Exemplo n.º 1
0
 Shape *MakeMultiple(BlockSet &Blocks, BlockSet& Entries, BlockBlockSetMap& IndependentGroups, Shape *Prev, BlockSet &NextEntries) {
   PrintDebug("creating multiple block with %d inner groups\n", IndependentGroups.size());
   bool Fused = !!(Shape::IsSimple(Prev));
   MultipleShape *Multiple = new MultipleShape();
   Notice(Multiple);
   BlockSet CurrEntries;
   for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
     Block *CurrEntry = iter->first;
     BlockSet &CurrBlocks = iter->second;
     PrintDebug("  multiple group with entry %d:\n", CurrEntry->Id);
     DebugDump(CurrBlocks, "    ");
     // Create inner block
     CurrEntries.clear();
     CurrEntries.insert(CurrEntry);
     for (BlockSet::iterator iter = CurrBlocks.begin(); iter != CurrBlocks.end(); iter++) {
       Block *CurrInner = *iter;
       // Remove the block from the remaining blocks
       Blocks.erase(CurrInner);
       // Find new next entries and fix branches to them
       for (BlockBranchMap::iterator iter = CurrInner->BranchesOut.begin(); iter != CurrInner->BranchesOut.end();) {
         Block *CurrTarget = iter->first;
         BlockBranchMap::iterator Next = iter;
         Next++;
         if (CurrBlocks.find(CurrTarget) == CurrBlocks.end()) {
           NextEntries.insert(CurrTarget);
           Solipsize(CurrTarget, Branch::Break, Multiple, CurrBlocks); 
         }
         iter = Next; // increment carefully because Solipsize can remove us
       }
     }
     Multiple->InnerMap[CurrEntry] = Process(CurrBlocks, CurrEntries, NULL);
     // If we are not fused, then our entries will actually be checked
     if (!Fused) {
       CurrEntry->IsCheckedMultipleEntry = true;
     }
   }
   DebugDump(Blocks, "  remaining blocks after multiple:");
   // Add entries not handled as next entries, they are deferred
   for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
     Block *Entry = *iter;
     if (IndependentGroups.find(Entry) == IndependentGroups.end()) {
       NextEntries.insert(Entry);
     }
   }
   return Multiple;
 }
Exemplo n.º 2
0
    // Main function.
    // Process a set of blocks with specified entries, returns a shape
    // The Make* functions receive a NextEntries. If they fill it with data, those are the entries for the
    //   ->Next block on them, and the blocks are what remains in Blocks (which Make* modify). In this way
    //   we avoid recursing on Next (imagine a long chain of Simples, if we recursed we could blow the stack).
    Shape *Process(BlockSet &Blocks, BlockSet& InitialEntries, Shape *Prev) {
      PrintDebug("Process() called\n");
      BlockSet *Entries = &InitialEntries;
      BlockSet TempEntries[2];
      int CurrTempIndex = 0;
      BlockSet *NextEntries;
      Shape *Ret = NULL;
      #define Make(call) \
        Shape *Temp = call; \
        if (Prev) Prev->Next = Temp; \
        if (!Ret) Ret = Temp; \
        if (!NextEntries->size()) { PrintDebug("Process() returning\n"); return Ret; } \
        Prev = Temp; \
        Entries = NextEntries; \
        continue;
      while (1) {
        PrintDebug("Process() running\n");
        DebugDump(Blocks, "  blocks : ");
        DebugDump(*Entries, "  entries: ");

        CurrTempIndex = 1-CurrTempIndex;
        NextEntries = &TempEntries[CurrTempIndex];
        NextEntries->clear();

        if (Entries->size() == 0) return Ret;
        if (Entries->size() == 1) {
          Block *Curr = *(Entries->begin());
          if (Curr->BranchesIn.size() == 0) {
            // One entry, no looping ==> Simple
            Make(MakeSimple(Blocks, Curr, *NextEntries));
          }
          // One entry, looping ==> Loop
          Make(MakeLoop(Blocks, *Entries, *NextEntries));
        }
        // More than one entry, try to eliminate through a Multiple groups of
        // independent blocks from an entry/ies. It is important to remove through
        // multiples as opposed to looping since the former is more performant.
        BlockBlockSetMap IndependentGroups;
        FindIndependentGroups(Blocks, *Entries, IndependentGroups);

        PrintDebug("Independent groups: %d\n", IndependentGroups.size());

        if (IndependentGroups.size() > 0) {
          // We can handle a group in a multiple if its entry cannot be reached by another group.
          // Note that it might be reachable by itself - a loop. But that is fine, we will create
          // a loop inside the multiple block (which is the performant order to do it).
          for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end();) {
            Block *Entry = iter->first;
            BlockSet &Group = iter->second;
            BlockBlockSetMap::iterator curr = iter++; // iterate carefully, we may delete
            for (BlockBranchMap::iterator iterBranch = Entry->BranchesIn.begin(); iterBranch != Entry->BranchesIn.end(); iterBranch++) {
              Block *Origin = iterBranch->first;
              if (Group.find(Origin) == Group.end()) {
                // Reached from outside the group, so we cannot handle this
                PrintDebug("Cannot handle group with entry %d because of incoming branch from %d\n", Entry->Id, Origin->Id);
                IndependentGroups.erase(curr);
                break;
              }
            }
          }

          // As an optimization, if we have 2 independent groups, and one is a small dead end, we can handle only that dead end.
          // The other then becomes a Next - without nesting in the code and recursion in the analysis.
          // TODO: if the larger is the only dead end, handle that too
          // TODO: handle >2 groups
          // TODO: handle not just dead ends, but also that do not branch to the NextEntries. However, must be careful
          //       there since we create a Next, and that Next can prevent eliminating a break (since we no longer
          //       naturally reach the same place), which may necessitate a one-time loop, which makes the unnesting
          //       pointless.
          if (IndependentGroups.size() == 2) {
            // Find the smaller one
            BlockBlockSetMap::iterator iter = IndependentGroups.begin();
            Block *SmallEntry = iter->first;
            int SmallSize = iter->second.size();
            iter++;
            Block *LargeEntry = iter->first;
            int LargeSize = iter->second.size();
            if (SmallSize != LargeSize) { // ignore the case where they are identical - keep things symmetrical there
              if (SmallSize > LargeSize) {
                Block *Temp = SmallEntry;
                SmallEntry = LargeEntry;
                LargeEntry = Temp; // Note: we did not flip the Sizes too, they are now invalid. TODO: use the smaller size as a limit?
              }
              // Check if dead end
              bool DeadEnd = true;
              BlockSet &SmallGroup = IndependentGroups[SmallEntry];
              for (BlockSet::iterator iter = SmallGroup.begin(); iter != SmallGroup.end(); iter++) {
                Block *Curr = *iter;
                for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
                  Block *Target = iter->first;
                  if (SmallGroup.find(Target) == SmallGroup.end()) {
                    DeadEnd = false;
                    break;
                  }
                }
                if (!DeadEnd) break;
              }
              if (DeadEnd) {
                PrintDebug("Removing nesting by not handling large group because small group is dead end\n");
                IndependentGroups.erase(LargeEntry);
              }
            }
          }

          PrintDebug("Handleable independent groups: %d\n", IndependentGroups.size());

          if (IndependentGroups.size() > 0) {
            // Some groups removable ==> Multiple
            Make(MakeMultiple(Blocks, *Entries, IndependentGroups, Prev, *NextEntries));
          }
        }
        // No independent groups, must be loopable ==> Loop
        Make(MakeLoop(Blocks, *Entries, *NextEntries));
      }
    }
Exemplo n.º 3
0
    // For each entry, find the independent group reachable by it. The independent group is
    // the entry itself, plus all the blocks it can reach that cannot be directly reached by another entry. Note that we
    // ignore directly reaching the entry itself by another entry.
    void FindIndependentGroups(BlockSet &Blocks, BlockSet &Entries, BlockBlockSetMap& IndependentGroups) {
      typedef std::map<Block*, Block*> BlockBlockMap;

      struct HelperClass {
        BlockBlockSetMap& IndependentGroups;
        BlockBlockMap Ownership; // For each block, which entry it belongs to. We have reached it from there.

        HelperClass(BlockBlockSetMap& IndependentGroupsInit) : IndependentGroups(IndependentGroupsInit) {}
        void InvalidateWithChildren(Block *New) { // TODO: rename New
          BlockList ToInvalidate; // Being in the list means you need to be invalidated
          ToInvalidate.push_back(New);
          while (ToInvalidate.size() > 0) {
            Block *Invalidatee = ToInvalidate.front();
            ToInvalidate.pop_front();
            Block *Owner = Ownership[Invalidatee];
            if (IndependentGroups.find(Owner) != IndependentGroups.end()) { // Owner may have been invalidated, do not add to IndependentGroups!
              IndependentGroups[Owner].erase(Invalidatee);
            }
            if (Ownership[Invalidatee]) { // may have been seen before and invalidated already
              Ownership[Invalidatee] = NULL;
              for (BlockBranchMap::iterator iter = Invalidatee->BranchesOut.begin(); iter != Invalidatee->BranchesOut.end(); iter++) {
                Block *Target = iter->first;
                BlockBlockMap::iterator Known = Ownership.find(Target);
                if (Known != Ownership.end()) {
                  Block *TargetOwner = Known->second;
                  if (TargetOwner) {
                    ToInvalidate.push_back(Target);
                  }
                }
              }
            }
          }
        }
      };
      HelperClass Helper(IndependentGroups);

      // We flow out from each of the entries, simultaneously.
      // When we reach a new block, we add it as belonging to the one we got to it from.
      // If we reach a new block that is already marked as belonging to someone, it is reachable by
      // two entries and is not valid for any of them. Remove it and all it can reach that have been
      // visited.

      BlockList Queue; // Being in the queue means we just added this item, and we need to add its children
      for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
        Block *Entry = *iter;
        Helper.Ownership[Entry] = Entry;
        IndependentGroups[Entry].insert(Entry);
        Queue.push_back(Entry);
      }
      while (Queue.size() > 0) {
        Block *Curr = Queue.front();
        Queue.pop_front();
        Block *Owner = Helper.Ownership[Curr]; // Curr must be in the ownership map if we are in the queue
        if (!Owner) continue; // we have been invalidated meanwhile after being reached from two entries
        // Add all children
        for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
          Block *New = iter->first;
          BlockBlockMap::iterator Known = Helper.Ownership.find(New);
          if (Known == Helper.Ownership.end()) {
            // New node. Add it, and put it in the queue
            Helper.Ownership[New] = Owner;
            IndependentGroups[Owner].insert(New);
            Queue.push_back(New);
            continue;
          }
          Block *NewOwner = Known->second;
          if (!NewOwner) continue; // We reached an invalidated node
          if (NewOwner != Owner) {
            // Invalidate this and all reachable that we have seen - we reached this from two locations
            Helper.InvalidateWithChildren(New);
          }
          // otherwise, we have the same owner, so do nothing
        }
      }

      // Having processed all the interesting blocks, we remain with just one potential issue:
      // If a->b, and a was invalidated, but then b was later reached by someone else, we must
      // invalidate b. To check for this, we go over all elements in the independent groups,
      // if an element has a parent which does *not* have the same owner, we must remove it
      // and all its children.

      for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
        BlockSet &CurrGroup = IndependentGroups[*iter];
        BlockList ToInvalidate;
        for (BlockSet::iterator iter = CurrGroup.begin(); iter != CurrGroup.end(); iter++) {
          Block *Child = *iter;
          for (BlockBranchMap::iterator iter = Child->BranchesIn.begin(); iter != Child->BranchesIn.end(); iter++) {
            Block *Parent = iter->first;
            if (Helper.Ownership[Parent] != Helper.Ownership[Child]) {
              ToInvalidate.push_back(Child);
            }
          }
        }
        while (ToInvalidate.size() > 0) {
          Block *Invalidatee = ToInvalidate.front();
          ToInvalidate.pop_front();
          Helper.InvalidateWithChildren(Invalidatee);
        }
      }

      // Remove empty groups
      for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
        if (IndependentGroups[*iter].size() == 0) {
          IndependentGroups.erase(*iter);
        }
      }

#if DEBUG
      PrintDebug("Investigated independent groups:\n");
      for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
        DebugDump(iter->second, " group: ");
      }
#endif
    }
Exemplo n.º 4
0
    Shape *MakeLoop(BlockSet &Blocks, BlockSet& Entries, BlockSet &NextEntries) {
      // Find the inner blocks in this loop. Proceed backwards from the entries until
      // you reach a seen block, collecting as you go.
      BlockSet InnerBlocks;
      BlockSet Queue = Entries;
      while (Queue.size() > 0) {
        Block *Curr = *(Queue.begin());
        Queue.erase(Queue.begin());
        if (!contains(InnerBlocks, Curr)) {
          // This element is new, mark it as inner and remove from outer
          InnerBlocks.insert(Curr);
          Blocks.erase(Curr);
          // Add the elements prior to it
          for (BlockSet::iterator iter = Curr->BranchesIn.begin(); iter != Curr->BranchesIn.end(); iter++) {
            Queue.insert(*iter);
          }
#if 0
          // Add elements it leads to, if they are dead ends. There is no reason not to hoist dead ends
          // into loops, as it can avoid multiple entries after the loop
          for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
            Block *Target = iter->first;
            if (Target->BranchesIn.size() <= 1 && Target->BranchesOut.size() == 0) {
              Queue.insert(Target);
            }
          }
#endif
        }
      }
      assert(InnerBlocks.size() > 0);

      for (BlockSet::iterator iter = InnerBlocks.begin(); iter != InnerBlocks.end(); iter++) {
        Block *Curr = *iter;
        for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
          Block *Possible = iter->first;
          if (!contains(InnerBlocks, Possible)) {
            NextEntries.insert(Possible);
          }
        }
      }

#if 0
      // We can avoid multiple next entries by hoisting them into the loop.
      if (NextEntries.size() > 1) {
        BlockBlockSetMap IndependentGroups;
        FindIndependentGroups(NextEntries, IndependentGroups, &InnerBlocks);

        while (IndependentGroups.size() > 0 && NextEntries.size() > 1) {
          Block *Min = NULL;
          int MinSize = 0;
          for (BlockBlockSetMap::iterator iter = IndependentGroups.begin(); iter != IndependentGroups.end(); iter++) {
            Block *Entry = iter->first;
            BlockSet &Blocks = iter->second;
            if (!Min || Blocks.size() < MinSize) { // TODO: code size, not # of blocks
              Min = Entry;
              MinSize = Blocks.size();
            }
          }
          // check how many new entries this would cause
          BlockSet &Hoisted = IndependentGroups[Min];
          bool abort = false;
          for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end() && !abort; iter++) {
            Block *Curr = *iter;
            for (BlockBranchMap::iterator iter = Curr->BranchesOut.begin(); iter != Curr->BranchesOut.end(); iter++) {
              Block *Target = iter->first;
              if (Hoisted.find(Target) == Hoisted.end() && NextEntries.find(Target) == NextEntries.end()) {
                // abort this hoisting
                abort = true;
                break;
              }
            }
          }
          if (abort) {
            IndependentGroups.erase(Min);
            continue;
          }
          // hoist this entry
          PrintDebug("hoisting %d into loop\n", Min->Id);
          NextEntries.erase(Min);
          for (BlockSet::iterator iter = Hoisted.begin(); iter != Hoisted.end(); iter++) {
            Block *Curr = *iter;
            InnerBlocks.insert(Curr);
            Blocks.erase(Curr);
          }
          IndependentGroups.erase(Min);
        }
      }
#endif

      PrintDebug("creating loop block:\n");
      DebugDump(InnerBlocks, "  inner blocks:");
      DebugDump(Entries, "  inner entries:");
      DebugDump(Blocks, "  outer blocks:");
      DebugDump(NextEntries, "  outer entries:");

      LoopShape *Loop = new LoopShape();
      Notice(Loop);

      // Solipsize the loop, replacing with break/continue and marking branches as Processed (will not affect later calculations)
      // A. Branches to the loop entries become a continue to this shape
      for (BlockSet::iterator iter = Entries.begin(); iter != Entries.end(); iter++) {
        Solipsize(*iter, Branch::Continue, Loop, InnerBlocks);
      }
      // B. Branches to outside the loop (a next entry) become breaks on this shape
      for (BlockSet::iterator iter = NextEntries.begin(); iter != NextEntries.end(); iter++) {
        Solipsize(*iter, Branch::Break, Loop, InnerBlocks);
      }
      // Finish up
      Shape *Inner = Process(InnerBlocks, Entries, NULL);
      Loop->Inner = Inner;
      return Loop;
    }