Exemplo n.º 1
0
void WherePostcondition::PrintHook(OutStream &out) const
{
  BlockId *id = m_frame->CFG()->GetId();
  Variable *func_var = id->BaseVar();

  PEdge *edge = m_frame->CFG()->GetSingleOutgoingEdge(m_point);

  if (edge->IsLoop()) {
    PEdgeLoop *nedge = edge->AsLoop();
    out << nedge->GetLoopId()->Loop()->Value() << " "
        << func_var->GetName()->Value();
  }
  else {
    PEdgeCall *nedge = edge->AsCall();

    if (Variable *callee = nedge->GetDirectFunction()) {
      // direct call, just one hook function.
      out << "post " << callee->GetName()->Value();
    }
    else {
      // indirect call, one hook function for each callee.
      CallEdgeSet *callees = CalleeCache.Lookup(func_var);
      bool found_callee = false;

      if (callees) {
        for (size_t eind = 0; eind < callees->GetEdgeCount(); eind++) {
          const CallEdge &edge = callees->GetEdge(eind);
          if (edge.where.id == id && edge.where.point == m_point) {
            if (found_callee)
              out << "$";  // add the separator
            found_callee = true;

            out << "post " << edge.callee->GetName()->Value();
          }
        }
      }

      CalleeCache.Release(func_var);
    }
  }
}
Exemplo n.º 2
0
bool CheckFrame(CheckerState *state, CheckerFrame *frame,
                CheckerPropagate *propagate)
{
  Assert(!state->GetReportKind());

  BlockMemory *mcfg = frame->Memory();
  BlockCFG *cfg = mcfg->GetCFG();
  BlockId *id = cfg->GetId();

  if (checker_verbose.IsSpecified()) {
    logout << "CHECK: " << frame << ": Entering " << id << endl;
    if (propagate)
      propagate->Print();
  }

  Where *where = propagate ? propagate->m_where : NULL;

  // check if we should terminate the search at this point (with or without
  // generating a report).
  if (where && where->IsNone()) {
    WhereNone *nwhere = where->AsNone();
    ReportKind kind = nwhere->GetReportKind();

    if (kind == RK_None) {
      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame << ": Ignoring" << endl;
      return false;
    }
    else {
      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame << ": Propagation failed" << endl;
      state->SetReport(kind);
      return true;
    }
  }

  // check for other propagations on the stack with frames for the same block,
  // and block the recursion if we exceed the checker's depth. we assume that
  // if we're ever going to terminate in the presence of recursion, we will
  // do so quickly.

  if (propagate) {
    if (uint32_t depth = checker_depth.UIntValue()) {
      Vector<CheckerFrame*> recurse_frames;

      for (size_t ind = 0; ind < state->m_stack.Size(); ind++) {
        CheckerFrame *other_frame = state->m_stack[ind]->m_frame;
        if (other_frame != frame && other_frame->Memory() == mcfg &&
            !recurse_frames.Contains(other_frame))
          recurse_frames.PushBack(other_frame);
      }

      if (recurse_frames.Size() >= depth) {
        state->SetReport(RK_Recursion);
        return true;
      }
    }
  }

  // check if we are propagating into some callee.
  if (where && where->IsPostcondition()) {
    WherePostcondition *nwhere = where->AsPostcondition();

    // expand the callee at the specified point.
    PPoint point = nwhere->GetPoint();
    PEdge *edge = cfg->GetSingleOutgoingEdge(point);

    if (edge->IsLoop()) {
      // expanding data from a loop. first try the case that the loop
      // does not execute at all.

      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame
               << ": Trying to skip loop at " << point << endl;

      state->PushContext();

      if (CheckSkipLoop(state, frame, point, nwhere))
        return true;

      state->PopContext();
    }

    if (BlockId *callee = edge->GetDirectCallee()) {
      // easy case, there is only a single callee.

      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame
               << ": Expanding single callee at " << point
               << ": " << callee << endl;

      state->PushContext();

      if (CheckSingleCallee(state, frame, point, nwhere, callee, true))
        return true;

      state->PopContext();
    }
    else {
      // iterate through all the possible callees

      Variable *function = id->BaseVar();
      CallEdgeSet *callees = CalleeCache.Lookup(function);

      Vector<Variable*> callee_vars;

      if (callees) {
        for (size_t eind = 0; eind < callees->GetEdgeCount(); eind++) {
          const CallEdge &edge = callees->GetEdge(eind);
          if (edge.where.id == id && edge.where.point == point)
            callee_vars.PushBack(edge.callee);
        }
      }

      SortVector<Variable*,Variable>(&callee_vars);

      for (size_t cind = 0; cind < callee_vars.Size(); cind++) {
        Variable *callee = callee_vars[cind];

        if (checker_verbose.IsSpecified())
          logout << "CHECK: " << frame
                 << ": Expanding indirect callee at " << point
                 << ": " << callee << endl;

        callee->IncRef();
        BlockId *callee_id = BlockId::Make(B_Function, callee);

        state->PushContext();

        if (CheckSingleCallee(state, frame, point,
                              nwhere, callee_id, false)) {
          CalleeCache.Release(function);
          return true;
        }

        state->PopContext();
      }

      if (callee_vars.Empty()) {
        if (checker_verbose.IsSpecified())
          logout << "CHECK: " << frame
                 << ": No callees to expand at " << point << endl;
      }

      CalleeCache.Release(function);
    }

    return false;
  }

  // any precondition we have to propagate up to the callers.
  WherePrecondition *precondition = NULL;
  if (where)
    precondition = where->IfPrecondition();

  // whether we will be reconnecting to the caller without any
  // propagation information.
  bool reconnect_caller = false;

  if (precondition) {
    Bit *bit = precondition->GetBit();
    WherePrecondition *dupe_precondition = new WherePrecondition(mcfg, bit);
    state->m_precondition_list.PushBack(dupe_precondition);
  }
  else {
    // we will propagate to the caller regardless if there is already a caller
    // hooked up or if we are inside a loop body.

    if (frame->GetCaller().id != NULL)
      reconnect_caller = true;

    if (frame->Kind() == B_Loop)
      reconnect_caller = true;
  }

  if (propagate && reconnect_caller) {
    // check to see if we are delaying any heap propagation.
    if (where->IsInvariant()) {
      Assert(state->m_delayed_propagate_heap == NULL);
      state->m_delayed_propagate_heap = propagate;
    }
  }
  else if (!precondition && !reconnect_caller) {
    // check to see if we are performing heap propagation.

    if (state->m_delayed_propagate_heap) {
      Assert(propagate == NULL);
      CheckerPropagate *heap_propagate = state->m_delayed_propagate_heap;
      state->m_delayed_propagate_heap = NULL;

      WhereInvariant *invariant = heap_propagate->m_where->AsInvariant();

      if (CheckHeapWrites(state, frame, heap_propagate->m_frame, invariant))
        return true;

      state->m_delayed_propagate_heap = heap_propagate;
      return false;
    }
    else if (where && where->IsInvariant()) {
      return CheckHeapWrites(state, frame, frame, where->AsInvariant());
    }

    Assert(propagate);

    // don't need to expand the callers or anything else.
    // we can finally terminate propagation with an error report.

    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame
             << ": Nothing to expand, finishing" << endl;

    state->SetReport(RK_Finished);
    return true;
  }

  if (frame->GetCaller().id != NULL) {
    // just propagate to the existing caller.

    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame
             << ": Returning to caller" << endl;

    state->PushContext();

    if (CheckSingleCaller(state, frame, precondition, frame->GetCaller()))
      return true;

    state->PopContext();
  }
  else if (id->Kind() == B_Function) {
    // propagate to all callers to the function.

    Variable *function = id->BaseVar();
    CallEdgeSet *callers = CallerCache.Lookup(function);

    Vector<BlockPPoint> caller_points;

    for (size_t eind = 0; callers && eind < callers->GetEdgeCount(); eind++) {
      const CallEdge &edge = callers->GetEdge(eind);
      Assert(edge.callee == function);

      caller_points.PushBack(edge.where);
    }

    SortVector<BlockPPoint,BlockPPoint>(&caller_points);

    for (size_t cind = 0; cind < caller_points.Size(); cind++) {
      BlockPPoint caller = caller_points[cind];

      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame
               << ": Checking caller: " << caller << endl;

      state->PushContext();

      if (CheckSingleCaller(state, frame, precondition, caller)) {
        CallerCache.Release(function);
        return true;
      }

      state->PopContext();
    }

    if (caller_points.Empty()) {
      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame << ": No callers to expand" << endl;
    }

    CallerCache.Release(function);
  }
  else if (id->Kind() == B_Loop) {
    // check all possible callers of the loop. unroll an iteration before
    // checking the parents so that if we can't figure out a sufficient
    // condition for the loop we will stop exploration quickly.

    // unroll another iteration of the loop.

    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame
             << ": Unrolling loop iteration" << endl;

    state->PushContext();

    BlockPPoint recursive_caller(id, cfg->GetExitPoint());
    if (CheckSingleCaller(state, frame, precondition, recursive_caller))
      return true;

    state->PopContext();

    // check the parents which can initially invoke this loop.

    if (frame->GetLoopParent().id != NULL) {
      if (checker_verbose.IsSpecified())
        logout << "CHECK: " << frame
               << ": Checking existing loop parent: "
               << frame->GetLoopParent() << endl;

      state->PushContext();

      if (CheckSingleCaller(state, frame, precondition,
                            frame->GetLoopParent()))
        return true;

      state->PopContext();
    }
    else {
      for (size_t pind = 0; pind < cfg->GetLoopParentCount(); pind++) {
        BlockPPoint where = cfg->GetLoopParent(pind);

        if (checker_verbose.IsSpecified())
          logout << "CHECK: " << frame
                 << ": Checking loop parent: " << where << endl;

        state->PushContext();

        if (CheckSingleCaller(state, frame, precondition, where))
          return true;

        state->PopContext();
      }
    }
  }
  else if (id->Kind() == B_Initializer) {
    // initializers don't have callers, can just ignore this.
    // TODO: should address why this code is being reached in the first place.
    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame << ": Initializer has no callers" << endl;
    return false;
  }
  else {
    // unknown type of block.
    Assert(false);
  }

  // if we set the state's delayed heap propagation then unset it.
  if (propagate && state->m_delayed_propagate_heap == propagate)
    state->m_delayed_propagate_heap = NULL;

  return false;
}
Exemplo n.º 3
0
// check propagation for each point bit in the specified frame. this is called
// both for the initial and intermediate checks of the assertion. assert_safe
// indicates that this is an initial check or an intermediate check of a heap
// invariant, and should be marked as a base bit/frame in the state.
bool CheckFrameList(CheckerState *state, CheckerFrame *frame,
                    PPoint point, bool allow_point, bool assert_safe,
                    Bit *base_bit, const GuardBitVector &point_list)
{
  // check if we are ignoring this function outright.
  BlockId *id = frame->CFG()->GetId();
  if (id->Kind() != B_Initializer && IgnoreFunction(id->BaseVar())) {
    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame << ": Ignoring function" << endl;
    return false;
  }

  Solver *solver = state->GetSolver();

  if (!solver->IsSatisfiable()) {
    if (checker_verbose.IsSpecified())
      logout << "CHECK: " << frame << ": List unsatisfiable" << endl;
    return false;
  }

  for (size_t ind = 0; ind < point_list.Size(); ind++) {
    const GuardBit &gb = point_list[ind];

    state->PushContext();

    // the guard for the paths this safe bit takes are an extra assumed bit.
    frame->PushAssumedBit(gb.guard);

    // add side conditions and pending information from the bit.
    solver->AddSideConditions(frame->Id(), gb.bit);

    if (assert_safe)
      state->PushBaseBit(gb.bit, frame);

    if (TestErrorSatisfiable(state, frame, gb.bit)) {
      // error is feasible along these paths, construct a propagation
      // for the safe bit and continue exploration.
      CheckerPropagate propagate(frame, point, allow_point);
      propagate.m_id = state->GetPropagateId();

      propagate.FindTest(base_bit, gb.bit);

      state->m_stack.PushBack(&propagate);

      // check the frame against this propagation.
      if (CheckFrame(state, frame, &propagate))
        return true;

      // check if there was a soft timeout while we were finished
      // exploring this path. when the timeout occurs all satisfiable
      // queries become false so we will end up here.
      if (TimerAlarm::ActiveExpired()) {
        logout << "Timeout: ";
        PrintTime(TimerAlarm::ActiveElapsed());
        logout << endl;

        state->SetReport(RK_Timeout);
        return true;
      }

      state->m_stack.PopBack();
    }

    // no error along these paths, unwind the changes we made beforehand.
    if (assert_safe)
      state->PopBaseBit();
    frame->PopAssumedBit();
    state->PopContext();
  }

  return false;
}
Exemplo n.º 4
0
void BlockSummary::GetAssumedBits(BlockMemory *mcfg, PPoint end_point,
                                  Vector<AssumeInfo> *assume_list)
{
  BlockId *id = mcfg->GetId();
  BlockCFG *cfg = mcfg->GetCFG();

  BlockSummary *sum = GetBlockSummary(id);

  const Vector<Bit*> *assumes = sum->GetAssumes();
  size_t assume_count = VectorSize<Bit*>(assumes);

  // pull in assumptions from the summary for mcfg. in some cases these
  // assumptions won't be useful, e.g. describing the state at exit
  // for functions. for now we're just adding all of them though. TODO: fix.
  for (size_t ind = 0; ind < assume_count; ind++) {
    Bit *bit = assumes->At(ind);
    bit->IncRef(assume_list);

    AssumeInfo info;
    info.bit = bit;
    assume_list->PushBack(info);
  }

  sum->DecRef();

  Vector<BlockCFG*> *annot_list = BodyAnnotCache.Lookup(id->Function());

  // add assumes at function entry for any preconditions.

  if (id->Kind() == B_Function) {
    for (size_t ind = 0; annot_list && ind < annot_list->Size(); ind++) {
      BlockCFG *annot_cfg = annot_list->At(ind);

      if (annot_cfg->GetAnnotationKind() != AK_Precondition &&
          annot_cfg->GetAnnotationKind() != AK_PreconditionAssume)
        continue;

      Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);
      if (!bit) continue;

      annot_cfg->IncRef(assume_list);
      bit->IncRef(assume_list);

      AssumeInfo info;
      info.annot = annot_cfg;
      info.bit = bit;
      assume_list->PushBack(info);
    }
  }

  // add assumptions from points within the block.

  for (size_t pind = 0; pind < cfg->GetPointAnnotationCount(); pind++) {
    PointAnnotation pann = cfg->GetPointAnnotation(pind);
    if (end_point && pann.point >= end_point)
      continue;

    BlockCFG *annot_cfg = GetAnnotationCFG(pann.annot);
    if (!annot_cfg) continue;

    Assert(annot_cfg->GetAnnotationKind() != AK_AssertRuntime);

    if (Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg)) {
      // get the annotation bit in terms of block entry.
      Bit *point_bit = NULL;
      mcfg->TranslateBit(TRK_Point, pann.point, bit, &point_bit);
      point_bit->MoveRef(&point_bit, assume_list);

      annot_cfg->IncRef(assume_list);

      AssumeInfo info;
      info.annot = annot_cfg;
      info.point = pann.point;
      info.bit = point_bit;
      assume_list->PushBack(info);
    }

    annot_cfg->DecRef();
  }

  // add assumptions from annotation edges within the block, invariants
  // on values accessed by the block, and from the summaries of any callees.

  for (size_t eind = 0; eind < cfg->GetEdgeCount(); eind++) {
    PEdge *edge = cfg->GetEdge(eind);
    PPoint point = edge->GetSource();

    if (end_point && point >= end_point)
      continue;

    InvariantAssumeVisitor visitor(mcfg, point, assume_list);
    edge->DoVisit(&visitor);

    if (PEdgeAnnotation *nedge = edge->IfAnnotation()) {
      // add an assumption for this annotation.
      BlockCFG *annot_cfg = GetAnnotationCFG(nedge->GetAnnotationId());
      if (!annot_cfg) continue;

      Bit *bit = BlockMemory::GetAnnotationBit(annot_cfg);

      // don't incorporate AssertRuntimes, these are not assumed.
      if (bit && annot_cfg->GetAnnotationKind() != AK_AssertRuntime) {
        // get the annotation bit in terms of block entry.
        Bit *point_bit = NULL;
        mcfg->TranslateBit(TRK_Point, point, bit, &point_bit);
        point_bit->MoveRef(&point_bit, assume_list);

        annot_cfg->IncRef(assume_list);

        AssumeInfo info;
        info.annot = annot_cfg;
        info.point = point;
        info.bit = point_bit;
        assume_list->PushBack(info);
      }

      annot_cfg->DecRef();
    }

    if (BlockId *callee = edge->GetDirectCallee()) {
      GetCallAssumedBits(mcfg, edge, callee, false, assume_list);
      callee->DecRef();
    }
    else if (edge->IsCall()) {
      // add conditional assumes for the indirect targets of the call.
      // this is most useful for baked information and annotations, where
      // we sometimes need to attach information at indirect calls.

      CallEdgeSet *callees = CalleeCache.Lookup(id->BaseVar());
      size_t old_count = assume_list->Size();

      if (callees) {
        for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
          const CallEdge &cedge = callees->GetEdge(cind);
          if (cedge.where.id == id && cedge.where.point == point) {
            cedge.callee->IncRef();
            BlockId *callee = BlockId::Make(B_Function, cedge.callee);

            GetCallAssumedBits(mcfg, edge, callee, true, assume_list);
            callee->DecRef();
          }
        }
      }

      if (assume_list->Size() != old_count) {
        // we managed to do something at this indirect call site.
        // add another assumption restricting the possible callees to
        // only those identified by our callgraph.

        GuardExpVector receiver_list;
        mcfg->TranslateReceiver(point, &receiver_list);

        for (size_t rind = 0; rind < receiver_list.Size(); rind++) {
          const GuardExp &gs = receiver_list[rind];
          gs.guard->IncRef();

          // make a bit: !when || rcv == callee0 || rcv == callee1 || ...
          Bit *extra_bit = Bit::MakeNot(gs.guard);

          for (size_t cind = 0; cind < callees->GetEdgeCount(); cind++) {
            const CallEdge &cedge = callees->GetEdge(cind);
            if (cedge.where.id == id && cedge.where.point == point) {
              Variable *callee_var = cedge.callee;
              callee_var->IncRef();
              Exp *callee_exp = Exp::MakeVar(callee_var);

              gs.exp->IncRef();
              Bit *equal = Exp::MakeCompareBit(B_Equal, callee_exp, gs.exp);

              extra_bit = Bit::MakeOr(extra_bit, equal);
            }
          }

          extra_bit->MoveRef(NULL, assume_list);

          AssumeInfo info;
          info.bit = extra_bit;
          assume_list->PushBack(info);
        }
      }

      CalleeCache.Release(id->BaseVar());
    }
  }

  BodyAnnotCache.Release(id->Function());

  // add assumptions from heap invariants describing values mentioned
  // in added assumptions. we could keep doing this transitively but don't,
  // to ensure termination.
  size_t count = assume_list->Size();
  for (size_t ind = 0; ind < count; ind++) {
    InvariantAssumeVisitor visitor(NULL, 0, assume_list);
    assume_list->At(ind).bit->DoVisit(&visitor);
  }

  CombineAssumeList(assume_list);
}