BOOST_AUTO_TEST_CASE_TEMPLATE(aca_of_synthetic_maxwell_single_layer_operator_agrees_with_dense_assembly_in_asymmetric_case,
                              ValueType, complex_result_types)
{
    typedef ValueType RT;
    typedef typename ScalarTraits<ValueType>::RealType RealType;
    typedef RealType BFT;

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
        params, "../../meshes/sphere-h-0.4.msh", false /* verbose */);

    RT waveNumber = initWaveNumber<RT>();

    shared_ptr<Space<BFT> > vectorPwiseLinears(
        new RaviartThomas0VectorSpace<BFT>(grid));
    shared_ptr<Space<BFT> > vectorPwiseLinears2(
        new RaviartThomas0VectorSpace<BFT>(grid));

    AccuracyOptions accuracyOptions;
    accuracyOptions.doubleRegular.setRelativeQuadratureOrder(2);
    accuracyOptions.singleRegular.setRelativeQuadratureOrder(2);
    shared_ptr<NumericalQuadratureStrategy<BFT, RT> > quadStrategy(
                new NumericalQuadratureStrategy<BFT, RT>(accuracyOptions));

    AssemblyOptions assemblyOptionsDense;
    assemblyOptionsDense.setVerbosityLevel(VerbosityLevel::LOW);
    shared_ptr<Context<BFT, RT> > contextDense(
        new Context<BFT, RT>(quadStrategy, assemblyOptionsDense));

    BoundaryOperator<BFT, RT> opDense =
            maxwell3dSingleLayerBoundaryOperator<BFT>(
                contextDense,
                vectorPwiseLinears, vectorPwiseLinears, vectorPwiseLinears,
                waveNumber);
    arma::Mat<RT> weakFormDense = opDense.weakForm()->asMatrix();

    AssemblyOptions assemblyOptionsAca;
    assemblyOptionsAca.setVerbosityLevel(VerbosityLevel::LOW);
    AcaOptions acaOptions;
    acaOptions.mode = AcaOptions::LOCAL_ASSEMBLY;
    assemblyOptionsAca.switchToAcaMode(acaOptions);
    shared_ptr<Context<BFT, RT> > contextAca(
        new Context<BFT, RT>(quadStrategy, assemblyOptionsAca));

    // Internal domain different from dualToRange
    BoundaryOperator<BFT, RT> opAca =
            maxwell3dSingleLayerBoundaryOperator<BFT>(
                contextAca,
                vectorPwiseLinears, vectorPwiseLinears, vectorPwiseLinears2,
                waveNumber);
    arma::Mat<RT> weakFormAca = opAca.weakForm()->asMatrix();

    BOOST_CHECK(check_arrays_are_close<ValueType>(
                    weakFormDense, weakFormAca, 2. * acaOptions.eps));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(aca_of_synthetic_modified_helmholtz_hypersingular_operator_agrees_with_dense_assembly_in_symmetric_case,
                              ValueType, result_types)
{
    typedef ValueType RT;
    typedef typename ScalarTraits<ValueType>::RealType RealType;
    typedef RealType BFT;

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
        params, "../../meshes/sphere-h-0.4.msh", false /* verbose */);

    RT waveNumber = initWaveNumber<RT>();

    shared_ptr<Space<BFT> > pwiseConstants(
        new PiecewiseConstantScalarSpace<BFT>(grid));
    shared_ptr<Space<BFT> > pwiseLinears(
        new PiecewiseLinearContinuousScalarSpace<BFT>(grid));

    AccuracyOptions accuracyOptions;
    accuracyOptions.doubleRegular.setRelativeQuadratureOrder(2);
    accuracyOptions.singleRegular.setRelativeQuadratureOrder(2);
    shared_ptr<NumericalQuadratureStrategy<BFT, RT> > quadStrategy(
                new NumericalQuadratureStrategy<BFT, RT>(accuracyOptions));

    AssemblyOptions assemblyOptionsDense;
    assemblyOptionsDense.setVerbosityLevel(VerbosityLevel::LOW);
    shared_ptr<Context<BFT, RT> > contextDense(
        new Context<BFT, RT>(quadStrategy, assemblyOptionsDense));

    BoundaryOperator<BFT, RT> opDense =
            modifiedHelmholtz3dHypersingularBoundaryOperator<BFT, RT, RT>(
                contextDense, pwiseLinears, pwiseConstants, pwiseLinears,
                waveNumber);
    arma::Mat<RT> weakFormDense = opDense.weakForm()->asMatrix();

    AssemblyOptions assemblyOptionsAca;
    assemblyOptionsAca.setVerbosityLevel(VerbosityLevel::LOW);
    AcaOptions acaOptions;
    acaOptions.mode = AcaOptions::LOCAL_ASSEMBLY;
    assemblyOptionsAca.switchToAcaMode(acaOptions);
    shared_ptr<Context<BFT, RT> > contextAca(
        new Context<BFT, RT>(quadStrategy, assemblyOptionsAca));

    BoundaryOperator<BFT, RT> opAca =
            modifiedHelmholtz3dHypersingularBoundaryOperator<BFT, RT, RT>(
                contextAca, pwiseLinears, pwiseConstants, pwiseLinears,
                waveNumber);
    arma::Mat<RT> weakFormAca = opAca.weakForm()->asMatrix();

    BOOST_CHECK(check_arrays_are_close<ValueType>(
                    weakFormDense, weakFormAca, 2. * acaOptions.eps));
}
BOOST_AUTO_TEST_CASE_TEMPLATE(symmetric_matches_nonsymmetric_in_aca_mode,
                              ValueType, result_types)
{
    typedef ValueType RT;
    typedef typename Fiber::ScalarTraits<ValueType>::RealType RealType;
    typedef RealType BFT;

    if (boost::is_same<RT, std::complex<float> >::value) {
        // The AHMED support for single-precision complex symmetric matrices
        // is broken
        BOOST_CHECK(true);
        return;
    }

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
                                params, "../../examples/meshes/sphere-h-0.4.msh",
                                false /* verbose */);

    PiecewiseLinearContinuousScalarSpace<BFT> pwiseLinears(grid);
    PiecewiseConstantScalarSpace<BFT> pwiseConstants(grid);

    AssemblyOptions assemblyOptions;
    assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
    AcaOptions acaOptions;
    acaOptions.minimumBlockSize = 4;
    assemblyOptions.switchToAcaMode(acaOptions);
    AccuracyOptions accuracyOptions;
    accuracyOptions.doubleRegular.setRelativeQuadratureOrder(4);
    accuracyOptions.doubleSingular.setRelativeQuadratureOrder(2);
    NumericalQuadratureStrategy<BFT, RT> quadStrategy(accuracyOptions);

    Context<BFT, RT> context(make_shared_from_ref(quadStrategy), assemblyOptions);

    const RT waveNumber = initWaveNumber<RT>();

    BoundaryOperator<BFT, RT> opNonsymmetric =
        modifiedHelmholtz3dSingleLayerBoundaryOperator<BFT, RT, RT>(
            make_shared_from_ref(context),
            make_shared_from_ref(pwiseLinears),
            make_shared_from_ref(pwiseConstants),
            make_shared_from_ref(pwiseLinears),
            waveNumber,
            "", NO_SYMMETRY);
    BoundaryOperator<BFT, RT> opSymmetric =
        modifiedHelmholtz3dSingleLayerBoundaryOperator<BFT, RT, RT>(
            make_shared_from_ref(context),
            make_shared_from_ref(pwiseLinears),
            make_shared_from_ref(pwiseConstants),
            make_shared_from_ref(pwiseLinears),
            waveNumber,
            "", SYMMETRIC);

    arma::Mat<RT> matNonsymmetric = opNonsymmetric.weakForm()->asMatrix();
    arma::Mat<RT> matSymmetric = opSymmetric.weakForm()->asMatrix();

    BOOST_CHECK(check_arrays_are_close<RT>(
                    matNonsymmetric, matSymmetric, 2 * acaOptions.eps));
}
Exemplo n.º 4
0
BOOST_AUTO_TEST_CASE_TEMPLATE(L2Norm_works_for_constant_function_and_piecewise_constants, ResultType, result_types)
{
    typedef ResultType RT;
    typedef typename ScalarTraits<RT>::RealType BFT;
    typedef typename ScalarTraits<RT>::RealType CT;

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
        params, "../../meshes/sphere-h-0.1.msh", false /* verbose */);

    shared_ptr<Space<BFT> > space(
        new PiecewiseConstantScalarSpace<BFT>(grid));

    AccuracyOptions accuracyOptions;
    shared_ptr<NumericalQuadratureStrategy<BFT, RT> > quadStrategy(
                new NumericalQuadratureStrategy<BFT, RT>(accuracyOptions));
    AssemblyOptions assemblyOptions;
    assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
    shared_ptr<Context<BFT, RT> > context(
        new Context<BFT, RT>(quadStrategy, assemblyOptions));

    Bempp::GridFunction<BFT, RT> fun(context, space, space,
                surfaceNormalIndependentFunction(
                    ConstantFunction<RT>()));

    CT norm = fun.L2Norm();
    CT expectedNorm = sqrt(2. * 2. * 4. * M_PI);
    BOOST_CHECK_CLOSE(norm, expectedNorm, 1 /* percent */);
}
BOOST_AUTO_TEST_CASE_TEMPLATE(cubic_function_can_be_expanded_in_cubic_space, ResultType, result_types)
{
    typedef ResultType RT;
    typedef typename ScalarTraits<RT>::RealType BFT;
    typedef typename ScalarTraits<RT>::RealType CT;

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
        params, "../../examples/meshes/sphere-h-0.2.msh", false /* verbose */);

    shared_ptr<Space<BFT> > space(
        new PiecewisePolynomialDiscontinuousScalarSpace<BFT>(grid, 3));

    AccuracyOptions accuracyOptions;
    accuracyOptions.singleRegular.setRelativeQuadratureOrder(2);
    shared_ptr<NumericalQuadratureStrategy<BFT, RT> > quadStrategy(
        new NumericalQuadratureStrategy<BFT, RT>(accuracyOptions));
    AssemblyOptions assemblyOptions;
    assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
    shared_ptr<Context<BFT, RT> > context(
        new Context<BFT, RT>(quadStrategy, assemblyOptions));

    GridFunction<BFT, RT> function(
        context, space, space,
        surfaceNormalIndependentFunction(CubicFunction<RT>()));
    CT absoluteError, relativeError;
    estimateL2Error(
        function, surfaceNormalIndependentFunction(CubicFunction<RT>()),
        *quadStrategy, absoluteError, relativeError);
    BOOST_CHECK_SMALL(relativeError, 1000 * std::numeric_limits<CT>::epsilon() /* percent */);
}
    DefaultLocalAssemblerForIntegralOperatorsOnSurfacesManager(
            bool cacheSingularIntegrals)
    {
        // Create a Bempp grid
        shared_ptr<Grid> grid = createGrid();

        // These important thing is that the domain and dualToRange spaces are
        // different
        piecewiseConstantSpace = std::auto_ptr<PiecewiseConstantSpace>(
                    new PiecewiseConstantSpace(grid));
        piecewiseLinearSpace = std::auto_ptr<PiecewiseLinearSpace>(
                    new PiecewiseLinearSpace(grid));

        op = std::auto_ptr<Operator>(new Operator(
                                         make_shared_from_ref(*piecewiseConstantSpace),
                                         make_shared_from_ref(*piecewiseLinearSpace),
                                         make_shared_from_ref(*piecewiseLinearSpace),
                                         "SLP"));

        // Construct local assembler

        Fiber::AccuracyOptions options;
        options.doubleRegular.setRelativeQuadratureOrder(1);
        quadStrategy = std::auto_ptr<QuadratureStrategy>(new QuadratureStrategy);

        AssemblyOptions assemblyOptions;
        assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
        assemblyOptions.enableSingularIntegralCaching(cacheSingularIntegrals);
        assembler = op->makeAssembler(*quadStrategy, assemblyOptions);
    }
BOOST_AUTO_TEST_CASE_TEMPLATE(interpolated_matches_noniterpolated,
                              BasisFunctionType, basis_function_types)
{
    typedef BasisFunctionType BFT;
    typedef typename Fiber::ScalarTraits<BFT>::ComplexType RT;
    typedef typename Fiber::ScalarTraits<BFT>::ComplexType KT;
    typedef typename Fiber::ScalarTraits<BFT>::RealType CT;

    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
                params, "meshes/two_disjoint_triangles.msh",
                false /* verbose */);

    PiecewiseLinearContinuousScalarSpace<BFT> pwiseLinears(grid);
    PiecewiseConstantScalarSpace<BFT> pwiseConstants(grid);

    AssemblyOptions assemblyOptions;
    assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
    AccuracyOptions accuracyOptions;
    accuracyOptions.doubleRegular.setAbsoluteQuadratureOrder(5);
    accuracyOptions.doubleSingular.setAbsoluteQuadratureOrder(5);
    NumericalQuadratureStrategy<BFT, RT> quadStrategy(accuracyOptions);

    Context<BFT, RT> context(make_shared_from_ref(quadStrategy), assemblyOptions);

    const KT waveNumber(3.23, 0.31);

    BoundaryOperator<BFT, RT> opNoninterpolated =
            modifiedHelmholtz3dSingleLayerBoundaryOperator<BFT, KT, RT>(
                make_shared_from_ref(context),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                waveNumber,
                "", NO_SYMMETRY,
                false);
    BoundaryOperator<BFT, RT> opInterpolated =
            modifiedHelmholtz3dSingleLayerBoundaryOperator<BFT, KT, RT>(
                make_shared_from_ref(context),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                waveNumber,
                "", NO_SYMMETRY,
                true);

    arma::Mat<RT> matNoninterpolated = opNoninterpolated.weakForm()->asMatrix();
    arma::Mat<RT> matInterpolated = opInterpolated.weakForm()->asMatrix();

    const CT eps = std::numeric_limits<CT>::epsilon();
    BOOST_CHECK(check_arrays_are_close<RT>(
                    matNoninterpolated, matInterpolated, 100 * eps));
}
    DefaultLocalAssemblerForIntegralOperatorsOnSurfacesManager(
            bool cacheSingularIntegrals)
    {
        // Create a Bempp grid
        shared_ptr<Grid> grid = createGrid();

        // Create context
        Fiber::AccuracyOptions options;
        options.doubleRegular.setRelativeQuadratureOrder(1);
        quadStrategy.reset(new QuadratureStrategy);

        AssemblyOptions assemblyOptions;
        assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
        assemblyOptions.enableSingularIntegralCaching(cacheSingularIntegrals);
        Context<BFT, RT> context(quadStrategy, assemblyOptions);

        // These important thing is that the domain and dualToRange spaces are
        // different
        piecewiseConstantSpace.reset(new PiecewiseConstantSpace(grid));
        piecewiseLinearSpace.reset(new PiecewiseLinearSpace(grid));

        bop = laplace3dSingleLayerBoundaryOperator<BFT, RT>(
                    make_shared_from_ref(context),
                    piecewiseConstantSpace,
                    piecewiseLinearSpace,
                    piecewiseLinearSpace,
                    "SLP");
        const Operator& op = static_cast<const Operator&>(*bop.abstractOperator());

        // This would be more elegant than the above, but it doesn't
        // work on Mac because of a problem with RTTI across
        // shared-library boundaries.

        // op = boost::dynamic_pointer_cast<const Operator>(bop.abstractOperator());

        // Construct local assembler

        assembler = op.makeAssembler(*quadStrategy, assemblyOptions);
    }
BOOST_AUTO_TEST_CASE_TEMPLATE(works, BasisFunctionType, basis_function_types)
{
    typedef BasisFunctionType BFT;
    typedef typename Fiber::ScalarTraits<BFT>::ComplexType RT;
    typedef typename Fiber::ScalarTraits<BFT>::RealType CT;
    GridParameters params;
    params.topology = GridParameters::TRIANGULAR;
    shared_ptr<Grid> grid = GridFactory::importGmshGrid(
                params, "meshes/two_disjoint_triangles.msh",
                false /* verbose */);

    PiecewiseLinearContinuousScalarSpace<BFT> pwiseLinears(grid);
    PiecewiseConstantScalarSpace<BFT> pwiseConstants(grid);

    AssemblyOptions assemblyOptions;
    assemblyOptions.setVerbosityLevel(VerbosityLevel::LOW);
    AccuracyOptions accuracyOptions;
    accuracyOptions.doubleRegular.setAbsoluteQuadratureOrder(5);
    accuracyOptions.doubleSingular.setAbsoluteQuadratureOrder(5);
    NumericalQuadratureStrategy<BFT, RT> quadStrategy(accuracyOptions);

    Context<BFT, RT> context(make_shared_from_ref(quadStrategy), assemblyOptions);

    const RT waveNumber(1.23, 0.31);

    BoundaryOperator<BFT, RT> slpOpConstants = Bempp::helmholtz3dSingleLayerBoundaryOperator<BFT>(
                make_shared_from_ref(context),
                make_shared_from_ref(pwiseConstants),
                make_shared_from_ref(pwiseConstants),
                make_shared_from_ref(pwiseConstants),
                waveNumber);
    BoundaryOperator<BFT, RT> slpOpLinears = helmholtz3dSingleLayerBoundaryOperator<BFT>(
                make_shared_from_ref(context),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                waveNumber);
    BoundaryOperator<BFT, RT> hypOp = helmholtz3dHypersingularBoundaryOperator<BFT>(
                make_shared_from_ref(context),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                make_shared_from_ref(pwiseLinears),
                waveNumber);

    // Get the matrix repr. of the hypersingular operator
    arma::Mat<RT> hypMat = hypOp.weakForm()->asMatrix();

    // Construct the expected hypersingular operator matrix. For this, we need:

    // * the surface curls of all basis functions (which are constant)
    typedef Fiber::SurfaceCurl3dElementaryFunctor<CT> ElementaryFunctor;
    typedef Fiber::ElementaryBasisTransformationFunctorWrapper<ElementaryFunctor> Functor;
    Functor functor;
    size_t basisDeps = 0, geomDeps = 0;
    functor.addDependencies(basisDeps, geomDeps);

    arma::Mat<CT> points(2, 1);
    points.fill(0.);

    typedef Fiber::PiecewiseLinearContinuousScalarBasis<3, BFT> Basis;
    Basis basis;
    Fiber::BasisData<BFT> basisData;
    basis.evaluate(basisDeps, points, Fiber::ALL_DOFS, basisData);

    Fiber::GeometricalData<CT> geomData[2];
    std::unique_ptr<GridView> view = grid->leafView();
    std::unique_ptr<EntityIterator<0> > it = view->entityIterator<0>();
    it->entity().geometry().getData(geomDeps, points, geomData[0]);
    it->next();
    it->entity().geometry().getData(geomDeps, points, geomData[1]);

    Fiber::DefaultCollectionOfBasisTransformations<Functor> transformations(functor);

    Fiber::CollectionOf3dArrays<BFT> surfaceCurl[2];
    transformations.evaluate(basisData, geomData[0], surfaceCurl[0]);
    transformations.evaluate(basisData, geomData[1], surfaceCurl[1]);

    // * the single-layer potential matrix for constant basis functions
    arma::Mat<RT> slpMatConstants = slpOpConstants.weakForm()->asMatrix();
    // * the single-layer potential matrix for linear basis functions
    arma::Mat<RT> slpMatLinears = slpOpLinears.weakForm()->asMatrix();

    arma::Mat<RT> expectedHypMat(6, 6);
    for (size_t testElement = 0; testElement < 2; ++testElement)
        for (size_t trialElement = 0; trialElement < 2; ++trialElement)
            for (size_t r = 0; r < 3; ++r)
                for (size_t c = 0; c < 3; ++c) {
                    RT curlMultiplier = 0.;
                    for (size_t dim = 0; dim < 3; ++dim)
                        curlMultiplier += surfaceCurl[testElement][0](dim, r, 0) *
                                surfaceCurl[trialElement][0](dim, c, 0);
                    RT valueMultiplier = 0.;
                    for (size_t dim = 0; dim < 3; ++dim)
                        valueMultiplier += geomData[testElement].normals(dim, 0) *
                            geomData[trialElement].normals(dim, 0);
                    expectedHypMat(3 * testElement + r, 3 * trialElement + c) =
                            curlMultiplier * slpMatConstants(testElement, trialElement) -
                            waveNumber * waveNumber * valueMultiplier *
                            slpMatLinears(3 * testElement + r, 3 * trialElement + c);
                }

    BOOST_CHECK(check_arrays_are_close<RT>(expectedHypMat, hypMat, 1e-6));
}