Exemplo n.º 1
0
Arg *ArgList::getLastArg(OptSpecifier Id0, OptSpecifier Id1,
                         OptSpecifier Id2) const {
    Arg *Res = 0;
    Arg *A0 = getLastArgNoClaim(Id0);
    Arg *A1 = getLastArgNoClaim(Id1);
    Arg *A2 = getLastArgNoClaim(Id2);

    int A0Idx = A0 ? (int) A0->getIndex() : -1;
    int A1Idx = A1 ? (int) A1->getIndex() : -1;
    int A2Idx = A2 ? (int) A2->getIndex() : -1;

    if (A0Idx > A1Idx) {
        if (A0Idx > A2Idx)
            Res = A0;
        else if (A2Idx != -1)
            Res = A2;
    } else {
        if (A1Idx > A2Idx)
            Res = A1;
        else if (A2Idx != -1)
            Res = A2;
    }

    if (Res)
        Res->claim();

    return Res;
}
Exemplo n.º 2
0
Arg *ArgList::getLastArg(OptSpecifier Id) const {
  Arg *Res = nullptr;
  for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
    if ((*it)->getOption().matches(Id)) {
      Res = *it;
      Res->claim();
    }
  }

  return Res;
}
Exemplo n.º 3
0
Arg *ArgList::getLastArg(OptSpecifier Id0, OptSpecifier Id1,
                         OptSpecifier Id2, OptSpecifier Id3) const {
  Arg *Res = 0;
  for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
    if ((*it)->getOption().matches(Id0) ||
        (*it)->getOption().matches(Id1) ||
        (*it)->getOption().matches(Id2) ||
        (*it)->getOption().matches(Id3)) {
      Res = *it;
      Res->claim();
    }
  }

  return Res;
}
Exemplo n.º 4
0
void Driver::BuildActions(const ArgList &Args, ActionList &Actions) const {
  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
  // Start by constructing the list of inputs and their types.

  // Track the current user specified (-x) input. We also explicitly
  // track the argument used to set the type; we only want to claim
  // the type when we actually use it, so we warn about unused -x
  // arguments.
  types::ID InputType = types::TY_Nothing;
  Arg *InputTypeArg = 0;

  llvm::SmallVector<std::pair<types::ID, const Arg*>, 16> Inputs;
  for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); 
       it != ie; ++it) {
    Arg *A = *it;

    if (isa<InputOption>(A->getOption())) {
      const char *Value = A->getValue(Args);
      types::ID Ty = types::TY_INVALID;

      // Infer the input type if necessary.
      if (InputType == types::TY_Nothing) {
        // If there was an explicit arg for this, claim it.
        if (InputTypeArg)
          InputTypeArg->claim();

        // stdin must be handled specially.
        if (memcmp(Value, "-", 2) == 0) {
          // If running with -E, treat as a C input (this changes the
          // builtin macros, for example). This may be overridden by
          // -ObjC below.
          //
          // Otherwise emit an error but still use a valid type to
          // avoid spurious errors (e.g., no inputs).
          if (!Args.hasArg(options::OPT_E, false))
            Diag(clang::diag::err_drv_unknown_stdin_type);
          Ty = types::TY_C;
        } else {
          // Otherwise lookup by extension, and fallback to ObjectType
          // if not found. We use a host hook here because Darwin at
          // least has its own idea of what .s is.
          if (const char *Ext = strrchr(Value, '.'))
            Ty = Host->lookupTypeForExtension(Ext + 1);

          if (Ty == types::TY_INVALID)
            Ty = types::TY_Object;
        }

        // -ObjC and -ObjC++ override the default language, but only for "source
        // files". We just treat everything that isn't a linker input as a
        // source file.
        // 
        // FIXME: Clean this up if we move the phase sequence into the type.
        if (Ty != types::TY_Object) {
          if (Args.hasArg(options::OPT_ObjC))
            Ty = types::TY_ObjC;
          else if (Args.hasArg(options::OPT_ObjCXX))
            Ty = types::TY_ObjCXX;
        }
      } else {
        assert(InputTypeArg && "InputType set w/o InputTypeArg");
        InputTypeArg->claim();
        Ty = InputType;
      }

      // Check that the file exists. It isn't clear this is worth
      // doing, since the tool presumably does this anyway, and this
      // just adds an extra stat to the equation, but this is gcc
      // compatible.
      if (memcmp(Value, "-", 2) != 0 && !llvm::sys::Path(Value).exists())
        Diag(clang::diag::err_drv_no_such_file) << A->getValue(Args);
      else
        Inputs.push_back(std::make_pair(Ty, A));

    } else if (A->getOption().isLinkerInput()) {
      // Just treat as object type, we could make a special type for
      // this if necessary.
      Inputs.push_back(std::make_pair(types::TY_Object, A));

    } else if (A->getOption().getId() == options::OPT_x) {
      InputTypeArg = A;      
      InputType = types::lookupTypeForTypeSpecifier(A->getValue(Args));

      // Follow gcc behavior and treat as linker input for invalid -x
      // options. Its not clear why we shouldn't just revert to
      // unknown; but this isn't very important, we might as well be
      // bug comatible.
      if (!InputType) {
        Diag(clang::diag::err_drv_unknown_language) << A->getValue(Args);
        InputType = types::TY_Object;
      }
    }
  }

  if (!SuppressMissingInputWarning && Inputs.empty()) {
    Diag(clang::diag::err_drv_no_input_files);
    return;
  }

  // Determine which compilation mode we are in. We look for options
  // which affect the phase, starting with the earliest phases, and
  // record which option we used to determine the final phase.
  Arg *FinalPhaseArg = 0;
  phases::ID FinalPhase;

  // -{E,M,MM} only run the preprocessor.
  if ((FinalPhaseArg = Args.getLastArg(options::OPT_E)) ||
      (FinalPhaseArg = Args.getLastArg(options::OPT_M)) ||
      (FinalPhaseArg = Args.getLastArg(options::OPT_MM))) {
    FinalPhase = phases::Preprocess;
    
    // -{fsyntax-only,-analyze,emit-llvm,S} only run up to the compiler.
  } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_fsyntax_only)) ||
             (FinalPhaseArg = Args.getLastArg(options::OPT__analyze,
                                              options::OPT__analyze_auto)) ||
             (FinalPhaseArg = Args.getLastArg(options::OPT_S))) {
    FinalPhase = phases::Compile;

    // -c only runs up to the assembler.
  } else if ((FinalPhaseArg = Args.getLastArg(options::OPT_c))) {
    FinalPhase = phases::Assemble;
    
    // Otherwise do everything.
  } else
    FinalPhase = phases::Link;

  // Reject -Z* at the top level, these options should never have been
  // exposed by gcc.
  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
    Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);

  // Construct the actions to perform.
  ActionList LinkerInputs;
  for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
    types::ID InputType = Inputs[i].first;
    const Arg *InputArg = Inputs[i].second;

    unsigned NumSteps = types::getNumCompilationPhases(InputType);
    assert(NumSteps && "Invalid number of steps!");

    // If the first step comes after the final phase we are doing as
    // part of this compilation, warn the user about it.
    phases::ID InitialPhase = types::getCompilationPhase(InputType, 0);
    if (InitialPhase > FinalPhase) {
      // Claim here to avoid the more general unused warning.
      InputArg->claim();
      Diag(clang::diag::warn_drv_input_file_unused) 
        << InputArg->getAsString(Args)
        << getPhaseName(InitialPhase)
        << FinalPhaseArg->getOption().getName();
      continue;
    }
    
    // Build the pipeline for this file.
    Action *Current = new InputAction(*InputArg, InputType);
    for (unsigned i = 0; i != NumSteps; ++i) {
      phases::ID Phase = types::getCompilationPhase(InputType, i);

      // We are done if this step is past what the user requested.
      if (Phase > FinalPhase)
        break;

      // Queue linker inputs.
      if (Phase == phases::Link) {
        assert(i + 1 == NumSteps && "linking must be final compilation step.");
        LinkerInputs.push_back(Current);
        Current = 0;
        break;
      }

      // Some types skip the assembler phase (e.g., llvm-bc), but we
      // can't encode this in the steps because the intermediate type
      // depends on arguments. Just special case here.
      if (Phase == phases::Assemble && Current->getType() != types::TY_PP_Asm)
        continue;

      // Otherwise construct the appropriate action.
      Current = ConstructPhaseAction(Args, Phase, Current);
      if (Current->getType() == types::TY_Nothing)
        break;
    }

    // If we ended with something, add to the output list.
    if (Current)
      Actions.push_back(Current);
  }

  // Add a link action if necessary.
  if (!LinkerInputs.empty())
    Actions.push_back(new LinkJobAction(LinkerInputs, types::TY_Image));
}
Exemplo n.º 5
0
void Driver::BuildUniversalActions(const ArgList &Args, 
                                   ActionList &Actions) const {
  llvm::PrettyStackTraceString CrashInfo("Building actions for universal build");
  // Collect the list of architectures. Duplicates are allowed, but
  // should only be handled once (in the order seen).
  llvm::StringSet<> ArchNames;
  llvm::SmallVector<const char *, 4> Archs;
  for (ArgList::const_iterator it = Args.begin(), ie = Args.end(); 
       it != ie; ++it) {
    Arg *A = *it;

    if (A->getOption().getId() == options::OPT_arch) {
      const char *Name = A->getValue(Args);

      // FIXME: We need to handle canonicalization of the specified
      // arch?

      A->claim();
      if (ArchNames.insert(Name))
        Archs.push_back(Name);
    }
  }

  // When there is no explicit arch for this platform, make sure we
  // still bind the architecture (to the default) so that -Xarch_ is
  // handled correctly.
  if (!Archs.size())
    Archs.push_back(0);

  // FIXME: We killed off some others but these aren't yet detected in
  // a functional manner. If we added information to jobs about which
  // "auxiliary" files they wrote then we could detect the conflict
  // these cause downstream.
  if (Archs.size() > 1) {
    // No recovery needed, the point of this is just to prevent
    // overwriting the same files.
    if (const Arg *A = Args.getLastArg(options::OPT_save_temps))
      Diag(clang::diag::err_drv_invalid_opt_with_multiple_archs) 
        << A->getAsString(Args);
  }

  ActionList SingleActions;
  BuildActions(Args, SingleActions);

  // Add in arch binding and lipo (if necessary) for every top level
  // action.
  for (unsigned i = 0, e = SingleActions.size(); i != e; ++i) {
    Action *Act = SingleActions[i];

    // Make sure we can lipo this kind of output. If not (and it is an
    // actual output) then we disallow, since we can't create an
    // output file with the right name without overwriting it. We
    // could remove this oddity by just changing the output names to
    // include the arch, which would also fix
    // -save-temps. Compatibility wins for now.

    if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
      Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
        << types::getTypeName(Act->getType());

    ActionList Inputs;
    for (unsigned i = 0, e = Archs.size(); i != e; ++i)
      Inputs.push_back(new BindArchAction(Act, Archs[i]));

    // Lipo if necessary, We do it this way because we need to set the
    // arch flag so that -Xarch_ gets overwritten.
    if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
      Actions.append(Inputs.begin(), Inputs.end());
    else
      Actions.push_back(new LipoJobAction(Inputs, Act->getType()));
  }
}
Exemplo n.º 6
0
Arg *ArgList::getLastArg(OptSpecifier Id) const {
    Arg *A = getLastArgNoClaim(Id);
    if (A)
        A->claim();
    return A;
}