Exemplo n.º 1
0
CPose2D getPataMesa(){

	FILE* file=fopen("patamesa.dat","r");
	CPose2D pataMesa;
	int nDatos(0);

	if(file){
		float x,y;
		// Archivo existe
		fscanf(file,"x:%f,y:%f",&x,&y);
		pataMesa.x(x);
		pataMesa.y(y);

		fclose(file);
	}
	else{
		//Archivo no existe
		file=fopen("patamesa.dat","w");

		for(int i=1;i<21;i++){

			Detector detector;

			char nombre[100];

			sprintf(nombre,"/home/jplata/Eclipse/MedidasPiernas/23Mayo/laser%i.dat",i);
			cout << "Fichero:  " << nombre << endl;

			detector.abrirFichero(nombre,false);

			// Clusteres detectados
			vector<Cluster> piernas=detector.clusterizar(0.1,3);

			detector.printClusters(piernas);

			// El ultimo cluster corresponde a la pata de la mesa en las primeras muestras
			nDatos++;

			pataMesa+=piernas.back().getCentro();

		}

		pataMesa.x(pataMesa.x()/nDatos);
		pataMesa.y(pataMesa.y()/nDatos);

		fprintf(file,"x:%f,y:%f",pataMesa.x(),pataMesa.y());

		fclose(file);

	}

	return pataMesa;

}
Exemplo n.º 2
0
	void test_to_from_2d(double x,double y, double phi)
	{
	    const CPose2D p2d = CPose2D(x,y,phi);
	    const CPose3D p3d = CPose3D(p2d);

	    const CPose2D p2d_bis = CPose2D(p3d);

        EXPECT_FLOAT_EQ( p2d.x(), p2d_bis.x() ) << "p2d: " << p2d << endl;
        EXPECT_FLOAT_EQ( p2d.y(), p2d_bis.y() ) << "p2d: " << p2d << endl;
        EXPECT_FLOAT_EQ( p2d.phi(), p2d_bis.phi() ) << "p2d: " << p2d << endl;

        EXPECT_FLOAT_EQ( p2d.phi(), p3d.yaw() )  << "p2d: " << p2d << endl;
	}
bool MyReactiveInterface::senseObstacles(CSimplePointsMap &obstacles){

	cout << "senseObstacles" << endl;

	CObservation2DRangeScan laserScan;
	CPose2D rPose;
	CPose3D rPose3D;

	getCurrentMeasures(laserScan,rPose);
	rPose3D=rPose;


	obstacles.insertionOptions.minDistBetweenLaserPoints=0.005f;
	obstacles.insertionOptions.also_interpolate=false;

	obstacles.clear();
	obstacles.insertObservation(&laserScan);

	// Update data for plot thread
	pthread_mutex_lock(&m_mutex);
	path.AddVertex(rPose.x(),rPose.y());
	laserCurrentMap.loadFromRangeScan(laserScan,&rPose3D);
	newScan=true;
	pthread_mutex_unlock(&m_mutex);

	refreshPlot();


	return true;

}
Exemplo n.º 4
0
void SRBASolver::Compute()
{
  ROS_INFO("Computing corrected poses");
  corrections_.clear();

  if(!rba_.get_rba_state().keyframes.empty())
  {
    // Use a spanning tree to estimate the global pose of every node
    //  starting (root) at the given keyframe:
   
    //corrections_.resize(rba_.get_rba_state().keyframes.size());
    srba_t::frameid2pose_map_t  spantree;
    if(curr_kf_id_ == 0)
      return;
    TKeyFrameID root_keyframe(0);
    rba_.create_complete_spanning_tree(root_keyframe,spantree);

    for (srba_t::frameid2pose_map_t::const_iterator itP = spantree.begin();itP!=spantree.end();++itP)
    {
      std::pair<int, karto::Pose2> id_pose;
      id_pose.first = itP->first;
      const CPose2D p = itP->second.pose;
      karto::Pose2 pos(p.x(), p.y(), p.phi());
      id_pose.second = pos;
      corrections_.push_back(id_pose);
    }
  }
   
  // Get the global graph and return updated poses?
  //typedef std::vector<sba::Node2d, Eigen::aligned_allocator<sba::Node2d> > NodeVector;
  //ROS_INFO("Calling SRBA compute");

  // Do nothing here?
}
Exemplo n.º 5
0
/** Return one or both of the following 6x6 Jacobians, useful in graph-slam
 * problems...
  */
void SE_traits<2>::jacobian_dP1DP2inv_depsilon(
	const CPose2D& P1DP2inv, matrix_VxV_t* df_de1, matrix_VxV_t* df_de2)
{
	if (df_de1)
	{
		matrix_VxV_t& J1 = *df_de1;
		// This Jacobian has the structure:
		//           [   I_2    |  -[d_t]_x      ]
		//  Jacob1 = [ ---------+--------------- ]
		//           [   0      |   1            ]
		//
		J1.unit(VECTOR_SIZE, 1.0);
		J1(0, 2) = -P1DP2inv.y();
		J1(1, 2) = P1DP2inv.x();
	}
	if (df_de2)
	{
		// This Jacobian has the structure:
		//           [    -R    |    0   ]
		//  Jacob2 = [ ---------+------- ]
		//           [     0    |    -1  ]
		//
		matrix_VxV_t& J2 = *df_de2;

		const double ccos = cos(P1DP2inv.phi());
		const double csin = sin(P1DP2inv.phi());

		const double vals[] = {-ccos, csin, 0, -csin, -ccos, 0, 0, 0, -1};
		J2 = CMatrixFixedNumeric<double, 3, 3>(vals);
	}
}
Exemplo n.º 6
0
/*---------------------------------------------------------------
						squareErrorVector
  ---------------------------------------------------------------*/
void  TMatchingPairList::squareErrorVector(
	const CPose2D &q,
	vector_float &out_sqErrs,
	vector_float &xs,
	vector_float &ys ) const
{
	out_sqErrs.resize( size() );
	xs.resize( size() );
	ys.resize( size() );

	// *    \f[ e_i = | x_{this} -  q \oplus x_{other}  |^2 \f]

	const float ccos = cos(q.phi());
	const float csin = sin(q.phi());
	const float qx   = q.x();
	const float qy   = q.y();

	const_iterator 			corresp;
	vector_float::iterator	e_i, xx, yy;
	for (corresp=begin(), e_i = out_sqErrs.begin(), xx = xs.begin(), yy = ys.begin();corresp!=end();corresp++, e_i++, xx++,yy++)
	{
		*xx = qx + ccos * corresp->other_x - csin * corresp->other_y;
		*yy = qy + csin * corresp->other_x + ccos * corresp->other_y;
		*e_i = square( corresp->this_x - *xx ) + square( corresp->this_y - *yy );
	}
}
/*---------------------------------------------------------------
			computeObservationLikelihood_CellsDifference
---------------------------------------------------------------*/
double	 COccupancyGridMap2D::computeObservationLikelihood_CellsDifference(
			const CObservation		*obs,
			const CPose2D				&takenFrom )
{
	 double		ret = 0.5;

	 // This function depends on the observation type:
	 // -----------------------------------------------------
	if ( obs->GetRuntimeClass() == CLASS_ID(CObservation2DRangeScan) )
	 {
		 // Observation is a laser range scan:
		 // -------------------------------------------
		const CObservation2DRangeScan		*o = static_cast<const CObservation2DRangeScan*>( obs );

		// Insert only HORIZONTAL scans, since the grid is supposed to
		//  be a horizontal representation of space.
		if (!o->isPlanarScan(insertionOptions.horizontalTolerance)) return 0.5;	// NO WAY TO ESTIMATE NON HORIZONTAL SCANS!!

	 // Build a copy of this occupancy grid:
		COccupancyGridMap2D		compareGrid(takenFrom.x()-10,takenFrom.x()+10,takenFrom.y()-10,takenFrom.y()+10,resolution);
		CPose3D					robotPose(takenFrom);
		int						Ax, Ay;

		// Insert in this temporary grid:
		compareGrid.insertionOptions.maxDistanceInsertion			= insertionOptions.maxDistanceInsertion;
		compareGrid.insertionOptions.maxOccupancyUpdateCertainty	= 0.95f;
		o->insertObservationInto( &compareGrid, &robotPose );

		// Save Cells offset between the two grids:
		Ax = round((x_min - compareGrid.x_min) / resolution);
		Ay = round((y_min - compareGrid.y_min) / resolution);

		int			nCellsCompared = 0;
		float		cellsDifference = 0;
		int			x0 = max(0,Ax);
		int			y0 = max(0,Ay);
		int			x1 = min(compareGrid.size_x, size_x+Ax);
		int			y1 = min(compareGrid.size_y, size_y+Ay);

		for (int x=x0;x<x1;x+=1)
		{
			for (int y=y0;y<y1;y+=1)
			{
				float	xx = compareGrid.idx2x(x);
				float	yy = compareGrid.idx2y(y);

				float	c1 = getPos(xx,yy);
				float	c2 = compareGrid.getCell(x,y);
				if ( c2<0.45f || c2>0.55f )
				{
					nCellsCompared++;
					if ((c1>0.5 && c2<0.5) || (c1<0.5 && c2>0.5))
						cellsDifference++;
				}
			}
		}
		ret = 1 - cellsDifference / (nCellsCompared);
	 }
	 return log(ret);
}
Exemplo n.º 8
0
IdPoseVector& SRBASolver::GetCorrections() 
{
  ROS_INFO("Computing corrected poses up to %d", curr_kf_id_-1);
  corrections_.clear();

  if(!rba_.get_rba_state().keyframes.empty())
  {
    // Use a spanning tree to estimate the global pose of every node
    //  starting (root) at the given keyframe:
   
    //corrections_.resize(rba_.get_rba_state().keyframes.size());
    srba_t::frameid2pose_map_t  spantree;
    if(curr_kf_id_ == 0)
      return corrections_;
    TKeyFrameID root_keyframe(0);
    rba_.create_complete_spanning_tree(root_keyframe,spantree);

    for (srba_t::frameid2pose_map_t::const_iterator itP = spantree.begin();itP!=spantree.end();++itP)
    {
      std::pair<int, karto::Pose2> id_pose;
      id_pose.first = itP->first;
      const CPose2D p = itP->second.pose;
      karto::Pose2 pos(p.x(), p.y(), p.phi());
      id_pose.second = pos;
      corrections_.push_back(id_pose);
    }
  }
 
    return corrections_;
}
Exemplo n.º 9
0
/*---------------------------------------------------------------
						getMean
  Returns an estimate of the pose, (the mean, or mathematical expectation of the PDF)
 ---------------------------------------------------------------*/
void CPosePDFSOG::getMean(CPose2D &p) const
{
	size_t		N = m_modes.size();

	if (N)
	{
		// Use an auxiliary parts. set to manage the problematic computation of the mean "PHI":
		//  See CPosePDFParticles::getEstimatedPose
		CPosePDFParticles										auxParts( N );
		CPosePDFParticles::CParticleList::iterator	itPart;
		const_iterator				it;

		for (it=m_modes.begin(),itPart=auxParts.m_particles.begin();it!=m_modes.end();++it,++itPart)
		{
			itPart->log_w = (it)->log_w;
			*itPart->d = (it)->mean;
		}

		auxParts.getMean(p);
		return;
	}
	else
	{
		p.x(0);
		p.y(0);
		p.phi(0);
		return;
	}
}
Exemplo n.º 10
0
/** Must return the action vector u.
  * \param out_u The action vector which will be passed to OnTransitionModel
  */
void CRangeBearingKFSLAM2D::OnGetAction(KFArray_ACT &u) const
{
	// Get odometry estimation:
	CActionRobotMovement2DPtr actMov2D = m_action->getBestMovementEstimation();
	CActionRobotMovement3DPtr actMov3D = m_action->getActionByClass<CActionRobotMovement3D>();
	if (actMov3D)
	{
		u[0]=actMov3D->poseChange.mean.x();
		u[1]=actMov3D->poseChange.mean.y();
		u[2]=actMov3D->poseChange.mean.yaw();
	}
	else
	if (actMov2D)
	{
		CPose2D estMovMean;
		actMov2D->poseChange->getMean(estMovMean);
		u[0]=estMovMean.x();
		u[1]=estMovMean.y();
		u[2]=estMovMean.phi();
	}
	else
	{
		// Left u as zeros
		for (size_t i=0;i<3;i++) u[i]=0;
	}
}
Exemplo n.º 11
0
	void RS_drawFromProposal( CPose2D &outSample )
	{
		double ang = randomGenerator.drawUniform(-M_PI,M_PI);
		double R   = randomGenerator.drawGaussian1D(1.0,SIGMA);
		outSample.x( 1.0f - cos(ang) * R );
		outSample.y( sin(ang) * R );
		outSample.phi( randomGenerator.drawUniform(-M_PI,M_PI) );
	}
Exemplo n.º 12
0
TPoint2D mrpt::poses::operator +(const CPose2D &pose, const TPoint2D &u)
{
	const double ccos = pose.phi_cos();
	const double ssin = pose.phi_sin();
	return TPoint2D(
		pose.x() + u.x * ccos - u.y * ssin,
		pose.y() + u.x * ssin + u.y * ccos );
}
Exemplo n.º 13
0
/*---------------------------------------------------------------
						getMean
  Returns an estimate of the pose, (the mean, or mathematical expectation of the PDF), computed
		as a weighted average over all m_particles.
 ---------------------------------------------------------------*/
void CPosePDFParticles::getMean(CPose2D &est_) const
{
	TPose2D est(0,0,0);

	CPose2D			p;
	size_t			i,n = m_particles.size();
	double			phi,w,W=0;
	double			W_phi_R=0,W_phi_L=0;
	double			phi_R=0,phi_L=0;

	if (!n) return;

	// First: XY
	// -----------------------------------
	for (i=0;i<n;i++)
	{
		p  = *m_particles[i].d;
		w  = exp(m_particles[i].log_w);
		W += w;

		est.x+= p.x() * w;
		est.y+= p.y() * w;

		// PHI is special:
		phi = p.phi();
		if (fabs(phi)>1.5707963267948966192313216916398f)
		{
			// LEFT HALF: 0,2pi
			if (phi<0) phi = (M_2PI + phi);

			phi_L += phi * w;
			W_phi_L += w;
		}
		else
		{
			// RIGHT HALF: -pi,pi
			phi_R += phi * w;
			W_phi_R += w;
		}
	}

	est_ = est;

	est_ *= (1.0/W);

	// Next: PHI
	// -----------------------------------
	// The mean value from each side:
	if (W_phi_L>0)	phi_L /= W_phi_L;  // [0,2pi]
	if (W_phi_R>0)	phi_R /= W_phi_R;  // [-pi,pi]

	// Left side to [-pi,pi] again:
	if (phi_L>M_PI) phi_L = phi_L - M_2PI;

	// The total mean:
	est_.phi(  ((phi_L * W_phi_L + phi_R * W_phi_R )/(W_phi_L+W_phi_R)) );
}
Exemplo n.º 14
0
/*---------------------------------------------------------------
The operator D="this"-b is the pose inverse compounding operator.
   The resulting pose "D" is the diference between this pose and "b"
 ---------------------------------------------------------------*/
CPoint2D  CPoint2D::operator - (const CPose2D& b) const
{
	const double  ccos = cos(b.phi());
	const double  ssin = sin(b.phi());
	const double  Ax = x()-b.x();
	const double  Ay = y()-b.y();

	return CPoint2D( Ax * ccos + Ay * ssin, -Ax * ssin + Ay * ccos );
}
void MyReactiveInterface::getCurrentMeasures(CObservation2DRangeScan &laserScan,CPose2D &robotPose){

	cout << "getCurrentMeasures" << endl;


	// Clear readings
	laserScan.scan.clear();
	laserScan.validRange.clear();
	laserScan.aperture=M_PIf;
	laserScan.rightToLeft=false;


	float dist;
	char valid;
	ArPose punto;


	//Bloquear laser
	laser->lockDevice();

	ArPose pose=robot->getPose();

	vector<ArSensorReading> *readings=laser->getRawReadingsAsVector();

	robotPose.x(pose.getX()*0.001);
	robotPose.y(pose.getY()*0.001);
	robotPose.phi(DEG2RAD(pose.getTh()));



	for(vector<ArSensorReading>::iterator it=readings->begin(); it != readings->end(); it++)
	{

		if(it->getIgnoreThisReading())
		{
			// Establezco 10m, máximo rango del láser
			dist=10000;
			valid=0;
		}
		else
		{
			punto=it->getPose();
			dist=pose.findDistanceTo(punto);
			valid=1;
		}

		laserScan.scan.push_back(dist*0.001);
		laserScan.validRange.push_back(valid);

	}

	laser->unlockDevice();


}
Exemplo n.º 16
0
/*---------------------------------------------------------------
						insertObservation
  ---------------------------------------------------------------*/
bool  CWirelessPowerGridMap2D::internal_insertObservation(
	const CObservation	*obs,
	const CPose3D			*robotPose )
{
	MRPT_START

	CPose2D		robotPose2D;
	CPose3D		robotPose3D;

	if (robotPose)
	{
		robotPose2D = CPose2D(*robotPose);
		robotPose3D = (*robotPose);
	}
	else
	{
		// Default values are (0,0,0)
	}

	if ( IS_CLASS(obs, CObservationWirelessPower ))
	{
		/********************************************************************
					OBSERVATION TYPE: CObservationWirelessPower
		********************************************************************/
		const CObservationWirelessPower	*o = static_cast<const CObservationWirelessPower*>( obs );
		float						sensorReading;


		// Compute the 3D sensor pose in world coordinates:
		CPose2D		sensorPose = CPose2D(robotPose3D + o->sensorPoseOnRobot );

		sensorReading = o->power;

		// Normalization:
		sensorReading = (sensorReading - insertionOptions.R_min) /( insertionOptions.R_max - insertionOptions.R_min );

		// Update the gross estimates of mean/vars for the whole reading history (see IROS2009 paper):
		m_average_normreadings_mean = (sensorReading + m_average_normreadings_count*m_average_normreadings_mean)/(1+m_average_normreadings_count);
		m_average_normreadings_var  = (square(sensorReading - m_average_normreadings_mean) + m_average_normreadings_count*m_average_normreadings_var) /(1+m_average_normreadings_count);
		m_average_normreadings_count++;

		// Finally, do the actual map update with that value:
		this->insertIndividualReading(sensorReading, mrpt::math::TPoint2D(sensorPose.x(),sensorPose.y()) );

		return true;	// Done!

	} // end if "CObservationWirelessPower"

	return false;

	MRPT_END
}
Exemplo n.º 17
0
/*---------------------------------------------------------------
						getEstimatedCovariance
  ---------------------------------------------------------------*/
void CPosePDFParticles::getCovarianceAndMean(CMatrixDouble33 &cov, CPose2D &mean) const
{
	cov.zeros();
	getMean(mean);

	size_t		i,n = m_particles.size();
	double		var_x=0,var_y=0,var_p=0,var_xy=0,var_xp=0,var_yp=0;
	double		mean_phi = mean.phi();

	if (mean_phi<0) mean_phi = M_2PI + mean_phi;

	double lin_w_sum = 0;

	for (i=0;i<n;i++) lin_w_sum+= exp( m_particles[i].log_w );
	if (lin_w_sum==0) lin_w_sum=1;

	for (i=0;i<n;i++)
	{
		double w = exp( m_particles[i].log_w ) / lin_w_sum;

		// Manage 1 PI range:
		double	err_x   = m_particles[i].d->x() - mean.x();
		double	err_y   = m_particles[i].d->y() - mean.y();
		double	err_phi = math::wrapToPi( fabs(m_particles[i].d->phi() - mean_phi) );

		var_x+= square(err_x)*w;
		var_y+= square(err_y)*w;
		var_p+= square(err_phi)*w;
		var_xy+= err_x*err_y*w;
		var_xp+= err_x*err_phi*w;
		var_yp+= err_y*err_phi*w;
	}

	if (n<2)
	{
		// Not enought information to estimate the variance:
	}
	else
	{
		// Unbiased estimation of variance:
		cov(0,0) = var_x;
		cov(1,1) = var_y;
		cov(2,2) = var_p;

		cov(1,0) = cov(0,1) = var_xy;
		cov(2,0) = cov(0,2) = var_xp;
		cov(1,2) = cov(2,1) = var_yp;

	}
}
Exemplo n.º 18
0
/*---------------------------------------------------------------
					jacobiansPoseComposition
 ---------------------------------------------------------------*/
void CPosePDF::jacobiansPoseComposition(
	const CPose2D &x,
	const CPose2D &u,
	CMatrixDouble33			 &df_dx,
	CMatrixDouble33			 &df_du,
	const bool compute_df_dx,
	const bool compute_df_du )

{
	const double   spx = sin(x.phi());
	const double   cpx = cos(x.phi());
	if (compute_df_dx)
	{
	/*
		df_dx =
		[ 1, 0, -sin(phi_x)*x_u-cos(phi_x)*y_u ]
		[ 0, 1,  cos(phi_x)*x_u-sin(phi_x)*y_u ]
		[ 0, 0,                              1 ]
	*/
		df_dx.unit(3,1.0);

		const double   xu = u.x();
		const double   yu = u.y();

		df_dx.get_unsafe(0,2) = -spx*xu-cpx*yu;
		df_dx.get_unsafe(1,2) =  cpx*xu-spx*yu;
	}

	if (compute_df_du)
	{
	/*
		df_du =
		[ cos(phi_x) , -sin(phi_x) ,  0  ]
		[ sin(phi_x) ,  cos(phi_x) ,  0  ]
		[         0  ,          0  ,  1  ]
	*/
		// This is the homogeneous matrix of "x":
		df_du.get_unsafe(0,2) =
		df_du.get_unsafe(1,2) =
		df_du.get_unsafe(2,0) =
		df_du.get_unsafe(2,1) = 0;
		df_du.get_unsafe(2,2) = 1;

		df_du.get_unsafe(0,0) =  cpx;
		df_du.get_unsafe(0,1) = -spx;
		df_du.get_unsafe(1,0) =  spx;
		df_du.get_unsafe(1,1) =  cpx;
	}
}
Exemplo n.º 19
0
void CVirtualWorld::LocateRobot(CPose2D &location)
{
	location.phi_incr(3.14159/2);

	robot->setPose(location);

	double x=location.x();
	double y=location.y();
	win.setCameraPointingToPoint(x,y,0);

	win.repaint();



}
bool MyReactiveInterface::getCurrentPoseAndSpeeds(CPose2D &curPose, float &curV,float &curW){

	cout << "getCurrentPoseAndSpeeds" << endl;

	ArPose pose=robot->getPose();

	curPose.x(pose.getX()*0.001);
	curPose.y(pose.getY()*0.001);
	curPose.phi(DEG2RAD(pose.getTh()));

	curV = robot->getVel() * 0.001;
	curW = DEG2RAD( robot->getRotVel() );
	return true;

}
Exemplo n.º 21
0
/*---------------------------------------------------------------
					drawSingleSample
 ---------------------------------------------------------------*/
void CPosePDFGaussian::drawSingleSample(CPose2D& outPart) const
{
	MRPT_START

	CVectorDouble v;
	getRandomGenerator().drawGaussianMultivariate(v, cov);

	outPart.x(mean.x() + v[0]);
	outPart.y(mean.y() + v[1]);
	outPart.phi(mean.phi() + v[2]);

	// Range -pi,pi
	outPart.normalizePhi();

	MRPT_END_WITH_CLEAN_UP(
		cov.saveToTextFile("__DEBUG_EXC_DUMP_drawSingleSample_COV.txt"););
Exemplo n.º 22
0
/*---------------------------------------------------------------
						squareErrorVector
  ---------------------------------------------------------------*/
void  TMatchingPairList::squareErrorVector(const CPose2D &q, vector<float> &out_sqErrs ) const
{
	out_sqErrs.resize( size() );
	// *    \f[ e_i = | x_{this} -  q \oplus x_{other}  |^2 \f]

	const float ccos = cos(q.phi());
	const float csin = sin(q.phi());
	const float qx   = q.x();
	const float qy   = q.y();

	const_iterator 			corresp;
	vector<float>::iterator	e_i;
	for (corresp=begin(), e_i = out_sqErrs.begin();corresp!=end();++corresp, ++e_i)
	{
		float xx = qx + ccos * corresp->other_x - csin * corresp->other_y;
		float yy = qy + csin * corresp->other_x + ccos * corresp->other_y;
		*e_i = square( corresp->this_x - xx ) + square( corresp->this_y - yy );
	}
}
void  COccupancyGridMap2D::sonarSimulator(
		CObservationRange	        &inout_observation,
		const CPose2D				&robotPose,
		float						threshold,
		float						rangeNoiseStd,
		float						angleNoiseStd) const
{
    const float free_thres = 1.0f - threshold;
    const unsigned int max_ray_len = round(inout_observation.maxSensorDistance / resolution);

	for (CObservationRange::iterator itR=inout_observation.begin();itR!=inout_observation.end();++itR)
	{
		const CPose2D sensorAbsolutePose = CPose2D( CPose3D(robotPose) + CPose3D(itR->sensorPose) );

    	// For each sonar cone, simulate several rays and keep the shortest distance:
    	ASSERT_(inout_observation.sensorConeApperture>0)
    	size_t nRays = round(1+ inout_observation.sensorConeApperture / DEG2RAD(1.0) );

    	double direction = sensorAbsolutePose.phi() - 0.5*inout_observation.sensorConeApperture;
		const double Adir = inout_observation.sensorConeApperture / nRays;

		float min_detected_obs=0;
    	for (size_t i=0;i<nRays;i++, direction+=Adir )
    	{
			bool valid;
			float sim_rang;
			simulateScanRay(
				sensorAbsolutePose.x(), sensorAbsolutePose.y(), direction,
				sim_rang, valid,
				max_ray_len, free_thres,
				rangeNoiseStd, angleNoiseStd );

			if (valid && (sim_rang<min_detected_obs || !i))
				min_detected_obs = sim_rang;
    	}
    	// Save:
    	itR->sensedDistance = min_detected_obs;
	}
}
Exemplo n.º 24
0
/*----------------------------------------------------------------------------

						ICP_Method_LM

  ----------------------------------------------------------------------------*/
CPosePDFPtr CICP::ICP_Method_LM(
		const mrpt::maps::CMetricMap		*mm1,
		const mrpt::maps::CMetricMap		*m2,
		const CPosePDFGaussian	&initialEstimationPDF,
		TReturnInfo				&outInfo )
{
	MRPT_START

	// The result can be either a Gaussian or a SOG:
	size_t              nCorrespondences=0;
	bool                keepIteratingICP;
	CPose2D	            grossEst = initialEstimationPDF.mean;
	TMatchingPairList   correspondences,old_correspondences;
	CPose2D             lastMeanPose;
	std::vector<float>  other_xs_trans,other_ys_trans; // temporary container of "other" map (map2) transformed by "q"
	CMatrixFloat dJ_dq;  // The jacobian
	CPose2D q;	// The updated 2D transformation estimate
	CPose2D q_new;

	const bool onlyUniqueRobust = options.onlyUniqueRobust;
	const bool onlyKeepTheClosest = options.onlyClosestCorrespondences;

	// Assure the class of the maps:
	ASSERT_(mm1->GetRuntimeClass()->derivedFrom(CLASS_ID(CPointsMap)));
	const CPointsMap	*m1 = static_cast<const CPointsMap*>(mm1);

	// Asserts:
	// -----------------
	ASSERT_( options.ALFA>0 && options.ALFA<1 );

	// The algorithm output auxiliar info:
	// -------------------------------------------------
	outInfo.nIterations		= 0;
	outInfo.goodness		= 1.0f;

	TMatchingParams matchParams;
	TMatchingExtraResults matchExtraResults;

	matchParams.maxDistForCorrespondence = options.thresholdDist;			// Distance threshold
	matchParams.maxAngularDistForCorrespondence = options.thresholdAng;	// Angular threshold
	matchParams.angularDistPivotPoint = TPoint3D(q.x(),q.y(),0); // Pivot point for angular measurements
	matchParams.onlyKeepTheClosest = onlyKeepTheClosest;
	matchParams.onlyUniqueRobust = onlyUniqueRobust;
	matchParams.decimation_other_map_points = options.corresponding_points_decimation;

	// The gaussian PDF to estimate:
	// ------------------------------------------------------
	// First gross approximation:
	q = grossEst;

	// For LM inverse
	CMatrixFixedNumeric<float,3,3>	C;
	CMatrixFixedNumeric<float,3,3>	C_inv;		// This will keep the cov. matrix at the end

	// Asure maps are not empty!
	// ------------------------------------------------------
	if ( !m2->isEmpty() )
	{
		matchParams.offset_other_map_points = 0;
		// ------------------------------------------------------
		//					The ICP loop
		// ------------------------------------------------------
		do
		{
			// ------------------------------------------------------
			//		Find the matching (for a points map)
			// ------------------------------------------------------
			m1->determineMatching2D(
				m2,						// The other map
				q,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);

			nCorrespondences = correspondences.size();


			if ( !nCorrespondences )
			{
				// Nothing we can do !!
				keepIteratingICP = false;
			}
			else
			{
				// Compute the estimated pose through iterative least-squares: Levenberg-Marquardt
				// ----------------------------------------------------------------------
				dJ_dq.setSize(3,nCorrespondences);  // The jacobian of the error function wrt the transformation q

				double  lambda = options.LM_initial_lambda;		// The LM parameter

				double  ccos = cos(q.phi());
				double	csin = sin(q.phi());

				double  w1,w2,w3;
				double  q1,q2,q3;
				double  A,B;
				const double  Axy = options.Axy_aprox_derivatives;		// For approximating the derivatives

				// Compute at once the square errors for each point with the current "q" and the transformed points:
				std::vector<float> sq_errors;
				correspondences.squareErrorVector( q, sq_errors, other_xs_trans,other_ys_trans);
				double OSE_initial = math::sum( sq_errors );

				// Compute "dJ_dq"
				// ------------------------------------
				double  rho2 = square( options.kernel_rho );
				mrpt::utils::TMatchingPairList::iterator	it;
				std::vector<float>::const_iterator other_x_trans,other_y_trans;
				size_t  i;

				for (i=0,
					it=correspondences.begin(),
					other_x_trans = other_xs_trans.begin(),
					other_y_trans = other_ys_trans.begin();
					i<nCorrespondences;
					++i, ++it,++other_x_trans,++other_y_trans )
				{
					// Jacobian: dJ_dx
					// --------------------------------------
//#define ICP_DISTANCES_TO_LINE

#ifndef ICP_DISTANCES_TO_LINE
					w1= *other_x_trans-Axy;
					q1 = m1->squareDistanceToClosestCorrespondence( w1, *other_y_trans );
					q1= kernel( q1, rho2 );

					w2= *other_x_trans;
					q2 = m1->squareDistanceToClosestCorrespondence( w2, *other_y_trans );
					q2= kernel( q2, rho2 );

					w3= *other_x_trans+Axy;
					q3 = m1->squareDistanceToClosestCorrespondence( w3, *other_y_trans );
					q3= kernel( q3, rho2 );
#else
					// The distance to the line that interpolates the TWO closest points:
					float  x1,y1, x2,y2, d1,d2;
					m1->kdTreeTwoClosestPoint2D(
						*other_x_trans, *other_y_trans, 	// The query
						x1, y1,   // Closest point #1
						x2, y2,   // Closest point #2
						d1,d2);

					w1= *other_x_trans-Axy;
					q1 = math::closestSquareDistanceFromPointToLine( w1, *other_y_trans,  x1,y1, x2,y2 );
					q1= kernel( q1, rho2 );

					w2= *other_x_trans;
					q2 = math::closestSquareDistanceFromPointToLine( w2, *other_y_trans,  x1,y1, x2,y2 );
					q2= kernel( q2, rho2 );

					w3= *other_x_trans+Axy;
					q3 = math::closestSquareDistanceFromPointToLine( w3, *other_y_trans,  x1,y1, x2,y2 );
					q3= kernel( q3, rho2 );
#endif
					//interpolate
					A=(  (q3-q2)/((w3-w2)*(w3-w1))  ) - (  (q1-q2)/((w1-w2)*(w3-w1))  );
					B=(   (q1-q2)+(A*((w2*w2)-(w1*w1)))   )/(w1-w2);

					dJ_dq.get_unsafe(0,i) = (2*A* *other_x_trans)+B;

					// Jacobian: dJ_dy
					// --------------------------------------
					w1= *other_y_trans-Axy;
#ifdef ICP_DISTANCES_TO_LINE
					q1 = math::closestSquareDistanceFromPointToLine( *other_x_trans, w1,  x1,y1, x2,y2 );
					q1= kernel( q1, rho2 );
#else
					q1= kernel( square(it->this_x - *other_x_trans)+ square( it->this_y - w1 ),  rho2 );
#endif

					w2= *other_y_trans;
					// q2 is alreay computed from above!
					//q2 = m1->squareDistanceToClosestCorrespondence( *other_x_trans, w2 );
					//q2= kernel( square(it->this_x - *other_x_trans)+ square( it->this_y - w2 ),  rho2 );

					w3= *other_y_trans+Axy;
#ifdef ICP_DISTANCES_TO_LINE
					q3 = math::closestSquareDistanceFromPointToLine( *other_x_trans, w3,  x1,y1, x2,y2 );
					q3= kernel( q3, rho2 );
#else
					q3= kernel( square(it->this_x - *other_x_trans)+ square( it->this_y - w3 ),  rho2 );
#endif

					//interpolate
					A=(  (q3-q2)/((w3-w2)*(w3-w1))  ) - (  (q1-q2)/((w1-w2)*(w3-w1))  );
					B=(   (q1-q2)+(A*((w2*w2)-(w1*w1)))   )/(w1-w2);

					dJ_dq.get_unsafe(1,i) = (2*A* *other_y_trans)+B;

					// Jacobian: dR_dphi
					// --------------------------------------
					dJ_dq.get_unsafe(2,i) = dJ_dq.get_unsafe(0,i) * ( -csin * it->other_x - ccos * it->other_y )  +
								 dJ_dq.get_unsafe(1,i) * (  ccos * it->other_x - csin * it->other_y );

				} // end for each corresp.

				// Now we have the Jacobian in dJ_dq.

				// Compute the Hessian matrix H = dJ_dq * dJ_dq^T
				CMatrixFloat  H_(3,3);
				H_.multiply_AAt(dJ_dq);

				CMatrixFixedNumeric<float,3,3>  H = CMatrixFixedNumeric<float,3,3>(H_);

				bool  keepIteratingLM = true;

				// ---------------------------------------------------
				// Iterate the inner LM loop until convergence:
				// ---------------------------------------------------
				q_new = q;

				std::vector<float>  new_sq_errors, new_other_xs_trans, new_other_ys_trans;
				size_t   		nLMiters = 0;
				const size_t 	maxLMiters = 100;

				while ( keepIteratingLM &&  ++nLMiters<maxLMiters)
				{
					// The LM heuristic is:
					//  x_{k+1} = x_k  - ( H + \lambda diag(H) )^-1 * grad(J)
					//  grad(J) = dJ_dq * e (vector of errors)
					C = H;
					for (i=0;i<3;i++)
						C(i,i) *= (1+lambda);	// Levenberg-Maquardt heuristic

					C_inv = C.inv();

					// LM_delta = C_inv * dJ_dq * sq_errors
					Eigen::VectorXf  dJsq, LM_delta;
					dJ_dq.multiply_Ab( Eigen::Map<Eigen::VectorXf>(&sq_errors[0],sq_errors.size()), dJsq );
					C_inv.multiply_Ab(dJsq,LM_delta);

					q_new.x( q.x() - LM_delta[0] );
					q_new.y( q.y() - LM_delta[1] );
					q_new.phi( q.phi() - LM_delta[2] );

					// Compute the new square errors:
					// ---------------------------------------
					correspondences.squareErrorVector(
						q_new,
						new_sq_errors,
						new_other_xs_trans,
						new_other_ys_trans);

					float OSE_new = math::sum( new_sq_errors );

					bool improved = OSE_new < OSE_initial;

#if 0  // Debuggin'
					cout << "_____________" << endl;
					cout << "q -> q_new   : " << q << " -> " << q_new << endl;
					printf("err: %f  -> %f    lambda: %e\n", OSE_initial ,OSE_new, lambda );
					cout << "\\/J = "; utils::operator <<(cout,dJsq); cout << endl;
					mrpt::system::pause();
#endif

					keepIteratingLM =
						fabs(LM_delta[0])>options.minAbsStep_trans ||
						fabs(LM_delta[1])>options.minAbsStep_trans ||
						fabs(LM_delta[2])>options.minAbsStep_rot;

					if(improved)
					{
						//If resids have gone down, keep change and make lambda smaller by factor of 10
						lambda/=10;
						q=q_new;
						OSE_initial = OSE_new;
					}
					else
					{
						// Discard movement and try with larger lambda:
						lambda*=10;
					}

				} // end iterative LM

#if 0  // Debuggin'
				cout << "ICP loop: " << lastMeanPose  << " -> " << q << " LM iters: " << nLMiters  << " threshold: " << matchParams.maxDistForCorrespondence << endl;
#endif
				// --------------------------------------------------------
				// now the conditions for the outer ICP loop
				// --------------------------------------------------------
				keepIteratingICP = true;
				if	(fabs(lastMeanPose.x()-q.x())<options.minAbsStep_trans &&
					fabs(lastMeanPose.y()-q.y())<options.minAbsStep_trans &&
					fabs( math::wrapToPi( lastMeanPose.phi()-q.phi()) )<options.minAbsStep_rot)
				{
					matchParams.maxDistForCorrespondence		*= options.ALFA;
					matchParams.maxAngularDistForCorrespondence		*= options.ALFA;
					if (matchParams.maxDistForCorrespondence < options.smallestThresholdDist )
						keepIteratingICP = false;

					if (++matchParams.offset_other_map_points>=options.corresponding_points_decimation)
						matchParams.offset_other_map_points=0;
				}
				lastMeanPose = q;
			}	// end of "else, there are correspondences"

			// Next iteration:
			outInfo.nIterations++;

			if (outInfo.nIterations >= options.maxIterations && matchParams.maxDistForCorrespondence>options.smallestThresholdDist)
			{
				matchParams.maxDistForCorrespondence		*= options.ALFA;
			}

		} while	( (keepIteratingICP && outInfo.nIterations<options.maxIterations) ||
					(outInfo.nIterations >= options.maxIterations && matchParams.maxDistForCorrespondence>options.smallestThresholdDist) );

		outInfo.goodness = matchExtraResults.correspondencesRatio;


		//if (!options.skip_quality_calculation)
		{
			outInfo.quality= matchExtraResults.correspondencesRatio;
		}

	} // end of "if m2 is not empty"

	return CPosePDFGaussianPtr( new CPosePDFGaussian(q, C_inv.cast<double>() ) );
	MRPT_END
}
Exemplo n.º 25
0
/*----------------------------------------------------------------------------

					ICP_Method_Classic

  ----------------------------------------------------------------------------*/
CPosePDFPtr CICP::ICP_Method_Classic(
		const mrpt::maps::CMetricMap		*m1,
		const mrpt::maps::CMetricMap		*mm2,
		const CPosePDFGaussian	&initialEstimationPDF,
		TReturnInfo				&outInfo )
{
	MRPT_START

	// The result can be either a Gaussian or a SOG:
	CPosePDFPtr								resultPDF;
	CPosePDFGaussianPtr						gaussPdf;
	CPosePDFSOGPtr							SOG;

	size_t  nCorrespondences=0;
	bool    keepApproaching;
	CPose2D	grossEst = initialEstimationPDF.mean;
	mrpt::utils::TMatchingPairList correspondences,old_correspondences;
	CPose2D lastMeanPose;

	// Assure the class of the maps:
	const mrpt::maps::CMetricMap		*m2 = mm2;

	// Asserts:
	// -----------------
	ASSERT_( options.ALFA>=0 && options.ALFA<1 );

	// The algorithm output auxiliar info:
	// -------------------------------------------------
	outInfo.nIterations		= 0;
	outInfo.goodness		= 1;
	outInfo.quality			= 0;

	// The gaussian PDF to estimate:
	// ------------------------------------------------------
	gaussPdf = CPosePDFGaussian::Create();

	// First gross approximation:
	gaussPdf->mean = grossEst;

	// Initial thresholds:
	mrpt::maps::TMatchingParams matchParams;
	mrpt::maps::TMatchingExtraResults matchExtraResults;

	matchParams.maxDistForCorrespondence = options.thresholdDist;			// Distance threshold
	matchParams.maxAngularDistForCorrespondence = options.thresholdAng;	// Angular threshold
	matchParams.onlyKeepTheClosest = options.onlyClosestCorrespondences;
	matchParams.onlyUniqueRobust = options.onlyUniqueRobust;
	matchParams.decimation_other_map_points = options.corresponding_points_decimation;


	// Asure maps are not empty!
	// ------------------------------------------------------
	if ( !m2->isEmpty() )
	{
		matchParams.offset_other_map_points = 0;

		// ------------------------------------------------------
		//					The ICP loop
		// ------------------------------------------------------
		do
		{
			// ------------------------------------------------------
			//		Find the matching (for a points map)
			// ------------------------------------------------------
			matchParams.angularDistPivotPoint = TPoint3D(gaussPdf->mean.x(),gaussPdf->mean.y(),0); // Pivot point for angular measurements

			m1->determineMatching2D(
				m2,						// The other map
				gaussPdf->mean,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);

			nCorrespondences = correspondences.size();


			// ***DEBUG***
//				correspondences.dumpToFile("debug_correspondences.txt");

			if ( !nCorrespondences )
			{
				// Nothing we can do !!
				keepApproaching = false;
			}
			else
			{
				// Compute the estimated pose.
				//  (Method from paper of J.Gonzalez, Martinez y Morales)
				// ----------------------------------------------------------------------
				mrpt::math::TPose2D est_mean;
				mrpt::tfest::se2_l2(correspondences, est_mean); 

				gaussPdf->mean = est_mean;

				// If matching has not changed, decrease the thresholds:
				// --------------------------------------------------------
				keepApproaching = true;
				if	(!(fabs(lastMeanPose.x()-gaussPdf->mean.x())>options.minAbsStep_trans ||
					fabs(lastMeanPose.y()-gaussPdf->mean.y())>options.minAbsStep_trans ||
					fabs(math::wrapToPi(lastMeanPose.phi()-gaussPdf->mean.phi()))>options.minAbsStep_rot))
				{
					matchParams.maxDistForCorrespondence		*= options.ALFA;
					matchParams.maxAngularDistForCorrespondence		*= options.ALFA;
					if (matchParams.maxDistForCorrespondence < options.smallestThresholdDist )
						keepApproaching = false;

					if (++matchParams.offset_other_map_points>=options.corresponding_points_decimation)
						matchParams.offset_other_map_points=0;

				}

				lastMeanPose = gaussPdf->mean;

			}	// end of "else, there are correspondences"

			// Next iteration:
			outInfo.nIterations++;

			if (outInfo.nIterations >= options.maxIterations && matchParams.maxDistForCorrespondence>options.smallestThresholdDist)
			{
				matchParams.maxDistForCorrespondence		*= options.ALFA;
			}

		} while	( (keepApproaching && outInfo.nIterations<options.maxIterations) ||
					(outInfo.nIterations >= options.maxIterations && matchParams.maxDistForCorrespondence>options.smallestThresholdDist) );


		// -------------------------------------------------
		//   Obtain the covariance matrix of the estimation
		// -------------------------------------------------
		if (!options.skip_cov_calculation && nCorrespondences)
		{
			switch(options.ICP_covariance_method)
			{
			// ----------------------------------------------
			// METHOD: MSE linear estimation
			// ----------------------------------------------
			case icpCovLinealMSE:
				mrpt::tfest::se2_l2(correspondences, *gaussPdf );
				// Scale covariance:
				gaussPdf->cov *= options.covariance_varPoints;
				break;

			// ----------------------------------------------
			// METHOD: Method from Oxford MRG's "OXSMV2"
			//
			//  It is the equivalent covariance resulting
			//   from a Levenberg-Maquardt optimization stage.
			// ----------------------------------------------
			case icpCovFiniteDifferences:
			{
			Eigen::Matrix<double,3,Eigen::Dynamic> D(3,nCorrespondences);

			const TPose2D transf( gaussPdf->mean );

			double  ccos = cos(transf.phi);
			double  csin = sin(transf.phi);

			double  w1,w2,w3;
			double  q1,q2,q3;
			double  A,B;
			double  Axy = 0.01;

			// Fill out D:
			double  rho2 = square( options.kernel_rho );
			mrpt::utils::TMatchingPairList::iterator	it;
			size_t  i;
			for (i=0, it=correspondences.begin();i<nCorrespondences; ++i, ++it)
			{
				float   other_x_trans = transf.x + ccos * it->other_x - csin * it->other_y;
				float   other_y_trans = transf.y + csin * it->other_x + ccos * it->other_y;

				// Jacobian: dR2_dx
				// --------------------------------------
				w1= other_x_trans-Axy;
				q1= kernel( square(it->this_x - w1)+ square( it->this_y - other_y_trans ),  rho2 );

				w2= other_x_trans;
				q2= kernel( square(it->this_x - w2)+ square( it->this_y - other_y_trans ),  rho2 );

				w3= other_x_trans+Axy;
				q3= kernel( square(it->this_x - w3)+ square( it->this_y - other_y_trans ),  rho2 );

				//interpolate
				A=(  (q3-q2)/((w3-w2)*(w3-w1))  ) - (  (q1-q2)/((w1-w2)*(w3-w1))  );
				B=(   (q1-q2)+(A*((w2*w2)-(w1*w1)))   )/(w1-w2);

				D(0,i) = (2*A*other_x_trans)+B;

				// Jacobian: dR2_dy
				// --------------------------------------
				w1= other_y_trans-Axy;
				q1= kernel( square(it->this_x - other_x_trans)+ square( it->this_y - w1 ),  rho2 );

				w2= other_y_trans;
				q2= kernel( square(it->this_x - other_x_trans)+ square( it->this_y - w2 ),  rho2 );

				w3= other_y_trans+Axy;
				q3= kernel( square(it->this_x - other_x_trans)+ square( it->this_y - w3 ),  rho2 );

				//interpolate
				A=(  (q3-q2)/((w3-w2)*(w3-w1))  ) - (  (q1-q2)/((w1-w2)*(w3-w1))  );
				B=(   (q1-q2)+(A*((w2*w2)-(w1*w1)))   )/(w1-w2);

				D(1,i) = (2*A*other_y_trans)+B;

				// Jacobian: dR_dphi
				// --------------------------------------
				D(2,i) = D(0,i) * ( -csin * it->other_x - ccos * it->other_y )  +
					     D(1,i) * (  ccos * it->other_x - csin * it->other_y );

			} // end for each corresp.

			// COV = ( D*D^T + lamba*I )^-1
			CMatrixDouble33  DDt = D*D.transpose();

			for (i=0;i<3;i++) DDt( i,i ) += 1e-6;  // Just to make sure the matrix is not singular, while not changing its covariance significantly.

			DDt.inv(gaussPdf->cov);
			}
			break;
		default:
			THROW_EXCEPTION_FMT("Invalid value for ICP_covariance_method: %i", static_cast<int>(options.ICP_covariance_method));
			}
		}

		outInfo.goodness = matchExtraResults.correspondencesRatio;

		if (!nCorrespondences || options.skip_quality_calculation)
		{
			outInfo.quality = matchExtraResults.correspondencesRatio;
		}
		else
		{
			// Compute a crude estimate of the quality of scan matching at this local minimum:
			// -----------------------------------------------------------------------------------
			float  	Axy = matchParams.maxDistForCorrespondence*0.9f;

			TPose2D  	P0( gaussPdf->mean );
			TPose2D  	PX1(P0);	PX1.x -= Axy;
			TPose2D  	PX2(P0);	PX2.x += Axy;
			TPose2D  	PY1(P0);	PY1.y -= Axy;
			TPose2D  	PY2(P0);	PY2.y += Axy;

			matchParams.angularDistPivotPoint = TPoint3D( gaussPdf->mean.x(),gaussPdf->mean.y(),0);
			m1->determineMatching2D(
				m2,						// The other map
				P0,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);
			const float E0 = matchExtraResults.correspondencesRatio;

			m1->determineMatching2D(
				m2,						// The other map
				PX1,					// The other map pose
				correspondences,
				matchParams, matchExtraResults);
			const float EX1 = matchExtraResults.correspondencesRatio;

			m1->determineMatching2D(
				m2,						// The other map
				PX2,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);
			const float EX2 = matchExtraResults.correspondencesRatio;

			m1->determineMatching2D(
				m2,						// The other map
				PY1,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);
			const float EY1 = matchExtraResults.correspondencesRatio;
			m1->determineMatching2D(
				m2,						// The other map
				PY2,						// The other map pose
				correspondences,
				matchParams, matchExtraResults);
			const float EY2 = matchExtraResults.correspondencesRatio;

			outInfo.quality= -max(EX1-E0, max(EX2-E0, max(EY1-E0 , EY2-E0 ) ) )/(E0+1e-1);
		}

	} // end of "if m2 is not empty"

	// We'll return a CPosePDFGaussian or a CPosePDFSOG if RANSAC is enabled:
	// -----------------------------------------------------------------------

	// RANSAC?
	if (options.doRANSAC)
	{
		mrpt::tfest::TSE2RobustParams params;
		params.ransac_minSetSize = options.ransac_minSetSize;
		params.ransac_maxSetSize = options.ransac_maxSetSize;
		params.ransac_mahalanobisDistanceThreshold = options.ransac_mahalanobisDistanceThreshold;
		params.ransac_nSimulations = options.ransac_nSimulations;
		params.ransac_fuseByCorrsMatch = options.ransac_fuseByCorrsMatch;
		params.ransac_fuseMaxDiffXY = options.ransac_fuseMaxDiffXY;
		params.ransac_fuseMaxDiffPhi = options.ransac_fuseMaxDiffPhi;
		params.ransac_algorithmForLandmarks  = false; 

		mrpt::tfest::TSE2RobustResult results;
		mrpt::tfest::se2_l2_robust(correspondences, options.normalizationStd, params, results);

		SOG = CPosePDFSOG::Create();
		*SOG = results.transformation;

		// And return the SOG:
		resultPDF = SOG;
	}
	else
	{
		// Return the gaussian distribution:
		resultPDF = gaussPdf;
	}


	return resultPDF;

	MRPT_END
}
Exemplo n.º 26
0
double CPose2D::distance2DFrobeniusTo( const CPose2D & p) const
{
     return std::sqrt(square(p.x()-x())+square(p.y()-y())+4*(1-cos(p.phi()-phi())));
}
Exemplo n.º 27
0
void SRBASolver::publishGraphVisualization(visualization_msgs::MarkerArray &marray)
{ 
  ROS_INFO("Visualizing");
  // Vertices are round, red spheres
  visualization_msgs::Marker m;
  m.header.frame_id = relative_map_frame_;
  m.header.stamp = ros::Time::now();
  m.id = 0;
  m.ns = "karto";
  m.type = visualization_msgs::Marker::ARROW;
  m.pose.position.x = 0.0;
  m.pose.position.y = 0.0;
  m.pose.position.z = 0.0;
  m.scale.x = 0.15;
  m.scale.y = 0.15;
  m.scale.z = 0.15;
  m.color.r = 1.0;
  m.color.g = 0;
  m.color.b = 0.0;
  m.color.a = 1.0;
  m.lifetime = ros::Duration(0);

  // Odometry edges are opaque blue line strips 
  visualization_msgs::Marker edge;
  edge.header.frame_id = relative_map_frame_;
  edge.header.stamp = ros::Time::now();
  edge.action = visualization_msgs::Marker::ADD;
  edge.ns = "karto";
  edge.id = 0;
  edge.type = visualization_msgs::Marker::LINE_STRIP;
  edge.scale.x = 0.1;
  edge.scale.y = 0.1;
  edge.scale.z = 0.1;
  edge.color.a = 1.0;
  edge.color.r = 0.0;
  edge.color.g = 0.0;
  edge.color.b = 1.0;

  // Loop edges are purple, opacity depends on backend state
  visualization_msgs::Marker loop_edge;
  loop_edge.header.frame_id = relative_map_frame_;
  loop_edge.header.stamp = ros::Time::now();
  loop_edge.action = visualization_msgs::Marker::ADD;
  loop_edge.ns = "spanning_tree";
  loop_edge.id = 0;
  loop_edge.type = visualization_msgs::Marker::LINE_STRIP;
  loop_edge.scale.x = 0.1;
  loop_edge.scale.y = 0.1;
  loop_edge.scale.z = 0.1;
  loop_edge.color.a = 1.0;
  loop_edge.color.r = 1.0;
  loop_edge.color.g = 0.0;
  loop_edge.color.b = 1.0;
 
  visualization_msgs::Marker node_text;
  node_text.header.frame_id = relative_map_frame_;
  node_text.header.stamp = ros::Time::now();
  node_text.action = visualization_msgs::Marker::ADD;
  node_text.ns = "karto";
  node_text.id = 0;
  node_text.type = visualization_msgs::Marker::TEXT_VIEW_FACING;
  node_text.scale.z = 0.3;
  node_text.color.a = 1.0;
  node_text.color.r = 1.0;
  node_text.color.g = 1.0;
  node_text.color.b = 1.0;
 
  if(!rba_.get_rba_state().keyframes.empty())
  {
    // Use a spanning tree to estimate the global pose of every node
    //  starting (root) at the given keyframe:
    
    srba_t::frameid2pose_map_t  spantree;
    if(curr_kf_id_ == 0)
      return;
    TKeyFrameID root_keyframe(curr_kf_id_ -1 );
    rba_.create_complete_spanning_tree(root_keyframe,spantree);

    int id = 0;
    for (srba_t::frameid2pose_map_t::const_iterator itP = spantree.begin();itP!=spantree.end();++itP)
    {
      if (root_keyframe==itP->first) continue;

      const CPose2D p = itP->second.pose;
      
      // Add the vertex to the marker array 
      m.id = id;
      m.pose.position.x = p.x();
      m.pose.position.y = p.y();
      geometry_msgs::Quaternion q = tf::createQuaternionMsgFromYaw(p.phi());

      m.pose.orientation = q;
      marray.markers.push_back(visualization_msgs::Marker(m));
      id++;

      node_text.id = id;
      node_text.text= boost::lexical_cast<std::string>(itP->first);
      node_text.pose.position.x = p.x()+0.15; 
      node_text.pose.position.y = p.y()+0.15; 
      marray.markers.push_back(visualization_msgs::Marker(node_text));
      id++;

    }
    
    for (srba_t::rba_problem_state_t::k2k_edges_deque_t::const_iterator itEdge = rba_.get_rba_state().k2k_edges.begin();
        itEdge!=rba_.get_rba_state().k2k_edges.end();++itEdge)
    {
      CPose2D p1, p2;
      if(itEdge->from != root_keyframe)
      {
        srba_t::frameid2pose_map_t::const_iterator itN1 = spantree.find(itEdge->from);
        if(itN1==spantree.end())
          continue;
        p1 = itN1->second.pose;
      }
      if(itEdge->to != root_keyframe)
      {
        srba_t::frameid2pose_map_t::const_iterator itN2 = spantree.find(itEdge->to);
        if(itN2==spantree.end())
          continue;
        p2 = itN2->second.pose;
      }
      geometry_msgs::Point pt1, pt2;
      pt1.x = p1.x();
      pt1.y = p1.y();
      pt2.x = p2.x();
      pt2.y = p2.y();

      loop_edge.points.clear();
      loop_edge.points.push_back(pt1);
      loop_edge.points.push_back(pt2);
      loop_edge.id = id;
      marray.markers.push_back(visualization_msgs::Marker(loop_edge));
      id++;
    }

    // Render landmark as pose constraint
    // For each KF: check all its "observations"
    for (srba_t::frameid2pose_map_t::const_iterator it=spantree.begin();it!=spantree.end();++it)
    {
      const TKeyFrameID kf_id = it->first;
      const srba_t::pose_flag_t & pf = it->second;

      const typename srba_t::keyframe_info &kfi = rba_.get_rba_state().keyframes[kf_id];

      for (size_t i=0;i<kfi.adjacent_k2f_edges.size();i++)
      {
        const srba_t::k2f_edge_t * k2f = kfi.adjacent_k2f_edges[i];
        const TKeyFrameID other_kf_id = k2f->feat_rel_pos->id_frame_base;
        if (kf_id==other_kf_id)
          continue; // It's not an constraint with ANOTHER keyframe

        // Is the other KF in the spanning tree?
        srba_t::frameid2pose_map_t::const_iterator other_it=spantree.find(other_kf_id);
        if (other_it==spantree.end()) continue;

        const srba_t::pose_flag_t & other_pf = other_it->second;

        // Add edge between the two KFs to represent the pose constraint:
        mrpt::poses::CPose2D p1 = mrpt::poses::CPose2D(pf.pose);  // Convert to 3D
        mrpt::poses::CPose2D p2 = mrpt::poses::CPose2D(other_pf.pose);

        geometry_msgs::Point pt1, pt2;
        pt1.x = p1.x();
        pt1.y = p1.y();
        pt2.x = p2.x();
        pt2.y = p2.y();

        edge.points.clear();
        edge.points.push_back(pt1);
        edge.points.push_back(pt2);
        edge.id = id;
        marray.markers.push_back(visualization_msgs::Marker(edge));
        id++;
      }

  } // end for each KF

  // Delete any excess markers whose ids haven't been reclaimed
  m.action = visualization_msgs::Marker::DELETE;
  for (; id < marker_count_; id++) 
  {
    m.id = id;
    marray.markers.push_back(visualization_msgs::Marker(m));
  }
  marker_count_ = marray.markers.size();
}
  else
    ROS_INFO("Graph is empty");
}
Exemplo n.º 28
0
bool mrpt::poses::operator!=(const CPose2D &p1,const CPose2D &p2)
{
	return (p1.x()!=p2.x())||(p1.y()!=p2.y())||(p1.phi()!=p2.phi());
}
Exemplo n.º 29
0
bool mrpt::poses::operator==(const CPose2D &p1,const CPose2D &p2)
{
	return (p1.x()==p2.x())&&(p1.y()==p2.y())&&(p1.phi()==p2.phi());
}
Exemplo n.º 30
0
void CAbstractPTGBasedReactive::setHolonomicMethod(
    const THolonomicMethod method,
	const mrpt::utils::CConfigFileBase &ini)
{
	this->deleteHolonomicObjects();

	const size_t nPTGs = this->getPTG_count();
	m_holonomicMethod.resize(nPTGs);

	for (size_t i=0; i<nPTGs; i++)
	{
		switch (method)
		{
		case hmSEARCH_FOR_BEST_GAP:  m_holonomicMethod[i] = new CHolonomicND();  break;
		case hmVIRTUAL_FORCE_FIELDS: m_holonomicMethod[i] = new CHolonomicVFF(); break;
		default: THROW_EXCEPTION_CUSTOM_MSG1("Unknown Holonomic method: %u",static_cast<unsigned int>(method))
		};
		// Load params:
		m_holonomicMethod[i]->initialize( ini );
	}
}


// The main method: executes one time-iteration of the reactive navigation algorithm.
void CAbstractPTGBasedReactive::performNavigationStep()
{
	// Security tests:
	if (m_closing_navigator) return;  // Are we closing in the main thread?
	if (!m_init_done) THROW_EXCEPTION("Have you called loadConfigFile() before?")

	const size_t nPTGs = this->getPTG_count();

	// Whether to worry about log files:
	const bool fill_log_record = (m_logFile!=NULL || m_enableKeepLogRecords);
	CLogFileRecord newLogRec;
	newLogRec.infoPerPTG.resize(nPTGs);

	// Lock
	mrpt::synch::CCriticalSectionLocker lock( &m_critZoneNavigating );

	CTimeLoggerEntry tle1(m_timelogger,"navigationStep");

	try
	{
		totalExecutionTime.Tic(); // Start timer

		const mrpt::system::TTimeStamp tim_start_iteration = mrpt::system::now();

		/* ----------------------------------------------------------------
		 	  Request current robot pose and velocities
		   ---------------------------------------------------------------- */
		poses::CPose2D curPose;
		float          curVL; // in m/s
		float          curW;  // in rad/s

		{
			CTimeLoggerEntry tle2(m_timelogger,"navigationStep.getCurrentPoseAndSpeeds");
			if ( !m_robot.getCurrentPoseAndSpeeds(curPose, curVL, curW ) )
			{
				doEmergencyStop("ERROR calling m_robot.getCurrentPoseAndSpeeds, stopping robot and finishing navigation");
				return;
			}
		}

		/* ----------------------------------------------------------------
		 	  Have we reached the target location?
		   ---------------------------------------------------------------- */
		const double targetDist = curPose.distance2DTo( m_navigationParams->target.x, m_navigationParams->target.y );

		// Should "End of navigation" event be sent??
		if (!navigationEndEventSent && targetDist < DIST_TO_TARGET_FOR_SENDING_EVENT)
		{
			navigationEndEventSent = true;
			m_robot.sendNavigationEndEvent();
		}

		// Have we really reached the target?
		if ( targetDist < m_navigationParams->targetAllowedDistance )
		{
			m_robot.stop();
			m_navigationState = IDLE;
			if (m_enableConsoleOutput) printf_debug("Navigation target (%.03f,%.03f) was reached\n", m_navigationParams->target.x,m_navigationParams->target.y);

			if (!navigationEndEventSent)
			{
				navigationEndEventSent = true;
				m_robot.sendNavigationEndEvent();
			}
			return;
		}

		// Check the "no approaching the target"-alarm:
		// -----------------------------------------------------------
		if (targetDist < badNavAlarm_minDistTarget )
		{
			badNavAlarm_minDistTarget = targetDist;
			badNavAlarm_lastMinDistTime =  system::getCurrentTime();
		}
		else
		{
			// Too much time have passed?
			if ( system::timeDifference( badNavAlarm_lastMinDistTime, system::getCurrentTime() ) > badNavAlarm_AlarmTimeout)
			{
				std::cout << "\n--------------------------------------------\nWARNING: Timeout for approaching toward the target expired!! Aborting navigation!! \n---------------------------------\n";

				m_navigationState = NAV_ERROR;
				return;
			}
		}


		// Compute target location relative to current robot pose:
		// ---------------------------------------------------------------------
		const CPose2D relTarget = CPose2D(m_navigationParams->target.x,m_navigationParams->target.y,m_navigationParams->targetHeading) - curPose;

		// STEP1: Collision Grids Builder.
		// -----------------------------------------------------------------------------
		STEP1_CollisionGridsBuilder(); // Will only recompute if "m_collisionGridsMustBeUpdated==true"

		// STEP2: Load the obstacles and sort them in height bands.
		// -----------------------------------------------------------------------------
		if (! STEP2_SenseObstacles() )
		{
			printf_debug("Error while loading and sorting the obstacles. Robot will be stopped.\n");
			m_robot.stop();
			m_navigationState = NAV_ERROR;
			return;
		}

		// Start timer
		executionTime.Tic();


		m_infoPerPTG.resize(nPTGs);
		vector<THolonomicMovement> holonomicMovements(nPTGs);

		for (size_t indexPTG=0;indexPTG<nPTGs;indexPTG++)
		{
			CHolonomicLogFileRecordPtr HLFR;

			//  STEP3(a): Transform target location into TP-Space for each PTG
			// -----------------------------------------------------------------------------
			CParameterizedTrajectoryGenerator * ptg = getPTG(indexPTG);
			ASSERT_(ptg)
			TInfoPerPTG &ipf = m_infoPerPTG[indexPTG];

			// The picked movement in TP-Space (to be determined by holonomic method below)
			THolonomicMovement &holonomicMovement = holonomicMovements[indexPTG];
			holonomicMovement.PTG = ptg;

			// If the user doesn't want to use this PTG, just mark it as invalid:
			ipf.valid_TP = true;
			{
				const TNavigationParamsPTG * navp = dynamic_cast<const TNavigationParamsPTG*>(m_navigationParams);
				if (navp && !navp->restrict_PTG_indices.empty())
				{
					bool use_this_ptg = false;
					for (size_t i=0;i<navp->restrict_PTG_indices.size() && !use_this_ptg;i++) {
						if (navp->restrict_PTG_indices[i]==indexPTG)
							use_this_ptg = true;
					}
					ipf.valid_TP = use_this_ptg;
				}
			}

			// Normal PTG validity filter: check if target falls into the PTG domain:
			ipf.valid_TP = ipf.valid_TP && ptg->PTG_IsIntoDomain( relTarget.x(),relTarget.y() );

			if (ipf.valid_TP)
			{
				ptg->inverseMap_WS2TP(relTarget.x(),relTarget.y(),ipf.target_k,ipf.target_dist);

				ipf.target_alpha = ptg->index2alpha(ipf.target_k);
				ipf.TP_Target.x = cos(ipf.target_alpha) * ipf.target_dist;
				ipf.TP_Target.y = sin(ipf.target_alpha) * ipf.target_dist;

				//  STEP3(b): Build TP-Obstacles
				// -----------------------------------------------------------------------------
				{
					CTimeLoggerEntry tle(m_timelogger,"navigationStep.STEP3_WSpaceToTPSpace");

					// Initialize TP-Obstacles:
					const size_t Ki = ptg->getAlfaValuesCount();
					ipf.TP_Obstacles.resize( Ki );
					for (size_t k=0;k<Ki;k++)
					{
						ipf.TP_Obstacles[k] = ptg->refDistance;
						// if the robot ends the trajectory due to a >180deg turn, set that as the max. distance, not D_{max}:
						float phi = ptg->GetCPathPoint_phi(k,ptg->getPointsCountInCPath_k(k)-1);
						if (fabs(phi) >= M_PI* 0.95f )
							ipf.TP_Obstacles[k]= ptg->GetCPathPoint_d(k,ptg->getPointsCountInCPath_k(k)-1);
					}

					// Implementation-dependent conversion:
					STEP3_WSpaceToTPSpace(indexPTG,ipf.TP_Obstacles);

					// Distances in TP-Space are normalized to [0,1]:
					const double _refD = 1.0/ptg->refDistance;
					for (size_t i=0;i<Ki;i++) ipf.TP_Obstacles[i] *= _refD;
				}

				//  STEP4: Holonomic navigation method
				// -----------------------------------------------------------------------------
				{
					CTimeLoggerEntry tle(m_timelogger,"navigationStep.STEP4_HolonomicMethod");

					ASSERT_(m_holonomicMethod[indexPTG])
					m_holonomicMethod[indexPTG]->navigate(
						ipf.TP_Target,
						ipf.TP_Obstacles,
						ptg->getMax_V_inTPSpace(),
						holonomicMovement.direction,
						holonomicMovement.speed,
						HLFR);

					// Security: Scale down the velocity when heading towards obstacles, 
					//  such that it's assured that we never go thru an obstacle!
					const int kDirection = static_cast<int>( holonomicMovement.PTG->alpha2index( holonomicMovement.direction ) );
					const double obsFreeNormalizedDistance = ipf.TP_Obstacles[kDirection];
					double velScale = 1.0;
					ASSERT_(secureDistanceEnd>secureDistanceStart);
					if (obsFreeNormalizedDistance<secureDistanceEnd)
					{
						if (obsFreeNormalizedDistance<=secureDistanceStart)
							 velScale = 0.0; // security stop
						else velScale = (obsFreeNormalizedDistance-secureDistanceStart)/(secureDistanceEnd-secureDistanceStart);
					}

					// Scale: 
					holonomicMovement.speed *= velScale;
				}

				// STEP5: Evaluate each movement to assign them a "evaluation" value.
				// ---------------------------------------------------------------------
				{
					CTimeLoggerEntry tle(m_timelogger,"navigationStep.STEP5_PTGEvaluator");

					STEP5_PTGEvaluator(
						holonomicMovement,
						ipf.TP_Obstacles,
						TPose2D(relTarget),
						ipf.TP_Target,
						newLogRec.infoPerPTG[indexPTG]);
				}


			} // end "valid_TP"
			else
			{   // Invalid PTG (target out of reachable space):
				// - holonomicMovement= Leave default values
				HLFR = CLogFileRecord_VFF::Create();
			}

			// Logging:
			if (fill_log_record)
			{
				metaprogramming::copy_container_typecasting(ipf.TP_Obstacles, newLogRec.infoPerPTG[indexPTG].TP_Obstacles);
				newLogRec.infoPerPTG[indexPTG].PTG_desc  = ptg->getDescription();
				newLogRec.infoPerPTG[indexPTG].TP_Target = CPoint2D(ipf.TP_Target);
				newLogRec.infoPerPTG[indexPTG].HLFR	     = HLFR;
				newLogRec.infoPerPTG[indexPTG].desiredDirection = holonomicMovement.direction;
				newLogRec.infoPerPTG[indexPTG].desiredSpeed     = holonomicMovement.speed;
				newLogRec.infoPerPTG[indexPTG].evaluation       = holonomicMovement.evaluation;
				newLogRec.infoPerPTG[indexPTG].timeForTPObsTransformation = 0;  // XXX
				newLogRec.infoPerPTG[indexPTG].timeForHolonomicMethod     = 0; // XXX
			}

		} // end for each PTG


		// STEP6: After all PTGs have been evaluated, pick the best scored:
		// ---------------------------------------------------------------------
		int nSelectedPTG = 0;
		for (size_t indexPTG=0;indexPTG<nPTGs;indexPTG++) {
			if ( holonomicMovements[indexPTG].evaluation > holonomicMovements[nSelectedPTG].evaluation )
				nSelectedPTG = indexPTG;
		}
		const THolonomicMovement & selectedHolonomicMovement = holonomicMovements[nSelectedPTG];


		// STEP7: Get the non-holonomic movement command.
		// ---------------------------------------------------------------------
		{
			CTimeLoggerEntry tle(m_timelogger,"navigationStep.STEP7_NonHolonomicMovement");
			STEP7_GenerateSpeedCommands( selectedHolonomicMovement );
		}

		// ---------------------------------------------------------------------
		//				SEND MOVEMENT COMMAND TO THE ROBOT
		// ---------------------------------------------------------------------
		if ( new_cmd_v == 0.0 && new_cmd_w == 0.0 )
		{
			m_robot.stop();
		}
		else
		{
			if ( !m_robot.changeSpeeds( new_cmd_v, new_cmd_w ) )
			{
				doEmergencyStop("\nERROR calling RobotMotionControl::changeSpeeds!! Stopping robot and finishing navigation\n");
				return;
			}
		}

		// Statistics:
		// ----------------------------------------------------
		float	executionTimeValue = (float) executionTime.Tac();
		meanExecutionTime=  0.3f * meanExecutionTime +
		                    0.7f * executionTimeValue;
		meanTotalExecutionTime=  0.3f * meanTotalExecutionTime +
		                         0.7f * ((float)totalExecutionTime.Tac() );
		meanExecutionPeriod = 0.3f * meanExecutionPeriod +
		                      0.7f * min(1.0f, (float)timerForExecutionPeriod.Tac());


		timerForExecutionPeriod.Tic();

        if (m_enableConsoleOutput)
        {
            printf_debug(
				"CMD:%.02fm/s,%.02fd/s \t"
				"T=%.01lfms Exec:%.01lfms|%.01lfms \t"
				"E=%.01lf PTG#%i\n",
		           (double)new_cmd_v,
		           (double)RAD2DEG( new_cmd_w ),
		           1000.0*meanExecutionPeriod,
		           1000.0*meanExecutionTime,
		           1000.0*meanTotalExecutionTime,
				   (double)selectedHolonomicMovement.evaluation,
				   nSelectedPTG
				   );
		}

		// ---------------------------------------
		// STEP8: Generate log record
		// ---------------------------------------
		if (fill_log_record)
		{
			m_timelogger.enter("navigationStep.populate_log_info");

			this->loggingGetWSObstaclesAndShape(newLogRec);

			newLogRec.robotOdometryPose			= curPose;
			newLogRec.WS_target_relative		= CPoint2D(relTarget.x(), relTarget.y());
			newLogRec.v							= new_cmd_v;
			newLogRec.w							= new_cmd_w;
			newLogRec.nSelectedPTG				= nSelectedPTG;
			newLogRec.executionTime				= executionTimeValue;
			newLogRec.actual_v					= curVL;
			newLogRec.actual_w					= curW;
			newLogRec.estimatedExecutionPeriod	= meanExecutionPeriod;
			newLogRec.timestamp					= tim_start_iteration;
			newLogRec.nPTGs						= nPTGs;
			newLogRec.navigatorBehavior			= nSelectedPTG;

			m_timelogger.leave("navigationStep.populate_log_info");

			//  Save to log file:
			// --------------------------------------
			m_timelogger.enter("navigationStep.write_log_file");
			if (m_logFile) (*m_logFile) << newLogRec;
			m_timelogger.leave("navigationStep.write_log_file");

			// Set as last log record
			{
				mrpt::synch::CCriticalSectionLocker lock_log(&m_critZoneLastLog);    // Lock
				lastLogRecord = newLogRec; // COPY
			}
		} // if (fill_log_record)

	}
	catch (std::exception &e)
	{
		std::cout << e.what();
		std::cout << "[CAbstractPTGBasedReactive::performNavigationStep] Exceptions!!\n";
	}
	catch (...)
	{
		std::cout << "[CAbstractPTGBasedReactive::performNavigationStep] Unexpected exception!!:\n";
	}
}

void CAbstractPTGBasedReactive::STEP5_PTGEvaluator(
	THolonomicMovement         & holonomicMovement,
	const vector_double        & in_TPObstacles,
	const mrpt::math::TPose2D  & WS_Target,
	const mrpt::math::TPoint2D & TP_Target,
	CLogFileRecord::TInfoPerPTG & log )
{
	const double   refDist	    = holonomicMovement.PTG->refDistance;
	const double   TargetDir    = (TP_Target.x!=0 || TP_Target.y!=0) ? atan2( TP_Target.y, TP_Target.x) : 0.0;
	const int      TargetSector = static_cast<int>( holonomicMovement.PTG->alpha2index( TargetDir ) );
	const double   TargetDist   = TP_Target.norm();
	// Picked movement direction:
	const int      kDirection   = static_cast<int>( holonomicMovement.PTG->alpha2index( holonomicMovement.direction ) );

	// Coordinates of the trajectory end for the given PTG and "alpha":
	float	x,y,phi,t,d;
	d = min( in_TPObstacles[ kDirection ], 0.90f*TargetDist);
	holonomicMovement.PTG->getCPointWhen_d_Is( d, kDirection,x,y,phi,t );

	// Factor 1: Free distance for the chosen PTG and "alpha" in the TP-Space:
	// ----------------------------------------------------------------------
	const double factor1 = in_TPObstacles[kDirection];


	// Factor 2: Distance in sectors:
	// -------------------------------------------
	double dif = std::abs(((double)( TargetSector - kDirection )));
	const double nSectors = (float)in_TPObstacles.size();
	if ( dif > (0.5*nSectors)) dif = nSectors - dif;
	const double factor2 = exp(-square( dif / (in_TPObstacles.size()/3.0f))) ;

	// Factor 3: Angle between the robot at the end of the chosen trajectory and the target
	// -------------------------------------------------------------------------------------
	double t_ang = atan2( WS_Target.y - y, WS_Target.x - x );
	t_ang -= phi;
	mrpt::math::wrapToPiInPlace(t_ang);

	const double factor3 = exp(-square( t_ang / (float)(0.5f*M_PI)) );

	// Factor4:		Decrease in euclidean distance between (x,y) and the target:
	//  Moving away of the target is negatively valued
	// ---------------------------------------------------------------------------
	const double dist_eucl_final = std::sqrt(square(WS_Target.x-x)+square(WS_Target.y-y));
	const double dist_eucl_now   = std::sqrt(square(WS_Target.x)+square(WS_Target.y));

	const double factor4 = min(2.0*refDist,max(0.0,((dist_eucl_now - dist_eucl_final)+refDist)))/(2*refDist);

	// ---------
	//	float decrementDistanc = dist_eucl_now - dist_eucl_final;
	//	if (dist_eucl_now>0)
	//			factor4 = min(1.0,min(refDist*2,max(0,decrementDistanc + refDist)) / dist_eucl_now);
	//	else	factor4 = 0;
	// ---------
	//	factor4 = min(2*refDist2,max(0,decrementDistanc + refDist2)) / (2*refDist2);
	//  factor4=  (refDist2 - min( refDist2, dist_eucl ) ) / refDist2;

	// Factor5: Hysteresis:
	// -----------------------------------------------------
	float	want_v,want_w;
	holonomicMovement.PTG->directionToMotionCommand( kDirection, want_v,want_w);

	float	likely_v = exp( -fabs(want_v-last_cmd_v)/0.10f );
	float	likely_w = exp( -fabs(want_w-last_cmd_w)/0.40f );

	const double factor5 = min( likely_v,likely_w );


	// Factor6: Fast when free space
	// -----------------------------------------------------
	float aver_obs = 0;
	for (int i=0; i<in_TPObstacles.size(); i++)
		aver_obs += in_TPObstacles[i];

	aver_obs = aver_obs/in_TPObstacles.size();

	const double factor6 = aver_obs*want_v;

	//  SAVE LOG
	log.evalFactors.resize(6);
	log.evalFactors[0] = factor1;
	log.evalFactors[1] = factor2;
	log.evalFactors[2] = factor3;
	log.evalFactors[3] = factor4;
	log.evalFactors[4] = factor5;
	log.evalFactors[5] = factor6;

	if (holonomicMovement.speed == 0)
	{
		// If no movement has been found -> the worst evaluation:
		holonomicMovement.evaluation = 0;
	}
	else
	{
		// Sum: two cases: *************************************I'm not sure about this...
		if (dif<2	&&											// Heading the target
			    in_TPObstacles[kDirection]*0.95f>TargetDist 	// and free space towards the target
			)
		{
			//	Direct path to target:
			//	holonomicMovement.evaluation = 1.0f + (1 - TargetDist) + factor5 * weight5 + factor6*weight6;
			holonomicMovement.evaluation = 1.0f + (1 - t/15.0f) + factor5 * weights[4] + factor6*weights[5];
		}
		else
		{
		// General case:
		holonomicMovement.evaluation = (
			factor1 * weights[0] +
			factor2 * weights[1] +
			factor3 * weights[2] +
			factor4 * weights[3] +
			factor5 * weights[4] +
			factor6 * weights[5]
			) / ( math::sum(weights));
		}
	}
}

void CAbstractPTGBasedReactive::STEP7_GenerateSpeedCommands( const THolonomicMovement &in_movement)
{
	try
	{

		last_cmd_v = new_cmd_v;
		last_cmd_w = new_cmd_w;

		if (in_movement.speed == 0)
		{
			// The robot will stop:
			new_cmd_v = new_cmd_w = 0;
		}
		else
		{
			// Take the normalized movement command:
			in_movement.PTG->directionToMotionCommand(
			    in_movement.PTG->alpha2index( in_movement.direction ),
			    new_cmd_v,
			    new_cmd_w );

			// Scale holonomic speeds to real-world one:
			//const double reduction = min(1.0, in_movement.speed / sqrt( square(new_cmd_v) + square(r*new_cmd_w)));
			double reduction = in_movement.speed;
			if (reduction < 0.5)
				reduction = 0.5;

			// To scale:
			new_cmd_v*=reduction;
			new_cmd_w*=reduction;

			// Assure maximum speeds:
			if (fabs(new_cmd_v) > robotMax_V_mps)
			{
				// Scale:
				float F = fabs(robotMax_V_mps / new_cmd_v);
				new_cmd_v *= F;
				new_cmd_w *= F;
			}

			if (fabs(new_cmd_w) > DEG2RAD(robotMax_W_degps))
			{
				// Scale:
				float F = fabs((float)DEG2RAD(robotMax_W_degps) / new_cmd_w);
				new_cmd_v *= F;
				new_cmd_w *= F;
			}

			//First order low-pass filter
			float alfa = meanExecutionPeriod/( meanExecutionPeriod + SPEEDFILTER_TAU);
			new_cmd_v = alfa*new_cmd_v + (1-alfa)*last_cmd_v;
			new_cmd_w = alfa*new_cmd_w + (1-alfa)*last_cmd_w;

		}
		m_timelogger.leave("navigationStep.STEP7_NonHolonomicMovement");
	}
	catch (std::exception &e)
	{
		m_timelogger.leave("navigationStep.STEP7_NonHolonomicMovement");
		printf_debug("[CReactiveNavigationSystem::STEP7_NonHolonomicMovement] Exception:");
		printf_debug((char*)(e.what()));
	}
	catch (...)
	{
		m_timelogger.leave("navigationStep.STEP7_NonHolonomicMovement");
		printf_debug("[CReactiveNavigationSystem::STEP7_NonHolonomicMovement] Unexpected exception!\n");
	}
}