Exemplo n.º 1
0
Arquivo: files.C Projeto: HeyJJ/ball
void optimize()
{
	if (use_selection)
	{
		Log.info() << "SELECT: " << selection << endl;
		Selector selector(selection);
		S.apply(selector);
		// count selected vs. unselected atoms
		Size selected = 0;
		AtomConstIterator ai = S.beginAtom();
		for (; +ai; ++ai)
		{
			selected += (ai->isSelected() ? 1 : 0);
		}
		Log.info() << "selected " << selected << " out of " << S.countAtoms() << " atoms." << endl;
	}
	
	// minimize
	Log.info() << "starting minimization";
	EnergyMinimizer* minimizer;
	if (sd_minimizer)
	{
		minimizer = new SteepestDescentMinimizer(amber);
	}
	else
	{
		minimizer = new ConjugateGradientMinimizer(amber);
	}
	
	if (verbose)
	{
		minimizer->setEnergyOutputFrequency(1);
	} 
	else 
	{
		minimizer->setEnergyOutputFrequency(20);
	}
	minimizer->setEnergyDifferenceBound(1e-9);
	minimizer->setMaxSameEnergy(20);
	minimizer->setMaxGradient(max_gradient);

	minimizer->minimize(max_iterations);

	Log.info() << "minimization complete" << endl;
	Log.info() << "final gradient: " << amber.getRMSGradient() << " kJ/mol A" << endl;
	
	S.deselect();
	amber.updateEnergy();
	Log.info() << "final energy: " << amber.getEnergy() << " kJ/mol" << endl;

	// dump the minimizer and force field options
	// for documentation purposes
	amber.options.dump(Log);
	minimizer->options.dump(Log);

	Log.info() << "done." << endl;
}
Exemplo n.º 2
0
Arquivo: files.C Projeto: HeyJJ/ball
void singlePoint()
{
	double energy = amber.updateEnergy();
	amber.updateForces();
	Gradient grad;
	grad.set(amber.getAtoms());
	grad.normalize();
	Log.info() << "single point energy: " << energy << " kJ/mol" << endl;
	Log.info() << "  - stretch      :" << amber.getStretchEnergy() << " kJ/mol" << endl;
	Log.info() << "  - bend         :" << amber.getBendEnergy() << " kJ/mol" << endl;
	Log.info() << "  - torsion      :" << amber.getTorsionEnergy() << " kJ/mol" << endl;
	Log.info() << "  - VdW          :" << amber.getVdWEnergy() << " kJ/mol" << endl;
	Log.info() << "  - electrostatic:" << amber.getESEnergy() << " kJ/mol" << endl;
	Log.info() << "grad: " << grad.rms << endl;
}
Exemplo n.º 3
0
Arquivo: files.C Projeto: HeyJJ/ball
void checkStructures()
{
	// fragment DB
	if (frag_db == 0)
	{
		frag_db = new FragmentDB;
	}

	Log.info() << "system contains " << S.countAtoms() << " atoms." << endl;

	// building bonds
	S.apply(frag_db->build_bonds);

	// checking residues
	Log.info() << "checking system" << endl;
	ResidueChecker check(*frag_db);
	S.apply(check);

	// Check residue energies
	double energy_limit = 500.0;
	S.deselect();
	amber.setup(S);
	ResidueIterator it = S.beginResidue();
	for (; +it; ++it)
	{
		it->select();
		amber.updateEnergy();
		double residue_energy = amber.getStretchEnergy() + amber.getBendEnergy()
													+ amber.getVdWEnergy();
		
		if (residue_energy > energy_limit)
		{
			Log.info() << "suspicious energies in residue " << it->getFullName() << ":" << it->getID() << " " << residue_energy 
								 << " kJ/mol (bend: " << amber.getBendEnergy() << " kJ/mol, stretch: " << amber.getStretchEnergy() 
								 << " kJ/mol, vdW: " << amber.getVdWEnergy() << " kJ/mol)" << endl;
		}
		it->deselect();
		double quality = std::max(0.0, std::min(1.0, (energy_limit - residue_energy) / energy_limit));
		for (PDBAtomIterator ai = it->beginPDBAtom(); +ai; ++ai)
		{
			ai->setOccupancy(quality);
		}
	}
}
Exemplo n.º 4
0
Arquivo: files.C Projeto: HeyJJ/ball
void setup()
{
	// fragment DB
	if (frag_db == 0)
	{
		frag_db = new FragmentDB;
	}

	// create force field
	Log.info() << "setting up force field" << endl;

	if (verbose)
	{
		Log.info() << "force field parameters are read from " << FF_filename << endl;
	}
	S.deselect();
	amber.options[AmberFF::Option::FILENAME] = FF_filename;
	if (!amber.setup(S))
	{
		Log.error() << "Setup failed! Abort." << endl;	
		exit(10);
	}
}
Exemplo n.º 5
0
int main(int argc, char** argv)
{
	Log.setPrefix(cout, "[%T] ");
	Log.setPrefix(cerr, "[%T] ERROR: ");

	// issue a usage hint if called without parameters
	if (argc != 3)
	{
		Log << argv[0] << " <PDB infile> <PDB outfile>" << endl;
		return 1;
	}


	// open a PDB file with the name of the first argument
	PDBFile file(argv[1]);
	if (!file)
	{
		// if file does not exist: complain and abort
		Log.error() << "error opening " << argv[1] << " for input." << endl;
		return 2;
	}
	
	// create a system and read the contents of the PDB file
	System S;
	file >> S;
	file.close();

	// print the number of atoms read from the file
	Log << "read " << S.countAtoms() << " atoms." << endl;


	// now we open a fragment database
	Log << "reading fragment DB..." << endl;
	FragmentDB fragment_db("");

	// and normalize the atom names, i.e. we convert different
	// naming standards to the PDB naming scheme - just in case!
	Log << "normalizing names..." << endl;
	S.apply(fragment_db.normalize_names);

	// now we add any missing hydrogens to the residues
	// the data on the hydrogen positions stems from the
	// fragment database. However the hydrogen positions 
	// created in this way are only good estimates
	Log << "creating missing atoms..." << endl;
	S.apply(fragment_db.add_hydrogens);	
	Log << "added " << fragment_db.add_hydrogens.getNumberOfInsertedAtoms() 
			<< " atoms" << endl;

	// now we create the bonds between the atoms (PDB files hardly
  // ever contain a complete set of CONECT records)																							
	Log << "building bonds..." << endl;
	S.apply(fragment_db.build_bonds);

	// now we check whether the model we built is consistent
	// The ResidueChecker checks for charges, bond lengths,
	// and missing atoms
	Log << "checking the built model..." << endl;
	ResidueChecker checker(fragment_db);
	S.apply(checker);
	
	// now we create an AMBER force field 
	Log << "setting up force field..." << endl;
	AmberFF FF;

	// we then select all hydrogens (element(H))
	// using a specialized processor (Selector)
	S.deselect();
	FF.setup(S);
	Selector selector("element(H)");
	S.apply(selector);
	
	// just for curiosity: check how many atoms we are going
	// to optimize
	Log << "optimizing " << FF.getNumberOfMovableAtoms() << " out of " << S.countAtoms() << " atoms" << endl;
	
	// now we create a minimizer object that uses a conjugate 
	// gradient algorithm to optimize the atom positions
	ConjugateGradientMinimizer minimizer;

	// calculate the total energy of the system
	float initial_energy = FF.updateEnergy();
	Log << "initial energy: " << initial_energy << " kJ/mol" << endl;

	// initialize the minimizer and perform (up to)
	// 1000 optimization steps
	minimizer.setup(FF);
	minimizer.setEnergyOutputFrequency(1);
	minimizer.minimize(50);

	// calculate the terminal energy and print it
	float terminal_energy = FF.getEnergy();

	Log << "energy before/after minimization: " << initial_energy << "/" << terminal_energy << " kJ/mol" << endl;

	// write the optimized structure to a file whose
	// name is given as the second command line argument
	Log << "writing PBD file " << argv[2] << endl;
	file.open(argv[2], ios::out);
	file << S;
	file.close();

	// done.
	return 0;
}
Exemplo n.º 6
0
int main(int argc, char** argv)
{
	if (argc != 3)
	{
		Log.error() << argv[0] << " <pdb file A> <pdb file B>" << endl;
		return 1;
	}

	// open the first PDB file
	PDBFile pdb(argv[1]);
	if (pdb.bad())
	{
		// if the file could not be opened, print error message and exit
		Log.error() << "cannot open PBD file " << argv[1] << endl;
		return 2;
	}

	// read the contents of the file A into a system
	System A;
	pdb >> A;
	pdb.close();

	// open the second PDB file
	pdb.open(argv[2]);
	if (pdb.bad())
	{
		// if the file could not be opened, print error message and exit
		Log.error() << "cannot open PBD file " << argv[2] << endl;
		return 2;
	}

	// read the contents of the file B into a system
	System B;
	pdb >> B;
	pdb.close();

	// normalize the names and build all bonds
	Log.info() << "normalizing names and building bonds..." << endl;
	FragmentDB db("");
	A.apply(db.normalize_names);
	A.apply(db.build_bonds);
	B.apply(db.normalize_names);
	B.apply(db.build_bonds);
	

	// calculate the atomic contact energies of A and B
	float ACE_A = calculateACE(A);
	float ACE_B = calculateACE(B);
	
	// calculate the electrostatic energies of A and B
	AmberFF amber;
	amber.options[AmberFF::Option::ASSIGN_CHARGES] = "true";
	amber.options[AmberFF::Option::OVERWRITE_CHARGES] = "true";
	amber.setup(A);
	amber.updateEnergy();
	float ES_A = amber.getESEnergy();
	float C_A = calculateCoulomb(A);
	amber.setup(B);
	amber.updateEnergy();
	float ES_B = amber.getESEnergy();
	float C_B = calculateCoulomb(B);

	// finally, join the to systems into a single system
	cout << "atoms in A:  " << A.countAtoms() << endl;
	cout << "atoms in B:  " << B.countAtoms() << endl;
	A.splice(B);
	cout << "final atoms: " << A.countAtoms() << endl;
	float ACE_AB = calculateACE(A);
	amber.setup(A);
	amber.updateEnergy();
	float ES_AB = amber.getESEnergy();
	float C_AB = calculateCoulomb(A);
	
	// print the resulting energies
	cout << "ES energy of A: " << ES_A << endl;
	cout << "ES energy of B: " << ES_B << endl;
	cout << "ES energy of AB:" << ES_AB << endl;
	cout << "C energy of A: " << C_A << endl;
	cout << "C energy of B: " << C_B << endl;
	cout << "C energy of AB:" << C_AB << endl;
	cout << "change in atomic contact energy on binding:   " 
       << (ACE_AB - ACE_A - ACE_B) << " kJ/mol" << endl;
	cout << "change in electrostatic energy on binding:    " 
       << (ES_AB - ES_A - ES_B) << " kJ/mol" << endl;
	cout << "total binding free energy:                     "
			 << (ACE_AB - ACE_A - ACE_B) + (ES_AB - ES_A - ES_B) << " kJ/mol" << endl;

	// done
	return 0;
}