position.x; storedOutput[i].position.y = stateStruct.position.y; } outputDataNew.position.x = stateStruct.position.x; outputDataNew.position.y = stateStruct.position.y; outputDataDelayed.position.x = stateStruct.position.x; outputDataDelayed.position.y = stateStruct.position.y; // Calculate the position jump due to the reset posResetNE.x = stateStruct.position.x - posResetNE.x; posResetNE.y = stateStruct.position.y - posResetNE.y; // store the time of the reset lastPosReset_ms = imuSampleTime_ms; }
// reset the body axis gyro bias states to zero and re-initialise the corresponding covariances // Assume that the calibration is performed to an accuracy of 0.5 deg/sec which will require averaging under static conditions // WARNING - a non-blocking calibration method must be used void NavEKF2_core::resetGyroBias(void) { stateStruct.gyro_bias.zero(); zeroRows(P,9,11); zeroCols(P,9,11); P[9][9] = sq(radians(0.5f * dtIMUavg)); P[10][10] = P[9][9]; P[11][11] = P[9][9]; }
// Reset heading and magnetic field states bool Ekf::resetMagHeading(Vector3f &mag_init) { // If we don't a tilt estimate then we cannot initialise the yaw if (!_control_status.flags.tilt_align) { return false; } // get the roll, pitch, yaw estimates and set the yaw to zero matrix::Quaternion<float> q(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2), _state.quat_nominal(3)); matrix::Euler<float> euler_init(q); euler_init(2) = 0.0f; // rotate the magnetometer measurements into earth axes matrix::Dcm<float> R_to_earth_zeroyaw(euler_init); Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init; euler_init(2) = _mag_declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0)); // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps _state.quat_nominal = Quaternion(euler_init); // reset the angle error variances because the yaw angle could have changed by a significant amount // by setting them to zero we avoid 'kicks' in angle when 3-D fusion starts and the imu process noise // will grow them again. zeroRows(P, 0, 2); zeroCols(P, 0, 2); // calculate initial earth magnetic field states matrix::Dcm<float> R_to_earth(euler_init); _state.mag_I = R_to_earth * mag_init; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } return true; }
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift void NavEKF2_core::ResetVelocity(void) { // Store the position before the reset so that we can record the reset delta velResetNE.x = stateStruct.velocity.x; velResetNE.y = stateStruct.velocity.y; // reset the corresponding covariances zeroRows(P,3,4); zeroCols(P,3,4); if (PV_AidingMode != AID_ABSOLUTE) { stateStruct.velocity.zero(); // set the variances using the measurement noise parameter P[4][4] = P[3][3] = sq(frontend->_gpsHorizVelNoise); } else { // reset horizontal velocity states to the GPS velocity if available if (imuSampleTime_ms - lastTimeGpsReceived_ms < 250) { stateStruct.velocity.x = gpsDataNew.vel.x; stateStruct.velocity.y = gpsDataNew.vel.y; // set the variances using the reported GPS speed accuracy P[4][4] = P[3][3] = sq(MAX(frontend->_gpsHorizVelNoise,gpsSpdAccuracy)); // clear the timeout flags and counters velTimeout = false; lastVelPassTime_ms = imuSampleTime_ms; } else { stateStruct.velocity.x = 0.0f; stateStruct.velocity.y = 0.0f; // set the variances using the likely speed range P[4][4] = P[3][3] = sq(25.0f); // clear the timeout flags and counters velTimeout = false; lastVelPassTime_ms = imuSampleTime_ms; } } for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].velocity.x = stateStruct.velocity.x; storedOutput[i].velocity.y = stateStruct.velocity.y; } outputDataNew.velocity.x = stateStruct.velocity.x; outputDataNew.velocity.y = stateStruct.velocity.y; outputDataDelayed.velocity.x = stateStruct.velocity.x; outputDataDelayed.velocity.y = stateStruct.velocity.y; // Calculate the position jump due to the reset velResetNE.x = stateStruct.velocity.x - velResetNE.x; velResetNE.y = stateStruct.velocity.y - velResetNE.y; // store the time of the reset lastVelReset_ms = imuSampleTime_ms; }
// reset the vertical position state using the last height measurement void NavEKF2_core::ResetHeight(void) { // write to the state vector stateStruct.position.z = -hgtMea; terrainState = stateStruct.position.z + rngOnGnd; for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].position.z = stateStruct.position.z; } outputDataNew.position.z = stateStruct.position.z; outputDataDelayed.position.z = stateStruct.position.z; // reset the corresponding covariances zeroRows(P,8,8); zeroCols(P,8,8); // set the variances to the measurement variance P[8][8] = posDownObsNoise; // Reset the vertical velocity state using GPS vertical velocity if we are airborne // Check that GPS vertical velocity data is available and can be used if (inFlight && !gpsNotAvailable && frontend->_fusionModeGPS == 0) { stateStruct.velocity.z = gpsDataNew.vel.z; } else if (onGround) { stateStruct.velocity.z = 0.0f; } for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].velocity.z = stateStruct.velocity.z; } outputDataNew.velocity.z = stateStruct.velocity.z; outputDataDelayed.velocity.z = stateStruct.velocity.z; // reset the corresponding covariances zeroRows(P,5,5); zeroCols(P,5,5); // set the variances to the measurement variance P[5][5] = sq(frontend->_gpsVertVelNoise); }
// resets position states to last GPS measurement or to zero if in constant position mode void NavEKF2_core::ResetPosition(void) { // Store the position before the reset so that we can record the reset delta posResetNE.x = stateStruct.position.x; posResetNE.y = stateStruct.position.y; if (PV_AidingMode != AID_ABSOLUTE) { // reset all position state history to the last known position stateStruct.position.x = lastKnownPositionNE.x; stateStruct.position.y = lastKnownPositionNE.y; } else { // write to state vector and compensate for offset between last GPs measurement and the EKF time horizon stateStruct.position.x = gpsDataNew.pos.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); stateStruct.position.y = gpsDataNew.pos.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(gpsDataNew.time_ms)); } for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].position.x = stateStruct.position.x; storedOutput[i].position.y = stateStruct.position.y; } outputDataNew.position.x = stateStruct.position.x; outputDataNew.position.y = stateStruct.position.y; outputDataDelayed.position.x = stateStruct.position.x; outputDataDelayed.position.y = stateStruct.position.y; // Calculate the position jump due to the reset posResetNE.x = stateStruct.position.x - posResetNE.x; posResetNE.y = stateStruct.position.y - posResetNE.y; // store the time of the reset lastPosReset_ms = imuSampleTime_ms; // reset the corresponding covariances zeroRows(P,6,7); zeroCols(P,6,7); // set the variances to the measurement variance P[6][6] = P[7][7] = sq(frontend->_gpsHorizPosNoise); }
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute // Do not reset vertical velocity using GPS as there is baro alt available to constrain drift void NavEKF2_core::ResetVelocity(void) { // Store the position before the reset so that we can record the reset delta velResetNE.x = stateStruct.velocity.x; velResetNE.y = stateStruct.velocity.y; if (PV_AidingMode != AID_ABSOLUTE) { stateStruct.velocity.zero(); } else { // reset horizontal velocity states to the GPS velocity stateStruct.velocity.x = gpsDataNew.vel.x; // north velocity from blended accel data stateStruct.velocity.y = gpsDataNew.vel.y; // east velocity from blended accel data } for (uint8_t i=0; i<imu_buffer_length; i++) { storedOutput[i].velocity.x = stateStruct.velocity.x; storedOutput[i].velocity.y = stateStruct.velocity.y; } outputDataNew.velocity.x = stateStruct.velocity.x; outputDataNew.velocity.y = stateStruct.velocity.y; outputDataDelayed.velocity.x = stateStruct.velocity.x; outputDataDelayed.velocity.y = stateStruct.velocity.y; // Calculate the position jump due to the reset velResetNE.x = stateStruct.velocity.x - velResetNE.x; velResetNE.y = stateStruct.velocity.y - velResetNE.y; // store the time of the reset lastVelReset_ms = imuSampleTime_ms; // reset the corresponding covariances zeroRows(P,3,4); zeroCols(P,3,4); // set the variances to the measurement variance P[4][4] = P[3][3] = sq(frontend->_gpsHorizVelNoise); }
// fuse selected position, velocity and height measurements void NavEKF2_core::FuseVelPosNED() { // start performance timer hal.util->perf_begin(_perf_FuseVelPosNED); // health is set bad until test passed velHealth = false; posHealth = false; hgtHealth = false; // declare variables used to check measurement errors Vector3f velInnov; // declare variables used to control access to arrays bool fuseData[6] = {false,false,false,false,false,false}; uint8_t stateIndex; uint8_t obsIndex; // declare variables used by state and covariance update calculations float posErr; Vector6 R_OBS; // Measurement variances used for fusion Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only Vector6 observation; float SK; // perform sequential fusion of GPS measurements. This assumes that the // errors in the different velocity and position components are // uncorrelated which is not true, however in the absence of covariance // data from the GPS receiver it is the only assumption we can make // so we might as well take advantage of the computational efficiencies // associated with sequential fusion if (fuseVelData || fusePosData || fuseHgtData) { // set the GPS data timeout depending on whether airspeed data is present uint32_t gpsRetryTime; if (useAirspeed()) gpsRetryTime = frontend->gpsRetryTimeUseTAS_ms; else gpsRetryTime = frontend->gpsRetryTimeNoTAS_ms; // form the observation vector observation[0] = gpsDataDelayed.vel.x; observation[1] = gpsDataDelayed.vel.y; observation[2] = gpsDataDelayed.vel.z; observation[3] = gpsDataDelayed.pos.x; observation[4] = gpsDataDelayed.pos.y; observation[5] = -hgtMea; // calculate additional error in GPS position caused by manoeuvring posErr = frontend->gpsPosVarAccScale * accNavMag; // estimate the GPS Velocity, GPS horiz position and height measurement variances. // if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity // otherwise we scale it using manoeuvre acceleration // Use different errors if flying without GPS using synthetic position and velocity data if (PV_AidingMode == AID_NONE && inFlight) { // Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use) // This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres R_OBS[0] = sq(10.0f); R_OBS[1] = R_OBS[0]; R_OBS[2] = R_OBS[0]; // Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres R_OBS[3] = sq(25.0f); R_OBS[4] = R_OBS[3]; } else { if (gpsSpdAccuracy > 0.0f) { // use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f)); R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f)); } else { // calculate additional error in GPS velocity caused by manoeuvring R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale * accNavMag); } R_OBS[1] = R_OBS[0]; R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr); R_OBS[4] = R_OBS[3]; } R_OBS[5] = posDownObsNoise; // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag); for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i]; // if vertical GPS velocity data and an independant height source is being used, check to see if the GPS vertical velocity and altimeter // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting // the accelerometers and we should disable the GPS and barometer innovation consistency checks. if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) { // calculate innovations for height and vertical GPS vel measurements float hgtErr = stateStruct.position.z - observation[5]; float velDErr = stateStruct.velocity.z - observation[2]; // check if they are the same sign and both more than 3-sigma out of bounds if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) { badIMUdata = true; } else { badIMUdata = false; } } // calculate innovations and check GPS data validity using an innovation consistency check // test position measurements if (fusePosData) { // test horizontal position measurements innovVelPos[3] = stateStruct.position.x - observation[3]; innovVelPos[4] = stateStruct.position.y - observation[4]; varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3]; varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4]; // apply an innovation consistency threshold test, but don't fail if bad IMU data float maxPosInnov2 = sq(max(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]); posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2; posHealth = ((posTestRatio < 1.0f) || badIMUdata); // declare a timeout condition if we have been too long without data or not aiding posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use position data if healthy, timed out, or in constant position mode if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) { posHealth = true; // only reset the failed time and do glitch timeout checks if we are doing full aiding if (PV_AidingMode == AID_ABSOLUTE) { lastPosPassTime_ms = imuSampleTime_ms; // if timed out or outside the specified uncertainty radius, reset to the GPS if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) { // reset the position to the current GPS position ResetPosition(); // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS data on this time step fusePosData = false; fuseVelData = false; // Reset the position variances and corresponding covariances to a value that will pass the checks zeroRows(P,6,7); zeroCols(P,6,7); P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax)); P[7][7] = P[6][6]; // Reset the normalised innovation to avoid failing the bad fusion tests posTestRatio = 0.0f; velTestRatio = 0.0f; } } } else { posHealth = false; } } // test velocity measurements if (fuseVelData) { // test velocity measurements uint8_t imax = 2; // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) { imax = 1; } float innovVelSumSq = 0; // sum of squares of velocity innovations float varVelSum = 0; // sum of velocity innovation variances for (uint8_t i = 0; i<=imax; i++) { // velocity states start at index 3 stateIndex = i + 3; // calculate innovations using blended and single IMU predicted states velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended // calculate innovation variance varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i]; // sum the innovation and innovation variances innovVelSumSq += sq(velInnov[i]); varVelSum += varInnovVelPos[i]; } // apply an innovation consistency threshold test, but don't fail if bad IMU data // calculate the test ratio velTestRatio = innovVelSumSq / (varVelSum * sq(max(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f))); // fail if the ratio is greater than 1 velHealth = ((velTestRatio < 1.0f) || badIMUdata); // declare a timeout if we have not fused velocity data for too long or not aiding velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE); // use velocity data if healthy, timed out, or in constant position mode if (velHealth || velTimeout) { velHealth = true; // restart the timeout count lastVelPassTime_ms = imuSampleTime_ms; // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity if (PV_AidingMode == AID_ABSOLUTE && velTimeout) { // reset the velocity to the GPS velocity ResetVelocity(); // don't fuse GPS velocity data on this time step fuseVelData = false; // Reset the normalised innovation to avoid failing the bad fusion tests velTestRatio = 0.0f; } } else { velHealth = false; } } // test height measurements if (fuseHgtData) { // calculate height innovations innovVelPos[5] = stateStruct.position.z - observation[5]; varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5]; // calculate the innovation consistency test ratio hgtTestRatio = sq(innovVelPos[5]) / (sq(max(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]); // fail if the ratio is > 1, but don't fail if bad IMU data hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata); // Fuse height data if healthy or timed out or in constant position mode if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) { // Calculate a filtered value to be used by pre-flight health checks // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution if (onGround) { float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f; const float hgtInnovFiltTC = 2.0f; float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f); hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha; } else { hgtInnovFiltState = 0.0f; } // if timed out, reset the height if (hgtTimeout) { ResetHeight(); hgtTimeout = false; } // If we have got this far then declare the height data as healthy and reset the timeout counter hgtHealth = true; lastHgtPassTime_ms = imuSampleTime_ms; } } // set range for sequential fusion of velocity and position measurements depending on which data is available and its health if (fuseVelData && velHealth) { fuseData[0] = true; fuseData[1] = true; if (useGpsVertVel) { fuseData[2] = true; } tiltErrVec.zero(); } if (fusePosData && posHealth) { fuseData[3] = true; fuseData[4] = true; tiltErrVec.zero(); } if (fuseHgtData && hgtHealth) { fuseData[5] = true; } // fuse measurements sequentially for (obsIndex=0; obsIndex<=5; obsIndex++) { if (fuseData[obsIndex]) { stateIndex = 3 + obsIndex; // calculate the measurement innovation, using states from a different time coordinate if fusing height data // adjust scaling on GPS measurement noise variances if not enough satellites if (obsIndex <= 2) { innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 3 || obsIndex == 4) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; R_OBS[obsIndex] *= sq(gpsNoiseScaler); } else if (obsIndex == 5) { innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex]; const float gndMaxBaroErr = 4.0f; const float gndBaroInnovFloor = -0.5f; if(getTouchdownExpected()) { // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr // this function looks like this: // |/ //---------|--------- // ____/| // / | // / | innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr); } } // calculate the Kalman gain and calculate innovation variances varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex]; SK = 1.0f/varInnovVelPos[obsIndex]; for (uint8_t i= 0; i<=15; i++) { Kfusion[i] = P[i][stateIndex]*SK; } // inhibit magnetic field state estimation by setting Kalman gains to zero if (!inhibitMagStates) { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = P[i][stateIndex]*SK; } } else { for (uint8_t i = 16; i<=21; i++) { Kfusion[i] = 0.0f; } } // inhibit wind state estimation by setting Kalman gains to zero if (!inhibitWindStates) { Kfusion[22] = P[22][stateIndex]*SK; Kfusion[23] = P[23][stateIndex]*SK; } else { Kfusion[22] = 0.0f; Kfusion[23] = 0.0f; } // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion stateStruct.angErr.zero(); // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data for (uint8_t i = 0; i<=stateIndexLim; i++) { statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex]; } // the first 3 states represent the angular misalignment vector. This is // is used to correct the estimated quaternion stateStruct.quat.rotate(stateStruct.angErr); // sum the attitude error from velocity and position fusion only // used as a metric for convergence monitoring if (obsIndex != 5) { tiltErrVec += stateStruct.angErr; } // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations // this is a numerically optimised implementation of standard equation P = (I - K*H)*P; for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { KHP[i][j] = Kfusion[i] * P[stateIndex][j]; } } for (uint8_t i= 0; i<=stateIndexLim; i++) { for (uint8_t j= 0; j<=stateIndexLim; j++) { P[i][j] = P[i][j] - KHP[i][j]; } } } } } // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning. ForceSymmetry(); ConstrainVariances(); // stop performance timer hal.util->perf_end(_perf_FuseVelPosNED); }
void Ekf::controlOpticalFlowFusion() { // Check for new optical flow data that has fallen behind the fusion time horizon if (_flow_data_ready) { // optical flow fusion mode selection logic if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user && !_control_status.flags.opt_flow // we are not yet using flow data && _control_status.flags.tilt_align // we know our tilt attitude && (_time_last_imu - _time_last_hagl_fuse) < 5e5) // we have a valid distance to ground estimate { // If the heading is not aligned, reset the yaw and magnetic field states if (!_control_status.flags.yaw_align) { _control_status.flags.yaw_align = resetMagHeading(_mag_sample_delayed.mag); } // If the heading is valid, start using optical flow aiding if (_control_status.flags.yaw_align) { // set the flag and reset the fusion timeout _control_status.flags.opt_flow = true; _time_last_of_fuse = _time_last_imu; // if we are not using GPS then the velocity and position states and covariances need to be set if (!_control_status.flags.gps) { // constrain height above ground to be above minimum possible float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); // calculate absolute distance from focal point to centre of frame assuming a flat earth float range = heightAboveGndEst / _R_to_earth(2, 2); if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) { // we should have reliable OF measurements so // calculate X and Y body relative velocities from OF measurements Vector3f vel_optflow_body; vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt; vel_optflow_body(1) = range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt; vel_optflow_body(2) = 0.0f; // rotate from body to earth frame Vector3f vel_optflow_earth; vel_optflow_earth = _R_to_earth * vel_optflow_body; // take x and Y components _state.vel(0) = vel_optflow_earth(0); _state.vel(1) = vel_optflow_earth(1); } else { _state.vel(0) = 0.0f; _state.vel(1) = 0.0f; } // reset the velocity covariance terms zeroRows(P,4,5); zeroCols(P,4,5); // reset the horizontal velocity variance using the optical flow noise variance P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar(); if (!_control_status.flags.in_air) { // we are likely starting OF for the first time so reset the horizontal position and vertical velocity states _state.pos(0) = 0.0f; _state.pos(1) = 0.0f; // reset the corresponding covariances // we are by definition at the origin at commencement so variances are also zeroed zeroRows(P,7,8); zeroCols(P,7,8); // align the output observer to the EKF states alignOutputFilter(); } } } } else if (!(_params.fusion_mode & MASK_USE_OF)) { _control_status.flags.opt_flow = false; } // handle the case when we are relying on optical flow fusion and lose it if (_control_status.flags.opt_flow && !_control_status.flags.gps) { // We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something if ((_time_last_imu - _time_last_of_fuse > 5e6)) { // Switch to the non-aiding mode, zero the velocity states // and set the synthetic position to the current estimate _control_status.flags.opt_flow = false; _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); _state.vel.setZero(); } } // fuse the data if (_control_status.flags.opt_flow) { // Update optical flow bias estimates calcOptFlowBias(); // Fuse optical flow LOS rate observations into the main filter fuseOptFlow(); _last_known_posNE(0) = _state.pos(0); _last_known_posNE(1) = _state.pos(1); } } }
// initialise the quaternion covariances using rotation vector variances void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var) { // calculate an equivalent rotation vector from the quaternion float q0,q1,q2,q3; if (_state.quat_nominal(0) >= 0.0f) { q0 = _state.quat_nominal(0); q1 = _state.quat_nominal(1); q2 = _state.quat_nominal(2); q3 = _state.quat_nominal(3); } else { q0 = -_state.quat_nominal(0); q1 = -_state.quat_nominal(1); q2 = -_state.quat_nominal(2); q3 = -_state.quat_nominal(3); } float delta = 2.0f*acosf(q0); float scaler = (delta/sinf(delta*0.5f)); float rotX = scaler*q1; float rotY = scaler*q2; float rotZ = scaler*q3; // autocode generated using matlab symbolic toolbox float t2 = rotX*rotX; float t4 = rotY*rotY; float t5 = rotZ*rotZ; float t6 = t2+t4+t5; if (t6 > 1e-9f) { float t7 = sqrtf(t6); float t8 = t7*0.5f; float t3 = sinf(t8); float t9 = t3*t3; float t10 = 1.0f/t6; float t11 = 1.0f/sqrtf(t6); float t12 = cosf(t8); float t13 = 1.0f/powf(t6,1.5f); float t14 = t3*t11; float t15 = rotX*rotY*t3*t13; float t16 = rotX*rotZ*t3*t13; float t17 = rotY*rotZ*t3*t13; float t18 = t2*t10*t12*0.5f; float t27 = t2*t3*t13; float t19 = t14+t18-t27; float t23 = rotX*rotY*t10*t12*0.5f; float t28 = t15-t23; float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f; float t25 = rotX*rotZ*t10*t12*0.5f; float t31 = t16-t25; float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f; float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f; float t24 = t15-t23; float t26 = t16-t25; float t29 = t4*t10*t12*0.5f; float t34 = t3*t4*t13; float t30 = t14+t29-t34; float t32 = t5*t10*t12*0.5f; float t40 = t3*t5*t13; float t33 = t14+t32-t40; float t36 = rotY*rotZ*t10*t12*0.5f; float t39 = t17-t36; float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f; float t37 = t15-t23; float t38 = t17-t36; float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25); float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39; float t43 = t16-t25; float t44 = t17-t36; // zero all the quaternion covariances zeroRows(P,0,3); zeroCols(P,0,3); // Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox P[0][0] = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f; P[0][1] = t22; P[0][2] = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f; P[0][3] = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f; P[1][0] = t22; P[1][1] = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26); P[1][2] = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P[1][3] = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P[2][0] = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f; P[2][1] = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P[2][2] = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38); P[2][3] = t42; P[3][0] = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f; P[3][1] = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P[3][2] = t42; P[3][3] = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44); } else { // the equations are badly conditioned so use a small angle approximation P[0][0] = 0.0f; P[0][1] = 0.0f; P[0][2] = 0.0f; P[0][3] = 0.0f; P[1][0] = 0.0f; P[1][1] = 0.25f*rot_vec_var(0); P[1][2] = 0.0f; P[1][3] = 0.0f; P[2][0] = 0.0f; P[2][1] = 0.0f; P[2][2] = 0.25f*rot_vec_var(1); P[2][3] = 0.0f; P[3][0] = 0.0f; P[3][1] = 0.0f; P[3][2] = 0.0f; P[3][3] = 0.25f*rot_vec_var(2); } }
// Reset heading and magnetic field states bool Ekf::resetMagHeading(Vector3f &mag_init) { // save a copy of the quaternion state for later use in calculating the amount of reset change Quaternion quat_before_reset = _state.quat_nominal; // calculate the variance for the rotation estimate expressed as a rotation vector // this will be used later to reset the quaternion state covariances Vector3f angle_err_var_vec = calcRotVecVariances(); // update transformation matrix from body to world frame using the current estimate _R_to_earth = quat_to_invrotmat(_state.quat_nominal); // calculate the initial quaternion // determine if a 321 or 312 Euler sequence is best if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) { // use a 321 sequence // rotate the magnetometer measurement into earth frame matrix::Euler<float> euler321(_state.quat_nominal); // Set the yaw angle to zero and calculate the rotation matrix from body to earth frame euler321(2) = 0.0f; matrix::Dcm<float> R_to_earth(euler321); // calculate the observed yaw angle if (_params.fusion_mode & MASK_USE_EVYAW) { // convert the observed quaternion to a rotation matrix matrix::Dcm<float> R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame // calculate the yaw angle for a 312 sequence euler321(2) = atan2f(R_to_earth_ev(1, 0) , R_to_earth_ev(0, 0)); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { // rotate the magnetometer measurements into earth frame using a zero yaw angle Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag; // the angle of the projection onto the horizontal gives the yaw angle euler321(2) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination; } else { // there is no yaw observation return false; } // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps _state.quat_nominal = Quaternion(euler321); } else { // use a 312 sequence // Calculate the 312 sequence euler angles that rotate from earth to body frame // See http://www.atacolorado.com/eulersequences.doc Vector3f euler312; euler312(0) = atan2f(-_R_to_earth(0, 1) , _R_to_earth(1, 1)); // first rotation (yaw) euler312(1) = asinf(_R_to_earth(2, 1)); // second rotation (roll) euler312(2) = atan2f(-_R_to_earth(2, 0) , _R_to_earth(2, 2)); // third rotation (pitch) // Set the first rotation (yaw) to zero and calculate the rotation matrix from body to earth frame euler312(0) = 0.0f; // Calculate the body to earth frame rotation matrix from the euler angles using a 312 rotation sequence float c2 = cosf(euler312(2)); float s2 = sinf(euler312(2)); float s1 = sinf(euler312(1)); float c1 = cosf(euler312(1)); float s0 = sinf(euler312(0)); float c0 = cosf(euler312(0)); matrix::Dcm<float> R_to_earth; R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2; R_to_earth(1, 1) = c0 * c1; R_to_earth(2, 2) = c2 * c1; R_to_earth(0, 1) = -c1 * s0; R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0; R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0; R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2; R_to_earth(2, 0) = -s2 * c1; R_to_earth(2, 1) = s1; // calculate the observed yaw angle if (_params.fusion_mode & MASK_USE_EVYAW) { // convert the observed quaternion to a rotation matrix matrix::Dcm<float> R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame // calculate the yaw angle for a 312 sequence euler312(0) = atan2f(-R_to_earth_ev(0, 1) , R_to_earth_ev(1, 1)); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { // rotate the magnetometer measurements into earth frame using a zero yaw angle Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag; // the angle of the projection onto the horizontal gives the yaw angle euler312(0) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination; } else { // there is no yaw observation return false; } // re-calculate the rotation matrix using the updated yaw angle s0 = sinf(euler312(0)); c0 = cosf(euler312(0)); R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2; R_to_earth(1, 1) = c0 * c1; R_to_earth(2, 2) = c2 * c1; R_to_earth(0, 1) = -c1 * s0; R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0; R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0; R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2; R_to_earth(2, 0) = -s2 * c1; R_to_earth(2, 1) = s1; // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps _state.quat_nominal = Quaternion(R_to_earth); } // update transformation matrix from body to world frame using the current estimate _R_to_earth = quat_to_invrotmat(_state.quat_nominal); // update the yaw angle variance using the variance of the measurement if (_params.fusion_mode & MASK_USE_EVYAW) { // using error estimate from external vision data angle_err_var_vec(2) = sq(fmaxf(_ev_sample_delayed.angErr, 1.0e-2f)); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { // using magnetic heading tuning parameter angle_err_var_vec(2) = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); } // reset the quaternion covariances using the rotation vector variances initialiseQuatCovariances(angle_err_var_vec); // calculate initial earth magnetic field states _state.mag_I = _R_to_earth * mag_init; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } // calculate the amount that the quaternion has changed by _state_reset_status.quat_change = _state.quat_nominal * quat_before_reset.inversed(); // add the reset amount to the output observer buffered data outputSample output_states; unsigned output_length = _output_buffer.get_length(); for (unsigned i=0; i < output_length; i++) { output_states = _output_buffer.get_from_index(i); output_states.quat_nominal *= _state_reset_status.quat_change; _output_buffer.push_to_index(i,output_states); } // apply the change in attitude quaternion to our newest quaternion estimate // which was already taken out from the output buffer _output_new.quat_nominal *= _state_reset_status.quat_change; // capture the reset event _state_reset_status.quat_counter++; return true; }
// Reset height state using the last height measurement void Ekf::resetHeight() { // Get the most recent GPS data gpsSample gps_newest = _gps_buffer.get_newest(); // store the current vertical position and velocity for reference so we can calculate and publish the reset amount float old_vert_pos = _state.pos(2); bool vert_pos_reset = false; float old_vert_vel = _state.vel(2); bool vert_vel_reset = false; // reset the vertical position if (_control_status.flags.rng_hgt) { rangeSample range_newest = _range_buffer.get_newest(); if (_time_last_imu - range_newest.time_us < 2 * RNG_MAX_INTERVAL) { // calculate the new vertical position using range sensor float new_pos_down = _hgt_sensor_offset - range_newest.rng; // update the state and assoicated variance _state.pos(2) = new_pos_down; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.range_noise); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup baroSample baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known range based estimate } } else if (_control_status.flags.baro_hgt) { // initialize vertical position with newest baro measurement baroSample baro_newest = _baro_buffer.get_newest(); if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.baro_noise); vert_pos_reset = true; } else { // TODO: reset to last known baro based estimate } } else if (_control_status.flags.gps_hgt) { // initialize vertical position and velocity with newest gps measurement if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref; // reset the associated covarince values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(gps_newest.hacc); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup baroSample baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known gps based estimate } } else if (_control_status.flags.ev_hgt) { // initialize vertical position with newest measurement extVisionSample ev_newest = _ext_vision_buffer.get_newest(); // use the most recent data if it's time offset from the fusion time horizon is smaller int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us; int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us; if (abs(dt_newest) < abs(dt_delayed)) { _state.pos(2) = ev_newest.posNED(2); } else { _state.pos(2) = _ev_sample_delayed.posNED(2); } } // reset the vertical velocity covariance values zeroRows(P, 6, 6); zeroCols(P, 6, 6); // reset the vertical velocity state if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) { // If we are using GPS, then use it to reset the vertical velocity _state.vel(2) = gps_newest.vel(2); // the state variance is the same as the observation P[6][6] = sq(1.5f * gps_newest.sacc); } else { // we don't know what the vertical velocity is, so set it to zero _state.vel(2) = 0.0f; // Set the variance to a value large enough to allow the state to converge quickly // that does not destabilise the filter P[6][6] = 10.0f; } vert_vel_reset = true; // store the reset amount and time to be published if (vert_pos_reset) { _state_reset_status.posD_change = _state.pos(2) - old_vert_pos; _state_reset_status.posD_counter++; } if (vert_vel_reset) { _state_reset_status.velD_change = _state.vel(2) - old_vert_vel; _state_reset_status.velD_counter++; } // apply the change in height / height rate to our newest height / height rate estimate // which have already been taken out from the output buffer if (vert_pos_reset) { _output_new.pos(2) += _state_reset_status.posD_change; } if (vert_vel_reset) { _output_new.vel(2) += _state_reset_status.velD_change; } // add the reset amount to the output observer buffered data outputSample output_states; unsigned output_length = _output_buffer.get_length(); for (unsigned i=0; i < output_length; i++) { output_states = _output_buffer.get_from_index(i); if (vert_pos_reset) { output_states.pos(2) += _state_reset_status.posD_change; } if (vert_vel_reset) { output_states.vel(2) += _state_reset_status.velD_change; } _output_buffer.push_to_index(i,output_states); } }
void Ekf::fuseAirspeed() { // Initialize variables float vn; // Velocity in north direction float ve; // Velocity in east direction float vd; // Velocity in downwards direction float vwn; // Wind speed in north direction float vwe; // Wind speed in east direction float v_tas_pred; // Predicted measurement float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) * math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f)); // Variance for true airspeed measurement - (m/sec)^2 float SH_TAS[3] = {}; // Varialbe used to optimise calculations of measurement jacobian float H_TAS[24] = {}; // Observation Jacobian float SK_TAS[2] = {}; // Varialbe used to optimise calculations of the Kalman gain vector float Kfusion[24] = {}; // Kalman gain vector // Copy required states to local variable names vn = _state.vel(0); ve = _state.vel(1); vd = _state.vel(2); vwn = _state.wind_vel(0); vwe = _state.wind_vel(1); // Calculate the predicted airspeed v_tas_pred = sqrtf((ve - vwe) * (ve - vwe) + (vn - vwn) * (vn - vwn) + vd * vd); // Perform fusion of True Airspeed measurement if (v_tas_pred > 1.0f) { // Calculate the observation jacobian // intermediate variable from algebraic optimisation SH_TAS[0] = 1.0f/v_tas_pred; SH_TAS[1] = (SH_TAS[0]*(2.0f*ve - 2.0f*vwe))*0.5f; SH_TAS[2] = (SH_TAS[0]*(2.0f*vn - 2.0f*vwn))*0.5f; for (uint8_t i = 0; i < _k_num_states; i++) { H_TAS[i] = 0.0f; } H_TAS[4] = SH_TAS[2]; H_TAS[5] = SH_TAS[1]; H_TAS[6] = vd*SH_TAS[0]; H_TAS[22] = -SH_TAS[2]; H_TAS[23] = -SH_TAS[1]; // We don't want to update the innovation variance if the calculation is ill conditioned float _airspeed_innov_var_temp = (R_TAS + SH_TAS[2]*(P[4][4]*SH_TAS[2] + P[5][4]*SH_TAS[1] - P[22][4]*SH_TAS[2] - P[23][4]*SH_TAS[1] + P[6][4]*vd*SH_TAS[0]) + SH_TAS[1]*(P[4][5]*SH_TAS[2] + P[5][5]*SH_TAS[1] - P[22][5]*SH_TAS[2] - P[23][5]*SH_TAS[1] + P[6][5]*vd*SH_TAS[0]) - SH_TAS[2]*(P[4][22]*SH_TAS[2] + P[5][22]*SH_TAS[1] - P[22][22]*SH_TAS[2] - P[23][22]*SH_TAS[1] + P[6][22]*vd*SH_TAS[0]) - SH_TAS[1]*(P[4][23]*SH_TAS[2] + P[5][23]*SH_TAS[1] - P[22][23]*SH_TAS[2] - P[23][23]*SH_TAS[1] + P[6][23]*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P[4][6]*SH_TAS[2] + P[5][6]*SH_TAS[1] - P[22][6]*SH_TAS[2] - P[23][6]*SH_TAS[1] + P[6][6]*vd*SH_TAS[0])); if (_airspeed_innov_var_temp >= R_TAS) { // Check for badly conditioned calculation SK_TAS[0] = 1.0f / _airspeed_innov_var_temp; _fault_status.flags.bad_airspeed = false; } else { // Reset the estimator covarinace matrix _fault_status.flags.bad_airspeed = true; initialiseCovariance(); ECL_ERR("EKF airspeed fusion numerical error - covariance reset"); return; } SK_TAS[1] = SH_TAS[1]; Kfusion[0] = SK_TAS[0]*(P[0][4]*SH_TAS[2] - P[0][22]*SH_TAS[2] + P[0][5]*SK_TAS[1] - P[0][23]*SK_TAS[1] + P[0][6]*vd*SH_TAS[0]); Kfusion[1] = SK_TAS[0]*(P[1][4]*SH_TAS[2] - P[1][22]*SH_TAS[2] + P[1][5]*SK_TAS[1] - P[1][23]*SK_TAS[1] + P[1][6]*vd*SH_TAS[0]); Kfusion[2] = SK_TAS[0]*(P[2][4]*SH_TAS[2] - P[2][22]*SH_TAS[2] + P[2][5]*SK_TAS[1] - P[2][23]*SK_TAS[1] + P[2][6]*vd*SH_TAS[0]); Kfusion[3] = SK_TAS[0]*(P[3][4]*SH_TAS[2] - P[3][22]*SH_TAS[2] + P[3][5]*SK_TAS[1] - P[3][23]*SK_TAS[1] + P[3][6]*vd*SH_TAS[0]); Kfusion[4] = SK_TAS[0]*(P[4][4]*SH_TAS[2] - P[4][22]*SH_TAS[2] + P[4][5]*SK_TAS[1] - P[4][23]*SK_TAS[1] + P[4][6]*vd*SH_TAS[0]); Kfusion[5] = SK_TAS[0]*(P[5][4]*SH_TAS[2] - P[5][22]*SH_TAS[2] + P[5][5]*SK_TAS[1] - P[5][23]*SK_TAS[1] + P[5][6]*vd*SH_TAS[0]); Kfusion[6] = SK_TAS[0]*(P[6][4]*SH_TAS[2] - P[6][22]*SH_TAS[2] + P[6][5]*SK_TAS[1] - P[6][23]*SK_TAS[1] + P[6][6]*vd*SH_TAS[0]); Kfusion[7] = SK_TAS[0]*(P[7][4]*SH_TAS[2] - P[7][22]*SH_TAS[2] + P[7][5]*SK_TAS[1] - P[7][23]*SK_TAS[1] + P[7][6]*vd*SH_TAS[0]); Kfusion[8] = SK_TAS[0]*(P[8][4]*SH_TAS[2] - P[8][22]*SH_TAS[2] + P[8][5]*SK_TAS[1] - P[8][23]*SK_TAS[1] + P[8][6]*vd*SH_TAS[0]); Kfusion[9] = SK_TAS[0]*(P[9][4]*SH_TAS[2] - P[9][22]*SH_TAS[2] + P[9][5]*SK_TAS[1] - P[9][23]*SK_TAS[1] + P[9][6]*vd*SH_TAS[0]); Kfusion[10] = SK_TAS[0]*(P[10][4]*SH_TAS[2] - P[10][22]*SH_TAS[2] + P[10][5]*SK_TAS[1] - P[10][23]*SK_TAS[1] + P[10][6]*vd*SH_TAS[0]); Kfusion[11] = SK_TAS[0]*(P[11][4]*SH_TAS[2] - P[11][22]*SH_TAS[2] + P[11][5]*SK_TAS[1] - P[11][23]*SK_TAS[1] + P[11][6]*vd*SH_TAS[0]); Kfusion[12] = SK_TAS[0]*(P[12][4]*SH_TAS[2] - P[12][22]*SH_TAS[2] + P[12][5]*SK_TAS[1] - P[12][23]*SK_TAS[1] + P[12][6]*vd*SH_TAS[0]); Kfusion[13] = SK_TAS[0]*(P[13][4]*SH_TAS[2] - P[13][22]*SH_TAS[2] + P[13][5]*SK_TAS[1] - P[13][23]*SK_TAS[1] + P[13][6]*vd*SH_TAS[0]); Kfusion[14] = SK_TAS[0]*(P[14][4]*SH_TAS[2] - P[14][22]*SH_TAS[2] + P[14][5]*SK_TAS[1] - P[14][23]*SK_TAS[1] + P[14][6]*vd*SH_TAS[0]); Kfusion[15] = SK_TAS[0]*(P[15][4]*SH_TAS[2] - P[15][22]*SH_TAS[2] + P[15][5]*SK_TAS[1] - P[15][23]*SK_TAS[1] + P[15][6]*vd*SH_TAS[0]); Kfusion[16] = SK_TAS[0]*(P[16][4]*SH_TAS[2] - P[16][22]*SH_TAS[2] + P[16][5]*SK_TAS[1] - P[16][23]*SK_TAS[1] + P[16][6]*vd*SH_TAS[0]); Kfusion[17] = SK_TAS[0]*(P[17][4]*SH_TAS[2] - P[17][22]*SH_TAS[2] + P[17][5]*SK_TAS[1] - P[17][23]*SK_TAS[1] + P[17][6]*vd*SH_TAS[0]); Kfusion[18] = SK_TAS[0]*(P[18][4]*SH_TAS[2] - P[18][22]*SH_TAS[2] + P[18][5]*SK_TAS[1] - P[18][23]*SK_TAS[1] + P[18][6]*vd*SH_TAS[0]); Kfusion[19] = SK_TAS[0]*(P[19][4]*SH_TAS[2] - P[19][22]*SH_TAS[2] + P[19][5]*SK_TAS[1] - P[19][23]*SK_TAS[1] + P[19][6]*vd*SH_TAS[0]); Kfusion[20] = SK_TAS[0]*(P[20][4]*SH_TAS[2] - P[20][22]*SH_TAS[2] + P[20][5]*SK_TAS[1] - P[20][23]*SK_TAS[1] + P[20][6]*vd*SH_TAS[0]); Kfusion[21] = SK_TAS[0]*(P[21][4]*SH_TAS[2] - P[21][22]*SH_TAS[2] + P[21][5]*SK_TAS[1] - P[21][23]*SK_TAS[1] + P[21][6]*vd*SH_TAS[0]); Kfusion[22] = SK_TAS[0]*(P[22][4]*SH_TAS[2] - P[22][22]*SH_TAS[2] + P[22][5]*SK_TAS[1] - P[22][23]*SK_TAS[1] + P[22][6]*vd*SH_TAS[0]); Kfusion[23] = SK_TAS[0]*(P[23][4]*SH_TAS[2] - P[23][22]*SH_TAS[2] + P[23][5]*SK_TAS[1] - P[23][23]*SK_TAS[1] + P[23][6]*vd*SH_TAS[0]); // Calculate measurement innovation _airspeed_innov = v_tas_pred - _airspeed_sample_delayed.true_airspeed; // Calculate the innovation variance _airspeed_innov_var = 1.0f / SK_TAS[0]; // Compute the ratio of innovation to gate size _tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var); // If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health if (_tas_test_ratio > 1.0f) { _innov_check_fail_status.flags.reject_airspeed = true; return; } else { _innov_check_fail_status.flags.reject_airspeed = false; } // Airspeed measurement sample has passed check so record it _time_last_arsp_fuse = _time_last_imu; // apply covariance correction via P_new = (I -K*H)*P // first calculate expression for KHP // then calculate P - KHP for (unsigned row = 0; row < _k_num_states; row++) { KH[row][4] = Kfusion[row] * H_TAS[4]; KH[row][5] = Kfusion[row] * H_TAS[5]; KH[row][6] = Kfusion[row] * H_TAS[6]; KH[row][22] = Kfusion[row] * H_TAS[22]; KH[row][23] = Kfusion[row] * H_TAS[23]; } for (unsigned row = 0; row < _k_num_states; row++) { for (unsigned column = 0; column < _k_num_states; column++) { float tmp = KH[row][4] * P[4][column]; tmp += KH[row][5] * P[5][column]; tmp += KH[row][6] * P[6][column]; tmp += KH[row][22] * P[22][column]; tmp += KH[row][23] * P[23][column]; KHP[row][column] = tmp; } } // if the covariance correction will result in a negative variance, then // the covariance marix is unhealthy and must be corrected bool healthy = true; _fault_status.flags.bad_airspeed = false; for (int i = 0; i < _k_num_states; i++) { if (P[i][i] < KHP[i][i]) { // zero rows and columns zeroRows(P,i,i); zeroCols(P,i,i); //flag as unhealthy healthy = false; // update individual measurement health status _fault_status.flags.bad_airspeed = true; } } // only apply covariance and state corrrections if healthy if (healthy) { // apply the covariance corrections for (unsigned row = 0; row < _k_num_states; row++) { for (unsigned column = 0; column < _k_num_states; column++) { P[row][column] = P[row][column] - KHP[row][column]; } } // correct the covariance marix for gross errors fixCovarianceErrors(); // apply the state corrections fuse(Kfusion, _airspeed_innov); } } }