Exemplo n.º 1
0
void PTXInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
                                  raw_ostream &O) {
  const MCOperand &Op = MI->getOperand(OpNo);
  if (Op.isImm()) {
    O << Op.getImm();
  } else if (Op.isFPImm()) {
    double Imm = Op.getFPImm();
    APFloat FPImm(Imm);
    APInt FPIntImm = FPImm.bitcastToAPInt();
    O << "0D";
    // PTX requires us to output the full 64 bits, even if the number is zero
    if (FPIntImm.getZExtValue() > 0) {
      O << FPIntImm.toString(16, false);
    } else {
      O << "0000000000000000";
    }
  } else if (Op.isReg()) {
    printRegName(O, Op.getReg());
  } else {
    assert(Op.isExpr() && "unknown operand kind in printOperand");
    const MCExpr *Expr = Op.getExpr();
    if (const MCSymbolRefExpr *SymRefExpr = dyn_cast<MCSymbolRefExpr>(Expr)) {
      const MCSymbol &Sym = SymRefExpr->getSymbol();
      O << Sym.getName();
    } else {
      O << *Op.getExpr();
    }
  }
}
Exemplo n.º 2
0
std::string get_string(const APInt &api)
{
  std::ostringstream str;
  for (unsigned count = api.countLeadingZeros(); count > 0; count--)
    str << "0";

  if (api != 0)
    str << api.toString(2, false /* treat as  unsigned */);
  return str.str();
}
Exemplo n.º 3
0
static SILInstruction *constantFoldBuiltin(BuiltinInst *BI,
                                           Optional<bool> &ResultsInError) {
  const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
  SILModule &M = BI->getModule();

  // If it's an llvm intrinsic, fold the intrinsic.
  if (Intrinsic.ID != llvm::Intrinsic::not_intrinsic)
    return constantFoldIntrinsic(BI, Intrinsic.ID, ResultsInError);

  // Otherwise, it should be one of the builtin functions.
  OperandValueArrayRef Args = BI->getArguments();
  const BuiltinInfo &Builtin = BI->getBuiltinInfo();

  switch (Builtin.ID) {
  default: break;

// Check and fold binary arithmetic with overflow.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
  case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
    return constantFoldBinaryWithOverflow(BI, Builtin.ID, ResultsInError);

#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION(id, name, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
      return constantFoldBinary(BI, Builtin.ID, ResultsInError);

// Fold comparison predicates.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_PREDICATE(id, name, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
      return constantFoldCompare(BI, Builtin.ID);

  case BuiltinValueKind::Trunc:
  case BuiltinValueKind::ZExt:
  case BuiltinValueKind::SExt:
  case BuiltinValueKind::TruncOrBitCast:
  case BuiltinValueKind::ZExtOrBitCast:
  case BuiltinValueKind::SExtOrBitCast: {

    // We can fold if the value being cast is a constant.
    auto *V = dyn_cast<IntegerLiteralInst>(Args[0]);
    if (!V)
      return nullptr;

    APInt CastResV = constantFoldCast(V->getValue(), Builtin);

    // Add the literal instruction to represent the result of the cast.
    SILBuilderWithScope B(BI);
    return B.createIntegerLiteral(BI->getLoc(), BI->getType(), CastResV);
  }

  // Process special builtins that are designed to check for overflows in
  // integer conversions.
  case BuiltinValueKind::SToSCheckedTrunc:
  case BuiltinValueKind::UToUCheckedTrunc:
  case BuiltinValueKind::SToUCheckedTrunc:
  case BuiltinValueKind::UToSCheckedTrunc:
  case BuiltinValueKind::SUCheckedConversion:
  case BuiltinValueKind::USCheckedConversion: {
    return constantFoldAndCheckIntegerConversions(BI, Builtin, ResultsInError);
  }

  case BuiltinValueKind::IntToFPWithOverflow: {
    // Get the value. It should be a constant in most cases.
    // Note, this will not always be a constant, for example, when analyzing
    // _convertFromBuiltinIntegerLiteral function itself.
    auto *V = dyn_cast<IntegerLiteralInst>(Args[0]);
    if (!V)
      return nullptr;
    APInt SrcVal = V->getValue();
    Type DestTy = Builtin.Types[1];

    APFloat TruncVal(
        DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics());
    APFloat::opStatus ConversionStatus = TruncVal.convertFromAPInt(
        SrcVal, /*isSigned=*/true, APFloat::rmNearestTiesToEven);

    SILLocation Loc = BI->getLoc();
    const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();

    // Check for overflow.
    if (ConversionStatus & APFloat::opOverflow) {
      // If we overflow and are not asked for diagnostics, just return nullptr.
      if (!ResultsInError.hasValue())
        return nullptr;

      SmallString<10> SrcAsString;
      SrcVal.toString(SrcAsString, /*radix*/10, true /*isSigned*/);
      
      // Otherwise emit our diagnostics and then return nullptr.
      diagnose(M.getASTContext(), Loc.getSourceLoc(),
               diag::integer_literal_overflow,
               CE ? CE->getType() : DestTy, SrcAsString);
      ResultsInError = Optional<bool>(true);
      return nullptr;
    }

    // The call to the builtin should be replaced with the constant value.
    SILBuilderWithScope B(BI);
    return B.createFloatLiteral(Loc, BI->getType(), TruncVal);
  }

  case BuiltinValueKind::FPTrunc: {
    // Get the value. It should be a constant in most cases.
    auto *V = dyn_cast<FloatLiteralInst>(Args[0]);
    if (!V)
      return nullptr;
    APFloat TruncVal = V->getValue();
    Type DestTy = Builtin.Types[1];
    bool losesInfo;
    APFloat::opStatus ConversionStatus = TruncVal.convert(
        DestTy->castTo<BuiltinFloatType>()->getAPFloatSemantics(),
        APFloat::rmNearestTiesToEven, &losesInfo);
    SILLocation Loc = BI->getLoc();

    // Check if conversion was successful.
    if (ConversionStatus != APFloat::opStatus::opOK &&
        ConversionStatus != APFloat::opStatus::opInexact) {
      return nullptr;
    }

    // The call to the builtin should be replaced with the constant value.
    SILBuilderWithScope B(BI);
    return B.createFloatLiteral(Loc, BI->getType(), TruncVal);
  }

  case BuiltinValueKind::AssumeNonNegative: {
    auto *V = dyn_cast<IntegerLiteralInst>(Args[0]);
    if (!V)
      return nullptr;

    APInt VInt = V->getValue();
    if (VInt.isNegative() && ResultsInError.hasValue()) {
      diagnose(M.getASTContext(), BI->getLoc().getSourceLoc(),
               diag::wrong_non_negative_assumption,
               VInt.toString(/*Radix*/ 10, /*Signed*/ true));
      ResultsInError = Optional<bool>(true);
    }
    return V;
  }
  }
  return nullptr;
}
Exemplo n.º 4
0
/// \brief Fold arithmetic intrinsics with overflow.
static SILInstruction *
constantFoldBinaryWithOverflow(BuiltinInst *BI, llvm::Intrinsic::ID ID,
                               bool ReportOverflow,
                               Optional<bool> &ResultsInError) {
  OperandValueArrayRef Args = BI->getArguments();
  assert(Args.size() >= 2);

  auto *Op1 = dyn_cast<IntegerLiteralInst>(Args[0]);
  auto *Op2 = dyn_cast<IntegerLiteralInst>(Args[1]);

  // If either Op1 or Op2 is not a literal, we cannot do anything.
  if (!Op1 || !Op2)
    return nullptr;

  // Calculate the result.
  APInt LHSInt = Op1->getValue();
  APInt RHSInt = Op2->getValue();
  bool Overflow;
  APInt Res = constantFoldBinaryWithOverflow(LHSInt, RHSInt, Overflow, ID);

  // If we can statically determine that the operation overflows,
  // warn about it if warnings are not disabled by ResultsInError being null.
  if (ResultsInError.hasValue() && Overflow && ReportOverflow) {
    // Try to infer the type of the constant expression that the user operates
    // on. If the intrinsic was lowered from a call to a function that takes
    // two arguments of the same type, use the type of the LHS argument.
    // This would detect '+'/'+=' and such.
    Type OpType;
    SILLocation Loc = BI->getLoc();
    const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
    SourceRange LHSRange, RHSRange;
    if (CE) {
      const auto *Args = dyn_cast_or_null<TupleExpr>(CE->getArg());
      if (Args && Args->getNumElements() == 2) {
        // Look through inout types in order to handle += well.
        CanType LHSTy = Args->getElement(0)->getType()->getInOutObjectType()->
                         getCanonicalType();
        CanType RHSTy = Args->getElement(1)->getType()->getCanonicalType();
        if (LHSTy == RHSTy)
          OpType = Args->getElement(1)->getType();
        
        LHSRange = Args->getElement(0)->getSourceRange();
        RHSRange = Args->getElement(1)->getSourceRange();
      }
    }

    bool Signed = false;
    StringRef Operator = "+";
    
    switch (ID) {
      default: llvm_unreachable("Invalid case");
      case llvm::Intrinsic::sadd_with_overflow:
        Signed = true;
        break;
      case llvm::Intrinsic::uadd_with_overflow:
        break;
      case llvm::Intrinsic::ssub_with_overflow:
        Operator = "-";
        Signed = true;
        break;
      case llvm::Intrinsic::usub_with_overflow:
        Operator = "-";
        break;
      case llvm::Intrinsic::smul_with_overflow:
        Operator = "*";
        Signed = true;
        break;
      case llvm::Intrinsic::umul_with_overflow:
        Operator = "*";
        break;
    }

    if (!OpType.isNull()) {
      diagnose(BI->getModule().getASTContext(),
               Loc.getSourceLoc(),
               diag::arithmetic_operation_overflow,
               LHSInt.toString(/*Radix*/ 10, Signed),
               Operator,
               RHSInt.toString(/*Radix*/ 10, Signed),
               OpType).highlight(LHSRange).highlight(RHSRange);
    } else {
      // If we cannot get the type info in an expected way, describe the type.
      diagnose(BI->getModule().getASTContext(),
               Loc.getSourceLoc(),
               diag::arithmetic_operation_overflow_generic_type,
               LHSInt.toString(/*Radix*/ 10, Signed),
               Operator,
               RHSInt.toString(/*Radix*/ 10, Signed),
               Signed,
               LHSInt.getBitWidth()).highlight(LHSRange).highlight(RHSRange);
    }
    ResultsInError = Optional<bool>(true);
  }

  return constructResultWithOverflowTuple(BI, Res, Overflow);
}
Exemplo n.º 5
0
static SILInstruction *
constantFoldAndCheckIntegerConversions(BuiltinInst *BI,
                                       const BuiltinInfo &Builtin,
                                       Optional<bool> &ResultsInError) {
  assert(Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
         Builtin.ID == BuiltinValueKind::UToUCheckedTrunc ||
         Builtin.ID == BuiltinValueKind::SToUCheckedTrunc ||
         Builtin.ID == BuiltinValueKind::UToSCheckedTrunc ||
         Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
         Builtin.ID == BuiltinValueKind::USCheckedConversion);

  // Check if we are converting a constant integer.
  OperandValueArrayRef Args = BI->getArguments();
  auto *V = dyn_cast<IntegerLiteralInst>(Args[0]);
  if (!V)
    return nullptr;
  APInt SrcVal = V->getValue();

  // Get source type and bit width.
  Type SrcTy = Builtin.Types[0];
  uint32_t SrcBitWidth =
    Builtin.Types[0]->castTo<BuiltinIntegerType>()->getGreatestWidth();

  // Compute the destination (for SrcBitWidth < DestBitWidth) and enough info
  // to check for overflow.
  APInt Result;
  bool OverflowError;
  Type DstTy;

  // Process conversions signed <-> unsigned for same size integers.
  if (Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
      Builtin.ID == BuiltinValueKind::USCheckedConversion) {
    DstTy = SrcTy;
    Result = SrcVal;
    // Report an error if the sign bit is set.
    OverflowError = SrcVal.isNegative();

  // Process truncation from unsigned to signed.
  } else if (Builtin.ID != BuiltinValueKind::UToSCheckedTrunc) {
    assert(Builtin.Types.size() == 2);
    DstTy = Builtin.Types[1];
    uint32_t DstBitWidth =
      DstTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
    //     Result = trunc_IntFrom_IntTo(Val)
    //   For signed destination:
    //     sext_IntFrom(Result) == Val ? Result : overflow_error
    //   For signed destination:
    //     zext_IntFrom(Result) == Val ? Result : overflow_error
    Result = SrcVal.trunc(DstBitWidth);
    // Get the signedness of the destination.
    bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc);
    APInt Ext = Signed ? Result.sext(SrcBitWidth) : Result.zext(SrcBitWidth);
    OverflowError = (SrcVal != Ext);

  // Process the rest of truncations.
  } else {
    assert(Builtin.Types.size() == 2);
    DstTy = Builtin.Types[1];
    uint32_t DstBitWidth =
      Builtin.Types[1]->castTo<BuiltinIntegerType>()->getGreatestWidth();
    // Compute the destination (for SrcBitWidth < DestBitWidth):
    //   Result = trunc_IntTo(Val)
    //   Trunc  = trunc_'IntTo-1bit'(Val)
    //   zext_IntFrom(Trunc) == Val ? Result : overflow_error
    Result = SrcVal.trunc(DstBitWidth);
    APInt TruncVal = SrcVal.trunc(DstBitWidth - 1);
    OverflowError = (SrcVal != TruncVal.zext(SrcBitWidth));
  }

  // Check for overflow.
  if (OverflowError) {
    // If we are not asked to emit overflow diagnostics, just return nullptr on
    // overflow.
    if (!ResultsInError.hasValue())
      return nullptr;

    SILLocation Loc = BI->getLoc();
    SILModule &M = BI->getModule();
    const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
    Type UserSrcTy;
    Type UserDstTy;
    // Primitive heuristics to get the user-written type.
    // Eventually we might be able to use SILLocation (when it contains info
    // about inlined call chains).
    if (CE) {
      if (const TupleType *RTy = CE->getArg()->getType()->getAs<TupleType>()) {
        if (RTy->getNumElements() == 1) {
          UserSrcTy = RTy->getElementType(0);
          UserDstTy = CE->getType();
        }
      } else {
        UserSrcTy = CE->getArg()->getType();
        UserDstTy = CE->getType();
      }
    }
    
 
    // Assume that we are converting from a literal if the Source size is
    // 2048. Is there a better way to identify conversions from literals?
    bool Literal = (SrcBitWidth == 2048);

    // FIXME: This will prevent hard error in cases the error is coming
    // from ObjC interoperability code. Currently, we treat NSUInteger as
    // Int.
    if (Loc.getSourceLoc().isInvalid()) {
      // Otherwise emit the appropriate diagnostic and set ResultsInError.
      if (Literal)
        diagnose(M.getASTContext(), Loc.getSourceLoc(),
                 diag::integer_literal_overflow_warn,
                 UserDstTy.isNull() ? DstTy : UserDstTy);
      else
        diagnose(M.getASTContext(), Loc.getSourceLoc(),
                 diag::integer_conversion_overflow_warn,
                 UserSrcTy.isNull() ? SrcTy : UserSrcTy,
                 UserDstTy.isNull() ? DstTy : UserDstTy);

      ResultsInError = Optional<bool>(true);
      return nullptr;
    }

    // Otherwise report the overflow error.
    if (Literal) {
      bool SrcTySigned, DstTySigned;
      std::tie(SrcTySigned, DstTySigned) = getTypeSignedness(Builtin);
      SmallString<10> SrcAsString;
      SrcVal.toString(SrcAsString, /*radix*/10, SrcTySigned);

      // Try to print user-visible types if they are available.
      if (!UserDstTy.isNull()) {
        auto diagID = diag::integer_literal_overflow;
        
        // If this is a negative literal in an unsigned type, use a specific
        // diagnostic.
        if (SrcTySigned && !DstTySigned && SrcVal.isNegative())
          diagID = diag::negative_integer_literal_overflow_unsigned;
        
        diagnose(M.getASTContext(), Loc.getSourceLoc(),
                 diagID, UserDstTy, SrcAsString);
      // Otherwise, print the Builtin Types.
      } else {
        bool SrcTySigned, DstTySigned;
        std::tie(SrcTySigned, DstTySigned) = getTypeSignedness(Builtin);
        diagnose(M.getASTContext(), Loc.getSourceLoc(),
                 diag::integer_literal_overflow_builtin_types,
                 DstTySigned, DstTy, SrcAsString);
      }
    } else {
      if (Builtin.ID == BuiltinValueKind::SUCheckedConversion) {
        diagnose(M.getASTContext(), Loc.getSourceLoc(),
                 diag::integer_conversion_sign_error,
                 UserDstTy.isNull() ? DstTy : UserDstTy);
      } else {
        // Try to print user-visible types if they are available.
        if (!UserSrcTy.isNull()) {
          diagnose(M.getASTContext(), Loc.getSourceLoc(),
                   diag::integer_conversion_overflow,
                   UserSrcTy, UserDstTy);

        // Otherwise, print the Builtin Types.
        } else {
          // Since builtin types are sign-agnostic, print the signedness
          // separately.
          bool SrcTySigned, DstTySigned;
          std::tie(SrcTySigned, DstTySigned) = getTypeSignedness(Builtin);
          diagnose(M.getASTContext(), Loc.getSourceLoc(),
                   diag::integer_conversion_overflow_builtin_types,
                   SrcTySigned, SrcTy, DstTySigned, DstTy);
        }
      }
    }

    ResultsInError = Optional<bool>(true);
    return nullptr;
  }

  // The call to the builtin should be replaced with the constant value.
  return constructResultWithOverflowTuple(BI, Result, false);

}
Exemplo n.º 6
0
static SILInstruction *
constantFoldAndCheckDivision(BuiltinInst *BI, BuiltinValueKind ID,
                             Optional<bool> &ResultsInError) {
  assert(ID == BuiltinValueKind::SDiv ||
         ID == BuiltinValueKind::SRem ||
         ID == BuiltinValueKind::UDiv ||
         ID == BuiltinValueKind::URem);

  OperandValueArrayRef Args = BI->getArguments();
  SILModule &M = BI->getModule();

  // Get the denominator.
  auto *Denom = dyn_cast<IntegerLiteralInst>(Args[1]);
  if (!Denom)
    return nullptr;
  APInt DenomVal = Denom->getValue();

  // If the denominator is zero...
  if (DenomVal == 0) {
    // And if we are not asked to report errors, just return nullptr.
    if (!ResultsInError.hasValue())
      return nullptr;

    // Otherwise emit a diagnosis error and set ResultsInError to true.
    diagnose(M.getASTContext(), BI->getLoc().getSourceLoc(),
             diag::division_by_zero);
    ResultsInError = Optional<bool>(true);
    return nullptr;
  }

  // Get the numerator.
  auto *Num = dyn_cast<IntegerLiteralInst>(Args[0]);
  if (!Num)
    return nullptr;
  APInt NumVal = Num->getValue();

  bool Overflowed;
  APInt ResVal = constantFoldDiv(NumVal, DenomVal, Overflowed, ID);
  
  // If we overflowed...
  if (Overflowed) {
    // And we are not asked to produce diagnostics, just return nullptr...
    if (!ResultsInError.hasValue())
      return nullptr;

    bool IsRem = ID == BuiltinValueKind::SRem || ID == BuiltinValueKind::URem;

    // Otherwise emit the diagnostic, set ResultsInError to be true, and return
    // nullptr.
    diagnose(M.getASTContext(),
             BI->getLoc().getSourceLoc(),
             diag::division_overflow,
             NumVal.toString(/*Radix*/ 10, /*Signed*/true),
             IsRem ? "%" : "/",
             DenomVal.toString(/*Radix*/ 10, /*Signed*/true));
    ResultsInError = Optional<bool>(true);
    return nullptr;
  }

  // Add the literal instruction to represent the result of the division.
  SILBuilderWithScope B(BI);
  return B.createIntegerLiteral(BI->getLoc(), BI->getType(), ResVal);
}