void test_flowsolver(const GI& g, const RI& r) { typedef typename GI::CellIterator CI; typedef typename CI::FaceIterator FI; typedef Opm::BasicBoundaryConditions<true, false> FBC; typedef Opm::IncompFlowSolverHybrid<GI, RI, FBC, Opm::MimeticIPAnisoRelpermEvaluator> FlowSolver; FlowSolver solver; typedef Opm::FlowBC BC; FBC flow_bc(7); //flow_bc.flowCond(1) = BC(BC::Dirichlet, 1.0*Opm::unit::barsa); //flow_bc.flowCond(2) = BC(BC::Dirichlet, 0.0*Opm::unit::barsa); flow_bc.flowCond(5) = BC(BC::Dirichlet, 100.0*Opm::unit::barsa); typename CI::Vector gravity; gravity[0] = gravity[1] = 0.0; gravity[2] = Opm::unit::gravity; solver.init(g, r, gravity, flow_bc); // solver.printStats(std::cout); //solver.assembleStatic(g, r); //solver.printIP(std::cout); std::vector<double> src(g.numberOfCells(), 0.0); std::vector<double> sat(g.numberOfCells(), 0.0); #if 0 if (g.numberOfCells() > 1) { src[0] = 1.0; src.back() = -1.0; } #endif solver.solve(r, sat, flow_bc, src); #if 0 solver.printSystem("system"); typedef typename FlowSolver::SolutionType FlowSolution; FlowSolution soln = solver.getSolution(); std::cout << "Cell Pressure:\n" << std::scientific << std::setprecision(15); for (CI c = g.cellbegin(); c != g.cellend(); ++c) { std::cout << '\t' << soln.pressure(c) << '\n'; } std::cout << "Cell (Out) Fluxes:\n"; std::cout << "flux = [\n"; for (CI c = g.cellbegin(); c != g.cellend(); ++c) { for (FI f = c->facebegin(); f != c->faceend(); ++f) { std::cout << soln.outflux(f) << ' '; } std::cout << "\b\n"; } std::cout << "]\n"; #endif }
void test_evaluator(const Interface& g) { typedef typename Interface::CellIterator CI; typedef typename CI ::FaceIterator FI; typedef typename CI ::Scalar Scalar; typedef Dune::SharedFortranMatrix FMat; std::cout << "Called test_evaluator()" << std::endl; std::vector<int> numf; numf.reserve(g.numberOfCells()); int max_nf = -1; for (CI c = g.cellbegin(); c != g.cellend(); ++c) { numf.push_back(0); int& nf = numf.back(); for (FI f = c->facebegin(); f != c->faceend(); ++f) ++nf; max_nf = std::max(max_nf, nf); } typedef int DummyClass; Dune::MimeticIPEvaluator<Interface, DummyClass> ip(max_nf); // Set dummy permeability K=diag(10,1,...,1,0.1). std::vector<Scalar> perm(dim * dim, Scalar(0.0)); Dune::SharedCMatrix K(dim, dim, &perm[0]); for (int i = 0; i < dim; ++i) K(i,i) = 1.0; K(0 ,0 ) *= 10.0; K(dim-1,dim-1) /= 10.0; // Storage for inverse ip. std::vector<Scalar> ip_store(max_nf * max_nf, Scalar(0.0)); // Loop grid whilst building (and outputing) the inverse IP matrix. int count = 0; for (CI c = g.cellbegin(); c != g.cellend(); ++c, ++count) { FMat Binv(numf[count], numf[count], &ip_store[0]); ip.evaluate(c, K, Binv); std::cout << count << " -> Binv = [\n" << Binv << "]\n"; } }
void assign_bc(const GI& g, BCS& bcs) { typedef Dune::FlowBC BC; typedef typename GI::CellIterator CI; typedef typename CI::FaceIterator FI; int max_bid = 0; for (CI c = g.cellbegin(); c != g.cellend(); ++c) { for (FI f = c->facebegin(); f != c->faceend(); ++f) { int bid = f->boundaryId(); if (bid > max_bid) { max_bid = bid; bcs.resize(bid + 1); } bcs.flowCond(bid) = BC(BC::Dirichlet, u(f->centroid())); } } }
inline void setupRegionBasedConditions(const Opm::parameter::ParameterGroup& param, const GridInterface& g, BCs& bcs) { // Extract region and pressure value for Dirichlet bcs. typedef typename GridInterface::Vector Vector; Vector low; low[0] = param.getDefault("dir_block_low_x", 0.0); low[1] = param.getDefault("dir_block_low_y", 0.0); low[2] = param.getDefault("dir_block_low_z", 0.0); Vector high; high[0] = param.getDefault("dir_block_high_x", 1.0); high[1] = param.getDefault("dir_block_high_y", 1.0); high[2] = param.getDefault("dir_block_high_z", 1.0); double dir_block_pressure = param.get<double>("dir_block_pressure"); // Set flow conditions for that region. // For this to work correctly, unique boundary ids should be used, // otherwise conditions may spread outside the given region, to all // faces with the same bid as faces inside the region. typedef typename GridInterface::CellIterator CI; typedef typename CI::FaceIterator FI; int max_bid = 0; std::vector<int> dir_bids; for (CI c = g.cellbegin(); c != g.cellend(); ++c) { for (FI f = c->facebegin(); f != c->faceend(); ++f) { int bid = f->boundaryId(); max_bid = std::max(bid, max_bid); if (bid != 0 && isInside(low, high, f->centroid())) { dir_bids.push_back(bid); } } } bcs.resize(max_bid + 1); for (std::vector<int>::const_iterator it = dir_bids.begin(); it != dir_bids.end(); ++it) { bcs.flowCond(*it) = FlowBC(FlowBC::Dirichlet, dir_block_pressure); } // Transport BCs are defaulted. }
void buildFaceIndices() { #ifdef VERBOSE std::cout << "Building unique face indices... " << std::flush; Opm::time::StopWatch clock; clock.start(); #endif typedef CellIterator CI; typedef typename CI::FaceIterator FI; // We build the actual cell to face mapping in two passes. // [code mostly lifted from IncompFlowSolverHybrid::enumerateGridDof(), // but with a twist: This code builds a mapping from cells in index // order to unique face numbers, while the mapping built in the // enumerateGridDof() method was ordered by cell iterator order] // Allocate and reserve structures. const int nc = numberOfCells(); std::vector<int> cell(nc, -1); std::vector<int> num_faces(nc); // In index order. std::vector<int> fpos; fpos .reserve(nc + 1); std::vector<int> num_cf; num_cf.reserve(nc); // In iterator order. std::vector<int> faces ; // First pass: enumerate internal faces. int cellno = 0; fpos.push_back(0); int tot_ncf = 0, tot_ncf2 = 0, max_ncf = 0; for (CI c = cellbegin(); c != cellend(); ++c, ++cellno) { const int c0 = c->index(); ASSERT((0 <= c0) && (c0 < nc) && (cell[c0] == -1)); cell[c0] = cellno; num_cf.push_back(0); int& ncf = num_cf.back(); for (FI f = c->facebegin(); f != c-> faceend(); ++f) { if (!f->boundary()) { const int c1 = f->neighbourCellIndex(); ASSERT((0 <= c1) && (c1 < nc) && (c1 != c0)); if (cell[c1] == -1) { // Previously undiscovered internal face. faces.push_back(c1); } } ++ncf; } num_faces[c0] = ncf; fpos.push_back(int(faces.size())); max_ncf = std::max(max_ncf, ncf); tot_ncf += ncf; tot_ncf2 += ncf * ncf; } ASSERT(cellno == nc); // Build cumulative face sizes enabling direct insertion of // face indices into cfdata later. std::vector<int> cumul_num_faces(numberOfCells() + 1); cumul_num_faces[0] = 0; std::partial_sum(num_faces.begin(), num_faces.end(), cumul_num_faces.begin() + 1); // Avoid (most) allocation(s) inside 'c' loop. std::vector<int> l2g; l2g.reserve(max_ncf); std::vector<double> cfdata(tot_ncf); int total_num_faces = int(faces.size()); // Second pass: build cell-to-face mapping, including boundary. typedef std::vector<int>::iterator VII; for (CI c = cellbegin(); c != cellend(); ++c) { const int c0 = c->index(); ASSERT ((0 <= c0 ) && ( c0 < nc) && (0 <= cell[c0]) && (cell[c0] < nc)); const int ncf = num_cf[cell[c0]]; l2g.resize(ncf, 0); for (FI f = c->facebegin(); f != c->faceend(); ++f) { if (f->boundary()) { // External, not counted before. Add new face... l2g[f->localIndex()] = total_num_faces++; } else { // Internal face. Need to determine during // traversal of which cell we discovered this // face first, and extract the face number // from the 'faces' table range of that cell. // Note: std::find() below is potentially // *VERY* expensive (e.g., large number of // seeks in moderately sized data in case of // faulted cells). const int c1 = f->neighbourCellIndex(); ASSERT ((0 <= c1 ) && ( c1 < nc) && (0 <= cell[c1]) && (cell[c1] < nc)); int t = c0, seek = c1; if (cell[seek] < cell[t]) std::swap(t, seek); int s = fpos[cell[t]], e = fpos[cell[t] + 1]; VII p = std::find(faces.begin() + s, faces.begin() + e, seek); ASSERT(p != faces.begin() + e); l2g[f->localIndex()] = p - faces.begin(); } } ASSERT(int(l2g.size()) == num_faces[c0]); std::copy(l2g.begin(), l2g.end(), cfdata.begin() + cumul_num_faces[c0]); } num_faces_ = total_num_faces; max_faces_per_cell_ = max_ncf; face_indices_.assign(cfdata.begin(), cfdata.end(), num_faces.begin(), num_faces.end()); #ifdef VERBOSE clock.stop(); double elapsed = clock.secsSinceStart(); std::cout << "done. Time elapsed: " << elapsed << std::endl; #endif }
void test_flowsolver(const GI& g, const RI& r) { typedef typename GI::CellIterator CI; typedef typename CI::FaceIterator FI; typedef Opm::BasicBoundaryConditions<true, false> FBC; typedef Opm::IncompFlowSolverHybrid<GI, RI, FBC, Opm::MimeticIPEvaluator> FlowSolver; FlowSolver solver; typedef Opm::FlowBC BC; FBC flow_bc(7); #if !USE_ALUGRID flow_bc.flowCond(5) = BC(BC::Dirichlet, 100.0*Opm::unit::barsa); flow_bc.flowCond(6) = BC(BC::Dirichlet, 0.0*Opm::unit::barsa); #endif typename CI::Vector gravity(0.0); // gravity[2] = Dune::unit::gravity; solver.init(g, r, gravity, flow_bc); std::vector<double> src(g.numberOfCells(), 0.0); std::vector<double> sat(g.numberOfCells(), 0.0); // if (g.numberOfCells() > 1) { // src[0] = 1.0; // src.back() = -1.0; // } solver.solve(r, sat, flow_bc, src, 5e-9, 3, 1); #if 1 typedef typename FlowSolver::SolutionType FlowSolution; FlowSolution soln = solver.getSolution(); std::vector<typename GI::Vector> cell_velocity; estimateCellVelocity(cell_velocity, g, soln); // Dune's vtk writer wants multi-component data to be flattened. std::vector<double> cell_velocity_flat(&*cell_velocity.front().begin(), &*cell_velocity.back().end()); std::vector<double> cell_pressure; getCellPressure(cell_pressure, g, soln); Dune::VTKWriter<typename GI::GridType::LeafGridView> vtkwriter(g.grid().leafView()); vtkwriter.addCellData(cell_velocity_flat, "velocity", dim); vtkwriter.addCellData(cell_pressure, "pressure"); vtkwriter.write("testsolution-" + boost::lexical_cast<std::string>(0), Dune::VTKOptions::ascii); #else solver.printSystem("system"); typedef typename FlowSolver::SolutionType FlowSolution; FlowSolution soln = solver.getSolution(); std::cout << "Cell Pressure:\n" << std::scientific << std::setprecision(15); for (CI c = g.cellbegin(); c != g.cellend(); ++c) { std::cout << '\t' << soln.pressure(c) << '\n'; } std::cout << "Cell (Out) Fluxes:\n"; std::cout << "flux = [\n"; for (CI c = g.cellbegin(); c != g.cellend(); ++c) { for (FI f = c->facebegin(); f != c->faceend(); ++f) { std::cout << soln.outflux(f) << ' '; } std::cout << "\b\n"; } std::cout << "]\n"; #endif }